[1] | |
|
[2] |
Jambeck JR, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean. Science, 2015, 347(6223): 768-771. DOI:10.1126/science.1260352
|
|
[3] |
Fang C, Zheng RH, Zhang YS, et al. Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions. Chemosphere, 2018, 209: 298-306. DOI:10.1016/j.chemosphere.2018.06.101
|
|
[4] |
Zhang GS, Liu YF. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ, 2018, 642: 12-20. DOI:10.1016/j.scitotenv.2018.06.004
|
|
[5] |
Rezania S, Park J, Md Din MF, et al. Microplastics pollution in different aquatic environments and biota: a review of recent studies. Mar Pollut Bull, 2018, 133: 191-208. DOI:10.1016/j.marpolbul.2018.05.022
|
|
[6] |
Gregory MR. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc Lond B Biol Sci, 2009, 364(1526): 2013-2025. DOI:10.1098/rstb.2008.0265
|
|
[7] |
Sun Q, Ren SY, Ni HG. Incidence of microplastics in personal care products: an appreciable part of plastic pollution. Sci Total Environ, 2020, 742: 140218. DOI:10.1016/j.scitotenv.2020.140218
|
|
[8] |
De Falco F, Gullo MP, Gentile G, et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ Pollut, 2018, 236: 916-925. DOI:10.1016/j.envpol.2017.10.057
|
|
[9] |
Wagner S, Hüffer T, Klöckner P, et al. Tire wear particles in the aquatic environment-a review on generation, analysis, occurrence, fate and effects. Water Res, 2018, 139: 83-100. DOI:10.1016/j.watres.2018.03.051
|
|
[10] |
Unice KM, Weeber MP, Abramson MM, et al. Characterizing export of land-based microplastics to the estuary-Part II: sensitivity analysis of an integrated geospatial microplastic transport modeling assessment of tire and road wear particles. Sci Total Environ, 2019, 646: 1650-1659. DOI:10.1016/j.scitotenv.2018.08.301
|
|
[11] |
Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the "plastisphere": microbial communities on plastic marine debris. Environ Sci Technol, 2013, 47(13): 7137-7146. DOI:10.1021/es401288x
|
|
[12] |
Jin YX, Xia JZ, Pan ZH, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ Pollut, 2018, 235: 322-329. DOI:10.1016/j.envpol.2017.12.088
|
|
[13] | |
|
[14] |
Sökmen TÖ, Sulukan E, Türkoğlu M, et al. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio). Neurotoxicology, 2020, 77: 51-59. DOI:10.1016/j.neuro.2019.12.010
|
|
[15] |
McCormick A, Hoellein TJ, Mason SA, et al. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol, 2014, 48(20): 11863-11871. DOI:10.1021/es503610r
|
|
[16] |
Freeman S, Booth AM, Sabbah I, et al. Between source and sea: the role of wastewater treatment in reducing marine microplastics. J Environ Manage, 2020, 266: 110642. DOI:10.1016/j.jenvman.2020.110642
|
|
[17] |
Leslie HA, Brandsma SH, Van Velzen MJM, et al. Microplastics en route: field measurements in the Dutch River delta and Amsterdam canals, wastewater treatment plants, north Sea sediments and biota. Environ Int, 2017, 101: 133-142. DOI:10.1016/j.envint.2017.01.018
|
|
[18] |
Rolsky C, Kelkar V, Driver E, et al. Municipal sewage sludge as a source of microplastics in the environment. Curr Opin Environ Sci Heal, 2020, 14: 16-22. DOI:10.1016/j.coesh.2019.12.001
|
|
[19] |
Zhang ZQ, Chen YG. Effects of microplastics on wastewater and sewage sludge treatment and their removal: a review. Chem Eng J, 2020, 382: 122955. DOI:10.1016/j.cej.2019.122955
|
|
[20] |
Jiang JH, Wang XW, Ren HY, et al. Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Sci Total Environ, 2020, 746: 141378. DOI:10.1016/j.scitotenv.2020.141378
|
|
[21] |
Bayo J, Olmos S, López-Castellanos J. Microplastics in an urban wastewater treatment plant: the influence of physicochemical parameters and environmental factors. Chemosphere, 2020, 238: 124593. DOI:10.1016/j.chemosphere.2019.124593
|
|
[22] |
Carr SA, Liu J, Tesoro AG. Transport and fate of microplastic particles in wastewater treatment plants. Water Res, 2016, 91: 174-182. DOI:10.1016/j.watres.2016.01.002
|
|
[23] |
Gies EA, LeNoble JL, Noël M, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar Pollut Bull, 2018, 133: 553-561. DOI:10.1016/j.marpolbul.2018.06.006
|
|
[24] |
Talvitie J, Mikola A, Setälä O, et al. How well is microlitter purified from wastewater? -a detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res, 2017, 109: 164-172.
