
中国科学院微生物研究所、中国微生物学会主办
文章信息
- 刘汝薇, 孟庆勇, 戴蕴平, 张雅丽
- LIU Ruwei, MENG Qingyong, DAI Yunping, ZHANG Yali
- 人源溶菌酶结构与功能的研究进展
- Structure and function of human-derived lysozyme: a review
- 生物工程学报, 2023, 39(11): 4482-4496
- Chinese Journal of Biotechnology, 2023, 39(11): 4482-4496
- 10.13345/j.cjb.230241
-
文章历史
- Received: April 3, 2023
- Accepted: July 27, 2023
2. 中国农业大学生物学院, 北京 100193
2. College of Biological Sciences, China Agricultural University, Beijing 100193, China
溶菌酶又称为胞壁质酶,是一种N-乙酰氨基水解酶,主要作用于革兰氏阳性菌细胞壁肽聚糖(peptidoglycan, PG)中多糖骨架N-乙酰氨基葡萄糖(N-acetylglucosamine, NAG)与N-乙酰氨基甲酸(N-acetylmuramic acid, NAM)之间的β-1,4糖苷键,能够导致革兰氏阳性菌破裂死亡。因其破坏细菌细胞壁的能力,溶菌酶也被认为是一种抗生素替代物。其中蛋清溶菌酶因来源广泛在市场中更受青睐。但与之相比,人溶菌酶(human lysozyme, hLYZ)在抗菌、抗病毒、抗真菌、抗炎、抗癌和调节免疫活性方面具有独特优势,因此在临床和食品应用中具有巨大的潜力。本文综述了人源溶菌酶的结构特征、表达部位、功能表达及应用情况。
1 溶菌酶的分类基于溶菌酶不同的起源——动物、植物和微生物,以及基因序列的同源性,其被划分为了6个不同的类型,分别为C型溶菌酶、G型溶菌酶、I型溶菌酶、植物溶菌酶、微生物溶菌酶和噬菌体溶菌酶(T4)。
C型溶菌酶是自然界中人们最先发现的溶菌酶,是由包括哺乳动物在内的大多数脊椎动物产生的主要溶菌酶。C型溶菌酶主要来自于脊椎动物如鸟类、部分鱼类、哺乳动物以及个别无脊椎动物如比亚按蚊、烟草天蛾[1]。G型溶菌酶的类型主要与其物种有关,在鸡形目蛋清中主要溶菌酶为C型溶菌酶,但在雁形目中,主要溶菌酶则会出现C型、G型或两种都存在的情况[2]。Hikima等在日本牙鲆中也发现了G型溶菌酶[3],在个别无脊椎动物如双瓣扇贝中也有存在[4]。I型溶菌酶最初在棘皮木星鱼中被发现,后期研究人员陆续在软体动物、环节动物、棘皮动物、节肢动物和脊索动物中也都发现了I型溶菌酶[5]。综上,脊椎动物中只发现了C、G型溶菌酶,并不存在所有类型溶菌酶。
2 人溶菌酶的结构特征人作为哺乳动物,主要产生C型溶菌酶和G型溶菌酶。其中G型溶菌酶分为2种,并将其分别命名为人溶菌酶g1 (human lysozyme g1, hLYZg1)和人溶菌酶g2 (lysozyme g2, hLYZg2)[6],但目前对这2个G型溶菌酶的报道并不多。
如图 1所示,C型hLYZ是一种含有130个氨基酸的单肽链碱性球蛋白质,分子量为14 600 Da。从一级结构来看,C型hLYZ的氨基酸序列与鸡蛋清溶菌酶(hen egg white lysozyme, HEWL)仅有60%的同源性,与其他类型溶菌酶也存在着较大差异[7],但其二级结构域与HEWL基本相同,二者在晶体状态下的结构也非常类似[8]。C型hLYZ由α和β结构域组成,其含有4个α螺旋、3个β折叠和4个二硫键[7]。从三维结构来看,C型溶菌酶呈现为较为紧密的椭球体,整个酶分子有一个可以容纳多糖底物的裂隙,与其他类型溶菌酶非常相似,说明其空间结构的进化相当保守。研究证明,C型hLYZ上35位的谷氨酸和53位的天冬氨酸为溶菌酶的活性中心可以实现其溶菌作用[9]。
![]() |
图 1 C型hLYZ与HEWL的氨基酸序列比对[7] Fig. 1 Comparison of human lysozyme and hen egg lysozyme gene sequences[7]. 相同氨基酸用星号标记;圆柱体1、2、3和4表示α螺旋;H1表示310螺旋;箭头a、b和c表示β折叠 Identical amino acids are marked with an asterisk; Cylinders 1, 2, 3, and 4 indicate α-helix; h1 indicates 310-helix; Arrows a, b, and c indicate β-fold. |
|
蛋白质错误地折叠会形成淀粉样纤维,失去蛋白质本身的生物活性和生理功能,甚至可能对机体造成损害,引发一系列疾病。1993年Pepys发现人类溶菌酶与遗传性的系统性淀粉样变性相关[10],后研究发现C型hLYZ具有更高的聚集倾向[9]。如图 2所示,发生在β-结构域基因中的5种自然突变会产生6种变异蛋白,分别是I56T、F57I、W64R、D67H、T70N以及F57I/T70N或W112R/T70N[11],这些变异蛋白除T70N外均与系统性淀粉样变有关[12]。hLYZ形成淀粉样纤维主要沉积于肾脏、肝脏以及心脏中,目前研究人员主要利用外源物质-小分子、纳米颗粒和聚合物与淀粉样蛋白发生相互作用,通过抑制溶菌酶纤维化治疗该疾病。就小分子而言,多酚类和黄酮类化合物在抑制淀粉样蛋白的形成方面发挥着重要作用[13]。纳米颗粒也是近些年研究热点,2010年,研究人员就发现磁性Fe3O4纳米颗粒能够在体外与溶菌酶淀粉样蛋白相互作用,导致淀粉样蛋白聚集体减少,从而促进解聚[14],后陆续有研究发现金、银和二氧化硅纳米粒子对于抑制溶菌酶淀粉样纤维沉淀均有积极作用,如利用银纳米粒子偶联姜黄素比起单独用姜黄素处理沉淀更加有效[15]。除此之外,最新研究发现带负电荷的κ-卡拉胶和海藻酸钠可以与HEWL纤维相互作用使其蛋白质结构重新折叠,这也为治疗溶菌酶淀粉样纤维提供了一个新的思路[16]。
![]() |
图 2 C型人溶菌酶结构[11] Fig. 2 Structure of human conventional type lysozyme[11]. 黑色圆球代表自然突变D67H、T70N、W64R、F57I和I56T;黑色折线代表二硫键C6−C128、C30−C116;螺旋代表α结构域,带状代表β结构域 Black spheres represent natural mutations D67H, T70N, W64R, F57I and I56T; Black dashes represent disulfide bonds C6−C128, C30−C116; Helices represent α structural domains, bands represent β structural domains. |
|
hLYZ主要存在于体液、细胞和组织器官中。C型溶菌酶在体液和血细胞中产生,体液如乳汁、唾液、眼泪、鼻粘液、汗液、尿液、血清以及各组织液;血细胞如中性粒细胞、巨噬细胞、单核细胞以及骨髓中的造血细胞[17];G型溶菌酶分为两类,主要分布在组织器官中:hLYZg1常在肾脏内表达,hLYZg2主要表达于眼睛与睾丸中[18]。
3.1 乳汁乳汁是哺乳动物溶菌酶的重要来源,属于C型溶菌酶,其结构、理化性质和浓度在不同物种中存在巨大差异。大多数哺乳动物的乳汁中都含有溶菌酶,奶牛、山羊等反刍类动物乳汁中溶菌酶水平较低,在牛乳中仅微量存在,约0.05−0.22 mg/L,但人、马、狗和驴等哺乳动物乳汁中的溶菌酶含量相对较高,母乳中溶菌酶含量约为200−390 mg/L,同时,研究人员发现初乳中溶菌酶水平最高,过渡期及成熟期乳汁中溶菌酶含量会降低[19]。此外,驴乳中溶菌酶含量也处于较高水平,其营养结构与母乳有较高的相似性,也有潜力成为一种母乳替代品[20]。母乳中存在的溶菌酶对提高婴儿免疫力和预防感染起着积极的作用,增加了有益的肠道菌群水平,增强了婴儿的抗病能力,这些影响是通过母乳喂养婴儿,裂解婴儿胃肠道中某些具有潜在危害性的革兰氏阳性菌和少数革兰氏阴性菌产生的[21]。
3.2 眼泪近期,已有研究表明溶菌酶在视网膜色素上皮(retinal pigment epithelial, RPE)细胞中存在[22],同时证明了溶菌酶在RPE免疫反应中发挥了积极的作用。研究发现健康受试者眼泪中溶菌酶的浓度范围为650−7 420 µg/mL,但干眼症和单纯疱疹性角膜炎患者的眼泪中溶菌酶水平较低[23],而2019年的一项研究将泪液中的抗菌蛋白乳铁蛋白和溶菌酶作为研究机体免疫状态的生物标志物[24],揭示了泪液中的溶菌酶同样具有免疫调节特性。而近期的研究还发现,角膜作为严重急性呼吸系统综合征冠状病毒2型的潜在靶组织,溶菌酶在阻断病毒通过眼角膜进入机体方面具有有益作用[25]。
3.3 胃肠道胃肠道中的潘氏细胞和个别免疫细胞会产生溶菌酶,潘氏细胞将溶菌酶分泌到肠腔中,这是肠道中直接接触肠道菌群的溶菌酶的主要来源,而肠道内的免疫细胞如巨噬细胞和中性粒细胞等也会产生溶菌酶进行肠道内的免疫调节[26]。研究发现,在低炎症疾病中,溶菌酶的分泌可以改善屏障功能[27],但在实验性结肠炎和免疫功能低下的个体中,会出现更加严重的肠道炎症,溶菌酶的分泌会起到相反的作用[28]。2020年,研究发现Paneth细胞分泌的溶菌酶在结肠中的异位表达会使得结肠中对溶菌酶敏感的细菌减少,从而加重结肠炎,而溶菌酶缺失的小鼠肠道中的杯状细胞却会异常增生,进而缓解肠道炎症,这一发现揭示了Paneth细胞溶菌酶可以平衡肠道中的抗炎和促炎反应[29]。而2021年在进行嗜碱顶孢霉菌(Acremonium alcalophilum)衍生溶菌酶作用于肠道的研究时,研究人员发现溶菌酶会剂量依赖性地下调肠道炎症水平[30],这两个实验结果之间有着鲜明的差异,但其具体原因究竟是溶菌酶的来源不同还是个体之间的肠道微生物群组成存在差异,还需要进一步研究。
4 人溶菌酶生物功能和分子机制 4.1 抗病毒作用溶菌酶的抗病毒机制主要依赖溶菌酶的阳离子特性,溶菌酶作为一种碱性蛋白会携带大量正电荷,与带负电荷的病毒直接作用,和病毒的DNA、RNA和脱辅基蛋白形成复盐,使病毒失活[31]。同时溶菌酶能通过调节机体内的淋巴细胞和巨噬细胞介导的细胞毒作用杀伤病毒。
4.2 抗菌作用溶菌酶的抗菌作用主要分为两种,分别是裂解机制和非裂解机制,其过程如图 3所示。裂解机制主要依靠酶的活性,通过水解肽聚糖中的β-1, 4糖苷键,使肽聚糖层断裂,细菌细胞壁机械强度降低,导致细胞死亡。但这种溶菌机制只在溶菌酶中2个二硫键保持完整时才能发挥作用,但也正是这种机制使溶菌酶能够作为一种非特异型先天免疫分子抵抗细菌病原体的入侵。而溶菌酶的非裂解机制则依赖其结构因素、阳离子特性和疏水基团[33]。研究发现缺乏酶活性的部分或完全变性的溶菌酶依然可以对抗革兰氏阳性菌和革兰氏阴性菌[34]。溶菌酶N末端结构域内具有抗菌肽基序,其N末端螺旋部分可以穿过细菌外膜并干扰膜电位依赖性呼吸来杀死革兰氏阴性菌[35]。除此之外,C型溶菌酶带有大量正电荷,可以插入带负电的细胞膜孔隙中[32],使细菌裂解死亡。正因为溶菌酶强大的抑菌活性,也使得致病菌在进化的过程中发展出3种抵抗溶菌酶的补救机制:肽聚糖(peptidoglycan, PG)修饰、改变细菌细胞膜的电荷和完整性以及表达溶菌酶细菌抑制剂[32]。
![]() |
图 3 溶菌酶可以通过两种机制杀死细菌[32] Fig. 3 Lysozyme can kill bacteria through two mechanisms[32]. A:PG单体由二糖NAG和NAM组成,NAG与NAM间通过肽链相连,NAM被脂质载体(灰色)固定在细胞膜上,PG单体通过糖基转移酶(绿色)的作用连接到生长链中. B:溶菌酶可以水解NAM和NAG之间的β-1, 4糖苷键,溶菌酶水解PG导致细胞壁不稳定和细菌细胞死亡. C:溶菌酶带有大量正电荷,可以插入带负电荷的细胞膜中,形成孔隙(红色圆柱体),从而杀死细菌 A: A newly synthesized PG monomer consists of a disaccharide, NAG linked to NAM with an attached peptide stem, and the NAM is anchored to the membrane via a lipid carrier (grey). Monomers are added to a growing chain through the action of glycosyltransferases (green). B: Lysozyme hydrolyzes the β-1, 4 glycosidic bond between the NAM of monomer and the NAG of the adjacent monomer. Lysozyme hydrolysis of PG leads to cell wall instability and bacterial cell death. C: Lysozyme can also kill bacteria independently of PG hydrolysis through a mechanism involving its cationic nature. Cationic killing of bacteria may involve the formation of pores by lysozyme (red cylinders) on the bacterial cell membrane. |
|
研究还发现,在肿瘤细胞中高迁移率族蛋白B1 (high mobility group proteinB1, HMGB1)表达量较高,会促进肿瘤细胞迁移,晚期糖基化终产物受体(the receptor of advanced glycation endproducts, RAGE)与细胞黏附聚集有关,可以与HMGB1相结合,是肿瘤治疗的重要靶点之一。而hLYZ可以通过降低HMGB1表达量,抑制HMGB1-RAGE通路实现抗肿瘤作用。除此之外,hLYZ还可以直接对机体大多数肿瘤细胞甚至鹅型淋巴瘤起作用,减少肿瘤细胞密度,延长机体的存活时间[36]。
4.4 抗炎作用溶菌酶对炎症有着双重作用,其介导的细菌降解活动有助于吞噬细胞的激活,增强细菌产物的释放和炎症介质的产生,但同时溶菌酶也有助于缓解炎症[35],其过程如图 4所示。细菌降解反应主要依靠上皮细胞和驻留巨噬细胞中的hLYZ裂解细菌,释放出相关病原分子模式(pathogen-associated molecular patterns, PAMP),这种物质的释放有助于募集更多的吞噬细胞内化细菌形成吞噬体进一步降解细菌,同时PAMP还能激活炎症小体,进而促进分泌更多的促炎细胞因子,诱导细胞焦亡[37]。炎症小体主要由模式识别受体(pattern recognition receptor, PRR)、凋亡相关斑点样蛋白以及半胱氨酸蛋白酶组成。参与到溶菌酶介导的降解反应中的PRR有NOD样受体(NOD-like receptors, NLRs)如NOD1、NOD2受体和Toll样受体(Toll-like receptor, TLR),PAMP刺激二者被激活,与凋亡相关斑点样蛋白结合,后与半胱氨酸蛋白酶结合,进而形成炎症小体诱发炎症反应[38]。除此之外,人体补体系统也会促进炎症反应,补体蛋白被激活后会发生裂解,部分会沉积在PAMP和单体PG上,另一部分会形成C5a和C3a等过敏毒素,毒素作为吞噬细胞的趋化因子,会募集更多的吞噬细胞,引起炎症反应[39]。
![]() |
图 4 溶菌酶调节炎症反应[35] Fig. 4 Lysozyme modulates the inflammatory response[35]. 在感染部位,上皮细胞分泌的溶菌酶(红色月牙)可以杀死细菌,释放PAMP. 巨噬细胞也会向细胞外分泌溶菌酶,将细菌内化,形成吞噬体. 在巨噬细胞中,细菌降解释放PAMP,PAMP刺激巨噬细胞激活炎症小体进而分泌促炎细胞因子. 