|
|
[25] |
Gao D, Li XY, Liu HT. Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil. Sci Total Environ, 2020, 742: 140355. DOI:10.1016/j.scitotenv.2020.140355
|
|
[26] |
Talvitie J, Mikola A, Koistinen A, et al. Solutions to microplastic pollution-removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res, 2017, 123: 401-407. DOI:10.1016/j.watres.2017.07.005
|
|
[27] |
Ou HS, Zeng EY. Occurrence and fate of microplastics in wastewater treatment plants. Microplastic Contamination in Aquatic Environments. Amsterdam: Elsevier, 2018: 317-338.
|
|
[28] |
Rochman CM, Brookson C, Bikker J, et al. Rethinking microplastics as a diverse contaminant suite. Environ Toxicol Chem, 2019, 38(4): 703-711. DOI:10.1002/etc.4371
|
|
[29] |
Kalčíková G, Alič B, Skalar T, et al. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere, 2017, 188: 25-31. DOI:10.1016/j.chemosphere.2017.08.131
|
|
[30] |
Liu XN, Yuan WK, Di MX, et al. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chem Eng J, 2019, 362: 176-182. DOI:10.1016/j.cej.2019.01.033
|
|
[31] |
Gatidou G, Arvaniti OS, Stasinakis AS. Review on the occurrence and fate of microplastics in sewage treatment plants. J Hazard Mater, 2019, 367: 504-512. DOI:10.1016/j.jhazmat.2018.12.081
|
|
[32] |
Li XW, Chen LB, Mei QQ, et al. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res, 2018, 142: 75-85. DOI:10.1016/j.watres.2018.05.034
|
|
[33] | |
|
[34] | |
|
[35] |
Lares M, Ncibi MC, Sillanpää M, et al. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res, 2018, 133: 236-246. DOI:10.1016/j.watres.2018.01.049
|
|
[36] |
Baresel C, Harding M, Fång J. Ultrafiltration granulated active carbon-biofilter: efficient removal of a broad range of micropollutants. Appl Sci, 2019, 9(4): 710. DOI:10.3390/app9040710
|
|
[37] |
Lee H, Kim Y. Treatment characteristics of microplastics at biological sewage treatment facilities in Korea. Mar Pollut Bull, 2018, 137: 1-8. DOI:10.1016/j.marpolbul.2018.09.050
|
|
[38] |
Gündoğdu S, Çevik C, Güzel E, et al. Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environ Monit Assess, 2018, 190(11): 626. DOI:10.1007/s10661-018-7010-y
|
|
[39] |
Ziajahromi S, Neale PA, Rintoul L, et al. Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res, 2017, 112: 93-99. DOI:10.1016/j.watres.2017.01.042
|
|
[40] |
Michielssen MR, Michielssen ER, Ni J, et al. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environ Sci: Water Res Technol, 2016, 2(6): 1064-1073. DOI:10.1039/C6EW00207B
|
|
[41] |
Murphy F, Ewins C, Carbonnier F, et al. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol, 2016, 50(11): 5800-5808. DOI:10.1021/acs.est.5b05416
|
|
[42] |
Lv XM, Dong Q, Zuo ZQ, et al. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. J Clean Prod, 2019, 225: 579-586. DOI:10.1016/j.jclepro.2019.03.321
|
|
[43] |
Perren W, Wojtasik A, Cai Q. Removal of microbeads from wastewater using electrocoagulation. ACS Omega, 2018, 3(3): 3357-3364. DOI:10.1021/acsomega.7b02037