同时,补体(蓝色圆点)会沉积在细菌和聚合PG上对其进行标记,其裂解形成的过敏毒素(黄色星号)则对吞噬细胞有趋化作用,能够募集更多的吞噬细胞增强免疫反应 At the site of infection, extracellular lysozyme (red sector), which is secreted locally by the epithelium, can kill bacteria, leading to the release of PAMPs. Resident or recruited macrophages also secrete lysozyme extracellularly and can internalize bacteria, delivering lysozyme to the bacterium-containing phagosome. In macrophages, bacterial degradation by phagosomal lysozyme releases PAMPs that stimulate a robust proinflammatory cytokine response and activate the inflammasome. Neutrophil activities may be similarly enhanced by lysozyme-mediated degradation of phagosomal bacteria, akin to macrophages. Deposition of complement (blue circles) on particles, including bacteria and/or insoluble polymeric PG, enhances bacterial phagocytosis and also produces complement-derived anaphylatoxins (yellow stars) that are chemotactic for phagocytes. Because phagocytes poorly respond to extracellular, monomeric PG and monomeric PG cannot activate complement, the degradation of bacterial PG by extracellular lysozyme serves to restrict phagocyte activation and recruitment. Thus, lysozyme activity can function to enhance or dampen the immune response. |
|
溶菌酶是人类机体中重要的非特异免疫因子,能够参与多种免疫反应,在人体正常防御和非特异性免疫中发挥着重要作用[40]。研究发现,溶菌酶可以显著提高动物体内免疫球蛋白如免疫球蛋白A、免疫球蛋白M含量[41],其产生的细胞因子白细胞介素-1β、干扰素-γ可以诱导机体中辅助性T细胞免疫反应,促进细胞免疫作用[42-43]。其次,人体中溶菌酶还可以加强血清灭菌蛋白、γ-球蛋白等体内防御因子对感染的抵抗力。除此之外,还有研究表明溶菌酶可以改善和增强巨噬细胞吞噬和消化能力[44],激活白细胞的吞噬功能,改善细胞抑制剂所导致的白细胞减少[45],从而增强机体免疫力。
5 重组人溶菌酶相比现阶段商品化的HEWL,hLYZ具有诸多优势。应用急性肺部感染的小鼠模型,比较外源性hLYZ (从痰中纯化)、HEWL和rhLYZ对体内细菌的杀伤力,结果发现3种溶菌酶都能显著减少体内细菌数量,但hLYZ明显比HEWL更加有效,而hLYZ和rhLYZ的抗菌活性无明显差别[46]。除抗菌活性优于HEWL外,hLYZ作为一种人体天然抗菌蛋白,具有更好的相容性,可以避免免疫排斥反应的发生,也不易产生耐药性,其热稳定性也更高[47]。从而使人溶菌酶在医药领域发挥着不可替代的作用,在作为食品添加剂时也能够更好地维持自身稳定性,起到更显著的保鲜作用。但人溶菌酶的缺点也显而易见,目前商品化人溶菌酶大多从人的乳汁、胎盘和尿液中少量提取,有着来源受限、产量极低、不便于制备和无法稳定保存等问题,并不能满足市场需求。
为了解决上述问题,研究者利用基因工程制备了重组人溶菌酶(recombinant human lysozyme, rhLYZ),利用转基因生物和微生物表达系统以实现hLYZ大规模生产。因动物乳腺生物反应器具有表达水平高、产物活性强、易于纯化无污染等特点,本课题组也做了大量研究,如将rhLYZ在小鼠乳腺上进行表达,建立了表达rhLYZ的PBC-HLY和PBC-SIGHTLY系统模型,使其分泌rhLYZ浓度达到1.4 mg/mL,但个体之间分泌的rhLYZ量差异较大[48]。如表 1所示,2011年本课题组在利用转基因牛生产人溶菌酶方面有所突破,通过构建pBC2-hLF-Neo表达载体,使rhLYZ得到表达,其浓度为26 mg/L,还证明尽管纯化的rhLYZ与hLYZ分子质量存在微小差别,但其理化性质高度相似[21],通过对工艺的不断优化,无标记的转基因牛生产的rhLYZ浓度可以达到3.2 mg/mL[49]。其次,本课题组对鼠源重组人溶菌酶的研究也有进展,通过对rhLYZ表达载体的优化,大大提高了小鼠rhLYZ表达水平,达到18.4−35 mg/mL[50];同时转基因山羊和转基因猪生产的人溶菌酶产量也分别达到了3.6 mg/mL[51]和2.7 mg/mL[52]。rhLYZ在植物中的表达也同样受到了广泛关注,例如在水稻中表达rhLYZ[53],据报道,从转基因水稻所制的面粉中纯化的人溶菌酶产量可达到5.4 g/kg,在2000年开发了用于生产人溶菌酶的转基因胡萝卜,使其含量在可溶性蛋白质中达到0.5%[54]。除此之外,比起周期较长、操作复杂的培育转基因动植物,利用微生物作为宿主生产rhLYZ更加普遍,目前常见的宿主菌有大肠杆菌[55]、毕赤酵母[56]、酿酒酵母[57]以及乳酸双歧杆菌[58]。其中Choi等利用酿酒酵母作为工程菌,rhLYZ产量约为74.5 U/mL[56];后续研究人员利用乳酸双歧杆菌结合生物膜反应器将rhLYZ的产量提高至187 U/mL[58];而毕赤酵母被广泛应用于rhLYZ的体外表达,2020年发现分子伴侣蛋白质二硫键异构酶促进蛋白正确折叠分泌到胞外从而提高蛋白表达量,并且毕赤酵母转录因子Aft1也能有效提高rhLYZ产量[59]。
Source | Vector | Production | References |
Cattle | pBC2-hLF-Neo | 3.2 mg/mL | [49] |
Mice | Chimeric mouse whey acidic protein (mWAP) | 18.4−35 mg/mL | [50] |
Goat | pBC-hLZ and pBLG-hLZ | 3.6 mg/mL | [51] |
Pig | pBAC-hLF-hLZ-Neo | 2.7 mg/mL | [52] |
Rice | pAPI156 | [53] | |
Carrot | pNGL2 | 0.5% human lysozyme per total soluble protein | [54] |
Escherichia coli | pUC18-hLZ, pRS416-hLZ | 300 μg/mL | [55] |
Pichia pastoris | pPIC9K | 2.4 mg/mL | [56] |
Saccharomyces cerevisiae | pHK501 | 74.5 U/mL | [57] |
Kluyveromyces lactis | Biofilm reactor with plastic composite | 187 U/mL human lysozyme | [58] |
此外,转基因产品的安全也日益受到人们关注,转基因产品由于外源基因的插入以及基因表观修饰可能会使转基因产品成分发生一些不可预知的改变,因此对转基因食品进行安全评估是非常重要的环节。目前已经有研究从环境安全、动物健康情况以及食品安全3个方面评价了rhLYZ转基因动物的生物安全,发现转基因猪的粪便不会改变周围环境中的微生物群落,且rhLYZ对转基因山羊亲代及子代的生长性状和繁殖性能也不会造成影响,rhLY的转基因在不同世代之间具有遗传稳定性[60]。同时本课题组对过量表达rhLYZ的转基因牛乳制品的生物活性和组成成分进行了研究,发现转人溶菌酶牛乳除了乳脂肪含量较低之外,与非转基因牛营养成分没有显著差异,毒理实验证明了rhLYZ是一种无毒蛋白,且没有潜在致敏性[61]。除此之外,在利用微生物表达rhLYZ时,研究者会优先选择食品安全菌株如毕赤酵母作为宿主,这符合食品药物的安全标准,有利于rhLYZ在食品药物方面的应用。
6 人溶菌酶的应用在医学上溶菌酶可以代替抗生素作为抗菌消炎的药物,其本身更是有自身独有的抗炎、抗肿瘤、抗病毒和增强免疫力等药理作用。研究发现hLYZ和肺炎克雷伯菌脂多糖(lipopolysaccharides, LPS)之间会产生类似于凝集素样的作用,这是由某种聚糖引导产生的,是hLYZ识别细菌细胞壁的基础[62]。溶菌酶能够有效地抑制金黄色葡萄球菌和大肠杆菌的生长,保护伤口免受感染并促进伤口愈合。外源嗜碱顶孢霉菌衍生的溶菌酶可以利用肠道微生物群来抑制葡聚糖硫酸钠诱导结肠炎小鼠的肠道炎症,缓解高脂饮食诱导的胃肠道紊乱[30]。同时hLYZ107-115肽段也被鉴定为具有抗人类免疫缺陷病毒(human immunodeficiency virus, HIV)活性的最小肽,是良好的抗HIV感染的辅助治疗药物[63]。近些年来,研究人员对溶菌酶的固定化进行了大量的研究,发现由甲壳素和壳聚糖、纤维素、合成聚合物、矿物、磁性和非磁性金属、石墨烯和氧化石墨烯以及藻酸盐组成的固定载体搭配各种金属纳米颗粒可以很好地提升溶菌酶的半衰期和生物活性,这使得溶菌酶的固定化成为一个新的技术突破口,与原有的研究相结合,使得人溶菌酶在医药领域的应用更加广泛[64]。此外,2021年研究发现,人和小鼠的RPE中会表达溶菌酶,大大提高了RPE细胞的杀菌活性以及对于LPS和聚肌胞苷酸等刺激的反应[22]。hLYZ与氯硝柳胺的联合制剂还可以缓解由冠状病毒引起的急性呼吸系统综合征[65]。如今hLYZ已经广泛应用于治疗中耳炎和鼻窦炎[66-67]、皮肤病[68-71]、呼吸道疾病[72-74]、胃肠道疾病[29-30, 74]、口腔溃疡[75-79]等一系列口腔疾病,也是良好的抗HIV感染的辅助治疗药物[80],人溶菌酶在医学领域中的潜在应用见表 2。
Materials | Applications | Improvement indicators | References |
AgNPs @CS/lysozyme@TSIIA | Otitis media | Number of bacteria in the middle ear cavity TNF-α and IL-8; Middle ear mucosal epithelium | [66] |
Lysozyme nasal spray (5 mg) |
Sinusitis | Candida albicans; Aspergillus fumigatus; Penicillium italicum | [67] |
Polyurethane/dopamine-lysozyme (5 mg/mL) | Wound dressing | Staphylococcus aureus; Escherichia coli | [68] |
Lysozyme hydrogel | Wound infection | Staphylococcus aureus; Escherichia coli | [69] |
PEG lysozyme hydrogel (1 mg/mL) |
Ocular surgical wound | Percentage of wound closure; Mean corneal thickness; Posterior elastic membrane separation | [70] |
Levofloxacin-lysozyme spray | Pulmonary infection | Microorganisms in lung lavage fluid and nasal fluid; Pro-inflammatory factors; Pulmonary myeloperoxidase activity; Lung tissue | [71] |
DEODAN from lysozyme (3 g) |
Acute pneumonia | Concentration of endogenous lysozyme; Number of bacteria | [46] |
Lysozyme solution (45 mg) | Chronic airway infection | [72] | |
Oral lysozyme (90 mg) | Chronic pulmonary obstruction | Vital capacity measurement; COPD assessment test | [73] |
Specific purified lysozyme | Regulation of intestinal microorganisms | Staphylococcus aureus; Bacillus subtilis | [74] |
Oral lysozyme (1 mg) | Proctitis | Fasting insulin level; TLR2 receptor; Mucin gene; The closest distance between bacteria and intestinal epithelial cells |
[30] |
Lysozyme microcapsules | Proctitis | Body weight; Pro-inflammatory factor; Pathological score | [29] |
Lysozyme and carbazole chromium (1 mg) | Chronic periodontitis | Gastrointestinal index; Periodontal Parameters (PI, PD, CAL) | [75] |
Carboxymethyl chitosan-lysozyme nanogel (0.2%) | Enamel caries | Mineral state and mechanical properties of remineralized enamel | [76] |
Lysozyme mouthwash | Oral health | The number of bacteria such as Streptococcus mutans; Plaque index | [77] |
Lysozyme toothpaste (5 mg) | Recurrent aphthous ulcer | Frequency of recurrent aphthae; Pain score | [78] |
N-acetylated lysozyme chitosan spray (0.5%) | Detect wound infection | [79] | |
Human lysozyme 107−115 peptide (2 mg/mL) |
Restrain HIV infection | [80] |
与此同时,由于hLYZ特殊的生理功能,研究者利用转基因技术生产出转基因rhLYZ的牛乳,实现动物乳的“人乳化”,为无法得到母乳喂养的婴儿建立了正常的肠道菌群,促进了肠道和黏膜免疫系统的成熟,同时也促进了婴幼儿肠道内双岐乳酸杆菌增殖进而利于其消化[51]。就目前的研究进展来看,有关“人乳化”转基因技术的突破以及生物安全评价体系的完善都让其产业化成为了可能,具有广阔的发展前景。且hLYZ本身具有无毒无害、抗菌谱广的特点,在食品工业以及畜牧产业也有一定的应用,但受限于成本等多种因素,还是常用HEWL作为添加剂,hLYZ并未广泛被使用,而解决问题的核心就是实现rhLYZ的产业化生产以及解决rhLYZ安全性问题。
7 结语自1922年Fleming在人的组织和分泌物中发现溶菌酶的存在[81],迄今已有100年历史,溶菌酶的功能与作用不断地被丰富与更新,从过去10年发表的大量溶菌酶相关文献中,hLYZ已被证明作为人体的一种免疫活性物质,其能够水解NAG和NAM之间的β-(1, 4)糖苷键的功能衍生出一系列的生物功能,而hLYZ也因其稳定性和更高的生物活性能够更加广泛地应用于医药领域。尽管研究人员对hLYZ有了较为基础的认识,在rhLYZ的制备方面已经取得了一定进展,但转基因动物乳汁溶菌酶提纯工艺还存在着一定的优化空间,在其作用机制和应用方面存在需深入探索的领域:(1) hLYZ对不同细菌以及一些特殊菌属的抗菌的特性尚无文献阐明;(2) hLYZ对机体的免疫反应和炎症反应具有双重作用,在人体不同组织中其精确免疫调节机制是怎样的?(3) 利用不同动物的转基因乳腺反应器生产的rhLYZ,在理化性质上与hLYZ十分相似,但两者在不同组织部位的作用特性还需进一步研究;(4) 关于hLYZ与机体中其他免疫活性物质、免疫活性因子之间的相互作用需要深入探究;(5) 在生产应用上,如何在基因水平进行改造以获取更大产量、更加稳定的rhLYZ并优化其提取工艺;(6) 如果作为医用蛋白,rhLYZ生产上的安全性问题怎样克服,如利用微生物反应器生产的rhLYZ可能受到内毒素污染,利用转基因动物可能受到动物病原菌的污染;(7) 目前,在食品保鲜、食品添加剂、饲料产业等领域中对rhLYZ和HEWL具体功能差异的研究较少,需要更多的实验数据为rhLYZ的推广应用提供依据。
[1] |
CALLEWAERT L, MICHIELS CW. Lysozymes in the animal kingdom[J]. Journal of Biosciences, 2010, 35(1): 127-160. DOI:10.1007/s12038-010-0015-5
|
[2] |