|
|
[44] |
杨军, 张晓雪, 寇晓宇. 城市生活污水处理技术现状及发展趋势研究. 石化技术, 2017, 24(4): 63. Yang J, Zhang XX, Kou XY. Urban waste water treatment. Petrochem Ind Technol, 2017, 24(4): 63 (in Chinese). DOI:10.3969/j.issn.1006-0235.2017.04.043
|
|
[45] |
Nizzetto L, Futter M, Langaas S. Are agricultural soils dumps for microplastics of urban origin. Environ Sci Technol, 2016, 50(20): 10777-10779. DOI:10.1021/acs.est.6b04140
|
|
[46] |
Mahon AM, O'Connell B, Healy MG, et al. Microplastics in sewage sludge: effects of treatment. Environ Sci Technol, 2017, 51(2): 810-818. DOI:10.1021/acs.est.6b04048
|
|
[47] |
Cole M, Lindeque P, Fileman E, et al. Microplastic ingestion by zooplankton. Environ Sci Technol, 2013, 47(12): 6646-6655. DOI:10.1021/es400663f
|
|
[48] |
Xu ZJ, Bai X, Ye ZF. Removal and generation of microplastics in wastewater treatment plants: a review. J Clean Prod, 2021, 291: 125982. DOI:10.1016/j.jclepro.2021.125982
|
|
[49] | |
|
[50] |
Baroutian S, Robinson M, Smit AM, et al. Transformation and removal of wood extractives from pulp mill sludge using wet oxidation and thermal hydrolysis. Bioresour Technol, 2013, 146: 294-300. DOI:10.1016/j.biortech.2013.07.098
|
|
[51] |
Montaudo G, Puglisi C, Samperi F. Primary thermal degradation mechanisms of PET and PBT. Polym Degrad Stab, 1993, 42(1): 13-28. DOI:10.1016/0141-3910(93)90021-A
|
|
[52] |
Feng YH, Zhang YB, Quan X, et al. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res, 2014, 52: 242-250. DOI:10.1016/j.watres.2013.10.072
|
|
[53] |
Hou LY, Kumar D, Yoo CG, et al. Conversion and removal strategies for microplastics in wastewater treatment plants and landfills. Chem Eng J, 2021, 406: 126715. DOI:10.1016/j.cej.2020.126715
|
|
[54] |
Benn N, Zitomer D. Pretreatment and anaerobic co-digestion of selected PHB and PLA bioplastics. Front Environ Sci, 2018, 5: 93. DOI:10.3389/fenvs.2017.00093
|
|
[55] |
Moharir RV, Kumar S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: a comprehensive review. J Clean Prod, 2019, 208: 65-76. DOI:10.1016/j.jclepro.2018.10.059
|
|
[56] |
Wei W, Huang QS, Sun J, et al. Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge. Environ Sci Technol, 2019, 53(16): 9604-9613. DOI:10.1021/acs.est.9b02971
|
|
[57] |
Zhang MJ, Zhao YR, Qin X, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Sci Total Environ, 2019, 688: 470-478. DOI:10.1016/j.scitotenv.2019.06.108
|
|
[58] |
Chen Z, Zhao WQ, Xing RZ, et al. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology. J Hazard Mater, 2020, 384: 121271. DOI:10.1016/j.jhazmat.2019.121271
|
|
[59] |
Wu LW, Ning DL, Zhang B, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol, 2019, 4(7): 1183-1195. DOI:10.1038/s41564-019-0426-5
|
|
[60] |
Song Y, Jiang CY, Liang ZL, et al. Casimicrobium huifangae gen. nov., sp. nov., a ubiquitous "most-wanted" core bacterial taxon from municipal wastewater treatment plants. Appl Environ Microbiol, 2020, 86(4): e02209-e02219.