CANFIELD RE. The amino acid sequence of egg white lysozyme[J]. Journal of Biological Chemistry, 1963, 238(8): 2698-2707. DOI:10.1016/S0021-9258(18)67888-3
|
[3] |
HIKIMA J, MINAGAWA S, HIRONO I, AOKI T. Molecular cloning, expression and evolution of the Japanese flounder goose-type lysozyme gene, and the lytic activity of its recombinant protein[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2001, 1520(1): 35-44. DOI:10.1016/S0167-4781(01)00248-2
|
[4] |
ZHAO JM, SONG LS, LI CH, ZOU HB, NI DJ, WANG W, XU W. Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein[J]. Molecular Immunology, 2007, 44(6): 1198-1208. DOI:10.1016/j.molimm.2006.06.008
|
[5] |
JOLLÈS J, JOLLÈS P. The losozyme from Asterias rubens[J]. European Journal of Biochemistry, 1975, 54(1): 19-23. DOI:10.1111/j.1432-1033.1975.tb04108.x
|
[6] |
IRWIN DM, GONG ZY. Molecular evolution of vertebrate goose-type lysozyme genes[J]. Journal of Molecular Evolution, 2003, 56(2): 234-242. DOI:10.1007/s00239-002-2396-z
|
[7] |
SZIEGAT F, WIRMER-BARTOSCHEK J, SCHWALBE H. Characteristics of human lysozyme and its disease-related mutants in their unfolded states[J]. Angewandte Chemie (International Ed in English), 2011, 50(24): 5514-5518. DOI:10.1002/anie.201008040
|
[8] |
ARTYMIUK PJ, BLAKE CC. Refinement of human lysozyme at 1.5 A resolution analysis of non-bonded and hydrogen-bond interactions[J]. Journal of Molecular Biology, 1981, 152(4): 737-762. DOI:10.1016/0022-2836(81)90125-X
|
[9] |
MURAKI M, GODA S, NAGAHORA H, HARATA K. Importance of van der Waals contact between Glu 35 and Trp 109 to the catalytic action of human lysozyme[J]. Protein Science: a Publication of the Protein Society, 1997, 6(2): 473-476. DOI:10.1002/pro.5560060227
|
[10] |
PEPYS MB, HAWKINS PN, BOOTH DR, VIGUSHIN DM, TENNENT GA, SOUTAR AK, TOTTY N, NGUYEN O, BLAKE CCF, TERRY CJ, FEEST TG, ZALIN AM, HSUAN JJ. Human lysozyme gene mutations cause hereditary systemic amyloidosis[J]. Nature, 1993, 362(6420): 553-557. DOI:10.1038/362553a0
|
[11] |
DUMOULIN M, JOHNSON RJK, BELLOTTI V, DOBSON CM. Human lysozyme[M]//Protein Misfolding, Aggregation, and Conformational Diseases. Boston, MA: Springer US, 2007: 285-308.
|
[12] |
DUMOULIN M, KUMITA JR, DOBSON CM. Normal and aberrant biological self-assembly: insights from studies of human lysozyme and its amyloidogenic variants[J]. Accounts of Chemical Research, 2006, 39(9): 603-610. DOI:10.1021/ar050070g
|
[13] |
ALI SM, NABI F, HISAMUDDIN M, RIZVI I, AHMAD A, HASSAN MN, PAUL P, CHAARI A, KHAN RH. Evaluating the inhibitory potential of natural compound luteolin on human lysozyme fibrillation[J]. International Journal of Biological Macromolecules, 2023, 233: 123623. DOI:10.1016/j.ijbiomac.2023.123623
|
[14] |
BELLOVA A, BYSTRENOVA E, KONERACKA M, KOPCANSKY P, VALLE F, TOMASOVICOVA N, TIMKO M, BAGELOVA J, BISCARINI F, GAZOVA Z. Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation[J]. Nanotechnology, 2010, 21(6): 065103. DOI:10.1088/0957-4484/21/6/065103
|
[15] |
SHARMA A, KESAMSETTY D, DEBNATH J, GHOSH KS. Inhibition of lysozyme amyloid fibrillation by curcumin-conjugated silver nanoparticles: a multispectroscopic molecular level study[J]. Journal of Molecular Liquids, 2023, 372: 121156. DOI:10.1016/j.molliq.2022.121156
|
[16] |
MAKSHAKOVA O, BOGDANOVA L, FAIZULLIN D, KHAIBRAKHMANOVA D, ZIGANSHINA S, ERMAKOVA E, ZUEV Y, SEDOV I. The ability of some polysaccharides to disaggregate lysozyme amyloid fibrils and renature the protein[J]. Pharmaceutics, 2023, 15(2): 624. DOI:10.3390/pharmaceutics15020624
|
[17] |
REITAMO S, KLOCKARS M, ADINOLFI M, OSSERMAN EF. Human lysozyme (origin and distribution in health and disease)[J]. La Ricerca in Clinica e in Laboratorio, 1978, 8(4): 211-231.
|
[18] |
HUANG P, LI WS, XIE J, YANG XM, JIANG DK, JIANG SM, YU L. Characterization and expression of HLysG2, a basic goose-type lysozyme from the human eye and testis[J]. Molecular Immunology, 2011, 48(4): 524-531. DOI:10.1016/j.molimm.2010.10.008
|
[19] |
PERRIN MT, FOGLEMAN AD, NEWBURG DS, ALLEN JC. A longitudinal study of human milk composition in the second year postpartum: implications for human milk banking[J]. Maternal and Child Nutrition, 2017, 13(1): e12239. DOI:10.1111/mcn.12239
|
[20] |
VINCENZETTI S, POLIDORI P, MARIANI P, CAMMERTONI N, FANTUZ F, VITA A. Donkey's milk protein fractions characterization[J]. Food Chemistry, 2008, 106(2): 640-649. DOI:10.1016/j.foodchem.2007.06.026
|
[21] |
YANG B, WANG JW, TANG B, LIU YF, GUO CD, YANG PH, YU T, LI R, ZHAO JM, ZHANG L, DAI YP, LI N. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle[J]. PLoS One, 2011, 6(3): e17593. DOI:10.1371/journal.pone.0017593
|
[22] |
LIU J, YI CJ, MING W, TANG M, TANG X, LUO C, LEI B, CHEN M, XU HP. Retinal pigment epithelial cells express antimicrobial peptide lysozyme-a novel mechanism of innate immune defense of the blood-retina barrier[J]. Investigative Opthalmology & Visual Science, 2021, 62(7): 21.
|
[23] |
NARAYANAN S, REDFERN RL, MILLER WL, NICHOLS KK, MCDERMOTT AM. Dry eye disease and microbial keratitis: is there a connection?[J]. The Ocular Surface, 2013, 11(2): 75-92. DOI:10.1016/j.jtos.2012.12.002
|
[24] |
HANSTOCK HG, EDWARDS JP, WALSH NP. Tear lactoferrin and lysozyme as clinically relevant biomarkers of mucosal immune competence[J]. Frontiers in Immunology, 2019, 10: 1178. DOI:10.3389/fimmu.2019.01178
|
[25] |
SONG YT, ZHANG HK, ZHU YF, ZHAO X, LEI Y, ZHOU W, YU JG, DONG X, WANG XH, DU M, YAN H. Lysozyme protects against severe acute respiratory syndrome coronavirus 2 infection and inflammation in human corneal epithelial cells[J]. Investigative Opthalmology & Visual Science, 2022, 63(6): 16.
|
[26] |
BALASUBRAMANIAN I, GAO N. From sensing to shaping microbiota: insights into the role of NOD2 in intestinal homeostasis and progression of Crohn's disease[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2017, 313(1): G7-G13. DOI:10.1152/ajpgi.00330.2016
|
[27] |
CANI PD. Human gut microbiome: hopes, threats and promises[J]. Gut, 2018, 67(9): 1716-1725. DOI:10.1136/gutjnl-2018-316723
|
[28] |
HENKE MT, KENNY DJ, CASSILLY CD, VLAMAKIS H, XAVIER RJ, CLARDY J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(26): 12672-12677.
|
[29] |
YU SY, BALASUBRAMANIAN I, LAUBITZ D, TONG K, BANDYOPADHYAY S, LIN X, FLORES J, SINGH R, LIU Y, MACAZANA C, ZHAO YL, BÉGUET-CRESPEL F, PATIL K, MIDURA-KIELA MT, WANG D, YAP GS, FERRARIS RP, WEI Z, BONDER EM, HÄGGBLOM MM, et al. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the intestine[J]. Immunity, 2020, 53(2): 398-416.e8. DOI:10.1016/j.immuni.2020.07.010
|
[30] |
LARSEN IS, JENSEN BAH, BONAZZI E, CHOI BSY, KRISTENSEN NN, SCHMIDT EGW, SÜENDERHAUF A, MORIN L, OLSEN PB, HANSEN LBS, SCHRÖDER T, SINA C, CHASSAING B, MARETTE A. Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis[J]. Gut Microbes, 2021, 13(1): 1988836. DOI:10.1080/19490976.2021.1988836
|
[31] |
LY-CHATAIN MH, MOUSSAOUI S, VERA A, RIGOBELLO V, DEMARIGNY Y. Antiviral effect of cationic compounds on bacteriophages[J]. Frontiers in Microbiology, 2013, 4: 46.
|
[32] |
RAGLAND SA, CRISS AK. From bacterial killing to immune modulation: recent insights into the functions of lysozyme[J]. PLoS Pathogens, 2017, 13(9): e1006512. DOI:10.1371/journal.ppat.1006512
|
[33] |
ZHANG XL, JIANG AM, YU H, XIONG YY, ZHOU GL, QIN MS, DOU JF, WANG JF. Human lysozyme synergistically enhances bactericidal dynamics and lowers the resistant mutant prevention concentration for metronidazole to Helicobacter pylori by increasing cell permeability[J]. Molecules, 2016, 21(11): 1435. DOI:10.3390/molecules21111435
|
[34] |
TOUCH V, HAYAKAWA S, SAITOH K. Relationships between conformational changes and antimicrobial activity of lysozyme upon reduction of its disulfide bonds[J]. Food Chemistry, 2004, 84(3): 421-428. DOI:10.1016/S0308-8146(03)00252-8
|
[35] |
IBRAHIM HR, IMAZATO K, ONO H. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration[J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 10336-10345. DOI:10.1021/jf2020396
|
[36] |
MAHANTA S, PAUL S. Stable self-assembly of bovine α-lactalbumin exhibits target-specific antiproliferative activity in multiple cancer cells[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28177-28187.
|
[37] |
丁杨, 胡容. NLRP3炎症小体激活及调节机制的研究进展[J]. 药学进展, 2018, 42(4): 294-302. DING Y, HU R. Research progress on activation and regulation mechanism of NLRP3 inflammatory corpuscles[J]. Progress in Pharmaceutical Sciences, 2018, 42(4): 294-302 (in Chinese). |
[38] |
BONECA IG, DUSSURGET O, CABANES D, NAHORI MA, SOUSA S, LECUIT M, PSYLINAKIS E, BOURIOTIS V, HUGOT JP, GIOVANNINI M, COYLE A, BERTIN J, NAMAN A, ROUSSELLE JC, CAYET N, PREVOST MC, BALLOY V, CHIGNARD M, PHILPOTT DJ, COSSART P, et al. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(3): 997-1002.
|
[39] |
JORE MM, JOHNSON S, SHEPPARD D, BARBER NM, LI YI, NUNN MA, ELMLUND H, LEA SM. Structural basis for therapeutic inhibition of complement C5[J]. Nature Structural & Molecular Biology, 2016, 23(5): 378-386.