|
|
[61] |
Chen HB, Chang S. Impact of temperatures on microbial community structures of sewage sludge biological hydrolysis. Bioresour Technol, 2017, 245: 502-510. DOI:10.1016/j.biortech.2017.08.143
|
|
[62] |
Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351(6278): 1196-1199. DOI:10.1126/science.aad6359
|
|
[63] |
Mueller RJ. Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling. Process Biochem, 2006, 41(10): 2124-2128. DOI:10.1016/j.procbio.2006.05.018
|
|
[64] |
Chen S, Su LQ, Billig S, et al. Biochemical characterization of the cutinases from Thermobifida fusca. J Mol Catal B Enzym, 2010, 63(3/4): 121-127.
|
|
[65] |
Herrero Acero E, Ribitsch D, Steinkellner G, et al. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules, 2011, 44(12): 4632-4640. DOI:10.1021/ma200949p
|
|
[66] |
Then J, Wei R, Oeser T, et al. A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate. FEBS Open Bio, 2016, 6(5): 425-432. DOI:10.1002/2211-5463.12053
|
|
[67] |
许楹, 殷超凡, 岳纹龙, 等. 石油基塑料的微生物降解. 生物工程学报, 2019, 35(11): 2092-2103. Xu Y, Yin CF, Yue WL, et al. Microbial degradation of petroleum-based plastics. Chin J Biotech, 2019, 35(11): 2092-2103 (in Chinese).
|
|
[68] |
Ribitsch D, Heumann S, Trotscha E, et al. Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Biotechnol Prog, 2011, 27(4): 951-960. DOI:10.1002/btpr.610
|
|
[69] |
Cui YL, Chen YC, Liu XY, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal, 2021, 11(3): 1340-1350. DOI:10.1021/acscatal.0c05126
|
|
[70] |
Wang N, Guan F, Lv X, et al. Enhancing secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis WB600 mediated by the SP amy signal peptide. Lett Appl Microbiol, 2020, 71(3): 235-241. DOI:10.1111/lam.13312
|
|
[71] |
王南. 塑料降解酶(PETase)在枯草芽孢杆菌中的高效表达及其酶学性质的改良研究[D]. 无锡: 江南大学, 2020. Wang N. Efficient Expression of Plastic Degrading Enzyme (PETase) in Bacillus subtilis and Improvement of Its Enzymatic Properties[D]. Wuxi: Jiangnan University, 2020 (in Chinese).
|
|
[72] |
Tang Q, Lu T, Liu SJ. Developing a synthetic biology toolkit for Comamonas testosteroni, an emerging cellular chassis for bioremediation. ACS Synth Biol, 2018, 7(7): 1753-1762. DOI:10.1021/acssynbio.7b00430
|
|
[73] |
Ankenbauer A, Schäfer RA, Viegas SC, et al. Pseudomonas putida KT2440 is naturally endowed to withstand industrial-scale stress conditions. Microb Biotechnol, 2020, 13(4): 1145-1161. DOI:10.1111/1751-7915.13571
|
|
[74] |
McClure NC, Weightman AJ, Fry JC. Survival of Pseudomonas putida UWC 1 containing cloned catabolic genes in a model activated-sludge unit. Appl Environ Microbiol, 1989, 55(10): 2627-2634. DOI:10.1128/aem.55.10.2627-2634.1989
|
|
[75] |
Ravatn R, Zehnder AJ, Van Der Meer JR. Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms. Appl Environ Microbiol, 1998, 64(6): 2126-2132.
|
|
[76] |
Tsutsui H, Anami Y, Matsuda M, et al. Transfer of plasmid pJP4 from Escherichia coli and Pseudomonas putida to bacteria in activated sludge developed under different sludge retention times. J Biosci Bioeng, 2010, 110(6): 684-689. DOI:10.1016/j.jbiosc.2010.07.009
|
|