|
[40] |
MAI W, HU C. Molecular cloning, characterization, expression and antibacterial analysis of a lysozyme homologue from Fenneropenaeus merguiensis[J]. Molecular Biology Reports, 2009, 36(6): 1587-1595. DOI:10.1007/s11033-008-9355-8
|
[41] |
石建凯. 妊娠后期和泌乳期饲粮添加溶菌酶对泌乳母猪生产性能和免疫功能影响的研究[D]. 雅安: 四川农业大学硕士学位论文, 2018. SHI JK. Effects of adding lysozyme to diet in late pregnancy and lactation on performance and immune function of lactating sows[D]. Yaan: Master's Thesis of Sichuan Agricultural University, 2018 (in Chinese). |
[42] |
YANG X, ARSLAN M, LIU XJ, SONG HZ, DU MT, LI Y, ZHANG ZF. IFN-γ establishes interferon-stimulated gene-mediated antiviral state against Newcastle disease virus in chicken fibroblasts[J]. Acta Biochimica Et Biophysica Sinica, 2020, 52(3): 268-280. DOI:10.1093/abbs/gmz158
|
[43] |
DAI MM, FENG M, XIE TT, LI YF, RUAN ZH, SHI MQ, LIAO M, ZHANG XQ. ALV-J infection induces chicken monocyte death accompanied with the production of IL-1β and IL-18[J]. Oncotarget, 2017, 8(59): 99889-99900. DOI:10.18632/oncotarget.21906
|
[44] |
郇京宁, 韩一平, 陈玉林. 溶葡萄球菌酶对烧伤小鼠吞噬细胞功能的影响[J]. 中华整形烧伤外科杂志, 1995(4): 255-257. XUN JN, HAN YP, CHEN YL. Effect of lysozyme on the function of phagocytes in burned mice[J]. Chinese Journal of Burns, 1995(4): 255-257 (in Chinese). |
[45] |
KRUSTEVA E, HRISTOVA S, DAMYANOV D, BOGDANOV A, ALTAPARMAKOV I, PACELLI E. Clinical study of the effect of the preparation DEODAN on leukopenia, induced by cytostatics[J]. International Journal of Immunopharmacology, 1997, 19(9/10): 487-492.
|
[46] |
EPAUD R, DELESTRAIN C, WEAVER TE, AKINBI HT. Bacterial killing is enhanced by exogenous administration of lysozyme in the lungs[J]. Respiratory Medicine and Research, 2019, 76: 22-27. DOI:10.1016/j.resmer.2019.07.005
|
[47] |
PEREZ-CALDERON R, GONZALO-GARIJO MA, LAMILLA-YERGA A, MANGAS-SANTOS R, MORENO-GASTÓN I. Recurrent angioedema due to lysozyme allergy[J]. Journal of Investigational Allergology and Clinical Immunology, Barcelona: Esmon Publicidad S a, Dept Allergy & Clin Immunol, Clin Univ Navarra, 2007, 17(4): 264-266.
|
[48] |
YU HQ, CHEN JQ, LIU SG, ZHANG AM, XU XJ, WANG XB, LU P, CHENG GX. High-level expression of bioactive recombinant human lysozyme in the milk of transgenic mice using a modified human lactoferrin BAC[J]. Transgenic Res 21, 2012, 407-414.
|
[49] |
LU D, LIU S, DING FR, WANG HP, LI J, LI L, DAI YP, LI N. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows[J]. Scientific Reports, 2016, 6: 22947. DOI:10.1038/srep22947
|
[50] |
WU XJ, LIN YL, XI YY, SHAO ZL, ZHOU YR, LIU F, CHEN HX. The development of transgenic mice for the expression of large amounts of human lysozyme in milk[J]. Biotechnology Letters, 2014, 36(6): 1197-1202. DOI:10.1007/s10529-014-1476-7
|
[51] |
YU HQ, CHEN JQ, LIU SG, ZHANG AM, XU XJ, WANG XB, LU P, CHENG GX. Large-scale production of functional human lysozyme in transgenic cloned goats[J]. Journal of Biotechnology, 2013, 168(4): 676-683. DOI:10.1016/j.jbiotec.2013.10.023
|
[52] |
LU D, LIU S, SHANG SZ, WU FF, WEN X, LI ZY, LI Y, HU XX, ZHAO YF, LI QY, LI N. Production of transgenic-cloned pigs expressing large quantities of recombinant human lysozyme in milk[J]. PLoS One, 2015, 10(5): e0123551. DOI:10.1371/journal.pone.0123551
|
[53] |
HUANG JM, WU LY, YALDA D, ADKINS Y, KELLEHER SL, CRANE M, LONNERDAL B, RODRIGUEZ RL, HUANG N. Expression of functional recombinant human lysozyme in transgenic rice cell culture[J]. Transgenic Research, 2002, 11(3): 229-239. DOI:10.1023/A:1015663706259
|
[54] |
TAKAICHI M, OEDA K. Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci[J]. Plant Science, 2000, 153(2): 135-144. DOI:10.1016/S0168-9452(99)00254-X
|
[55] |
RIESENBERG D. High-cell-density cultivation of Escherichia coli[J]. Current Opinion in Biotechnology, 1991, 2(3): 380-384. DOI:10.1016/S0958-1669(05)80142-9
|
[56] |
刘真英, 李文利. 密码子优化后的柞蚕溶菌酶在酵母中的表达及活性测定[J]. 微生物学通报, 2016, 43(2): 292-300. LIU ZY, LI WL. Expression and activity determination of codon optimized Antheraea pernyi lysozyme in Pichia pastoris[J]. Microbiology China, 2016, 43(2): 292-300 (in Chinese). DOI:10.13344/j.microbiol.china.150207 |
[57] |
CHOI SU, PAIK HD, LEE SC, NIHIRA TK, HWANG YL. Enhanced productivity of human lysozyme by pH-controlled batch fermentation of recombinant Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2004, 98(2): 132-135. DOI:10.1016/S1389-1723(04)70255-8
|
[58] |
ERCAN D, DEMIRCI A. Simultaneous online recovery of human lysozyme produced by Kluyveromyces lactis K7 in biofilm reactor[J]. American Society of Agricultural and Biological Engineers Annual International Meeting, 2014, 2: 1318-1330.
|
[59] |
王儒昕, 韩琴, 陈园园, 吴菁, 闫达中, 刘军, 李鑫. 共表达分子伴侣PDI和转录因子Aft1对毕赤酵母表达人溶菌酶的影响[J]. 食品科学, 2020, 41(10): 124-130. WANG RX, HAN Q, CHEN YY, WU J, YAN DZ, LIU J, LI X. Effect of co-expression of chaperone PDI and transcription factor Aft1 on the expression of recombinant human lysozyme in Pichia pastoris[J]. Food Science, 2020, 41(10): 124-130 (in Chinese). |
[60] |
吴芳芳, 鲁丹, 李秋艳, 李宁. 转基因动物生产重组人溶菌酶的研究进展[J]. 中国畜牧杂志, 2014, 50(23): 88-92. WU FF, LU D, LI QY, LI N. Research progress on the production of recombinant human lysozyme in transgenic animal[J]. Chinese Journal of Animal Science, 2014, 50(23): 88-92 (in Chinese). |
[61] |
程静然, 宋荣荣, 戴蕴平, 赵春江. 转人溶菌酶奶牛牛乳蛋白理化性质的研究[J]. 黑龙江畜牧兽医, 2021(11): 12-16, 149, 150. CHENG JR, SONG RR, DAI YP, ZHAO CJ. Study on the physicochemical property of transferred human lysozyme cow milk protein[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(11): 12-16, 149, 150 (in Chinese). DOI:10.13881/j.cnki.hljxmsy.2020.08.0354 |
[62] |
ZHANG RY, WU LS, ECKERT T, BURG-RODERFELD M, ROJAS-MACIAS MA, LÜTTEKE T, KRYLOV VB, ARGUNOV DA, DATTA A, MARKART P, GUENTHER A, NORDEN B, SCHAUER R, BHUNIA A, ABDELAZIZ ENANI M, BILLETER M, SCHEIDIG AJ, NIFANTIEV NE, SIEBERT HC. Lysozyme's lectin-like characteristics facilitates its immune defense function[J]. Quarterly Reviews of Biophysics, 2017, 50: e9. DOI:10.1017/S0033583517000075
|
[63] |
FERRABOSCHI P, CICERI S, GRISENTI P. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic[J]. Antibiotics (Basel, Switzerland), 2021, 10(12): 1534.
|
[64] |
ANASTAS PT, RODRIGUEZ A, de WINTER TM, COISH P, ZIMMERMAN JB. A review of immobilization techniques to improve the stability and bioactivity of lysozyme[J]. Green Chemistry Letters and Reviews, 2021, 14(2): 302-338. DOI:10.1080/17518253.2021.1890840
|
[65] |
BRUNAUGH AD, SEO H, WARNKEN Z, DING L, SEO SH, SMYTH HDC. Development and evaluation of inhalable composite niclosamide-lysozyme particles: a broad-spectrum, patient-adaptable treatment for coronavirus infections and sequalae[J]. PLoS One, 2021, 16(2): e0246803. DOI:10.1371/journal.pone.0246803
|
[66] |
YU H, ZENG P, LIANG YS, CHEN X, HU HY, WEN L, CHENG A. Tanshinone IIA loaded hybrid nanocomposite with enhanced therapeutic effect for otitis media[J]. International Journal of Pharmaceutics, 2020, 574: 118846. DOI:10.1016/j.ijpharm.2019.118846
|
[67] |
WOODS CM, HOOPER DN, OOI EH, TAN LW, CARNEY AS. Human lysozyme has fungicidal activity against nasal fungi[J]. American Journal of Rhinology & Allergy, 2011, 25(4): 236-240.
|
[68] |
XIAO L, NI WQ, ZHAO XH, GUO YC, LI X, WANG F, LUO GX, ZHAN RX, XU XS. A moisture balanced antibacterial dressing loaded with lysozyme possesses antibacterial activity and promotes wound healing[J]. Soft Matter, 2021, 17(11): 3162-3173. DOI:10.1039/D0SM02245D
|
[69] |
CHEN JJ, XU M, WANG L, LI T, LI ZY, WANG TJ, LI P. Converting lysozyme to hydrogel: a multifunctional wound dressing that is more than antibacterial[J]. Colloids and Surfaces B, Biointerfaces, 2022, 219: 112854. DOI:10.1016/j.colsurfb.2022.112854
|
[70] |
ZHANG SH, ZHOU H, HUANG C, SUN JG, QU X, LU Y. A novel corneal adhesive based on functionally coupled PEG-lysozyme hydrogel for wound closure after surgical eye surgery[J]. Chinese Chemical Letters, 2022, 33(9): 4321-4325. DOI:10.1016/j.cclet.2022.01.024
|
[71] |
GUPTA PV, NIRWANE AM, NAGARSENKER MS. Inhalable levofloxacin liposomes complemented with lysozyme for treatment of pulmonary infection in rats: effective antimicrobial and antibiofilm strategy[J]. AAPS PharmSciTech, 2018, 19(3): 1454-1467. DOI:10.1208/s12249-017-0945-4
|
[72] |
GUPTA PV, NIRWANE AM, NAGARSENKER MS. Inhalable levofloxacin liposomes complemented with lysozyme for treatment of pulmonary infection in rats: effective antimicrobial and antibiofilm strategy[J]. AAPS PharmSciTech, 2018, 19(3): 1454-1467. DOI:10.1208/s12249-017-0945-4
|
[73] |
KEIR HR, CHALMERS JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy[J]. European Respiratory Review: an Official Journal of the European Respiratory Society, 2022, 31(163): 210241. DOI:10.1183/16000617.0241-2021
|
[74] |
FUKUCHI Y, TATSUMI K, INOUE H, SAKATA Y, SHIBATA K, MIYAGISHI H, MARUKAWA Y, ICHINOSE M. Prevention of COPD exacerbation by lysozyme: a double-blind, randomized, placebo-controlled study[J]. International Journal of Chronic Obstructive Pulmonary Disease, 2016, 11: 831-838.
|
[75] |
DU MZ, XIE XQ, YANG SH, LI Y, JIANG T, YANG J, LI LY, HUANG YX, WU QP, CHENW, ZHANG JM. Lysozyme-like protein produced by Bifidobacterium longum regulates human gut microbiota using in vitro models[J]. Molecules, 2021, 26(21): 6480. DOI:10.3390/molecules26216480
|
[76] |
HONG JY, LEE JS, CHOI SH, SHIN HS, PARK JC, SHIN SI, CHUNG JH. A randomized, double-blind, placebo-controlled multicenter study for evaluating the effects of fixed-dose combinations of vitamin C, vitamin E, lysozyme, and carbazochrome on gingival inflammation in chronic periodontitis patients[J]. BMC Oral Health, 2019, 19(1): 40. DOI:10.1186/s12903-019-0728-2
|
[77] |
SONG JH, LI TC, GAO J, JIANG SY, ZHANG X. Building an aprismatic enamel-like layer on a demineralized enamel surface by using carboxymethyl chitosan and lysozyme-encapsulated amorphous calcium phosphate nanogels[J]. Journal of Dentistry, 2021, 107: 103599. DOI:10.1016/j.jdent.2021.103599
|
[78] |
BALLINI A, CANTORE S, SIGNORINI L, SAINI R, SCACCO S, GNONI A, INCHINGOLO AD, de VITO D, SANTACROCE L, INCHINGOLO F, DIPALMA G. Efficacy of sea salt-based mouthwash and xylitol in improving oral hygiene among adolescent population: a pilot study[J]. International Journal of Environmental Research and Public Health, 2020, 18(1): 44. DOI:10.3390/ijerph18010044
|
[79] |
SHAO YX, ZHOU HW. Clinical evaluation of a toothpaste containing lysozyme for the treatment of recurrent aphthous stomatitis: a 3-month, double-blind, randomized study[J]. American Journal of Dentistry, 2016, 29(6): 303-306.
|
[80] |
TALLIAN C, TEGL G, QUADLBAUER L, VIELNASCHER R, WEINBERGER S, CREMERS R, PELLIS A, SALARI JWO, GUEBITZ GM. Lysozyme-responsive spray-dried chitosan particles for early detection of wound infection[J]. ACS Applied Bio Materials, 2019, 2(3): 1331-1339. DOI:10.1021/acsabm.9b00023
|
[81] |
LEE-HUANG S, MAIOROV V, HUANG PL, NG A, LEE HC, CHANG YT, KALLENBACH N, HUANG PL, CHEN HC. Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with anti-HIV activity[J]. Biochemistry, 2005, 44(12): 4648-4655. DOI:10.1021/bi0477081
|
[82] |
FLEMING A, ALLISON VD. Observations on a bacteriolytic substance ("Lysozyme") found in secretions and tissues[J]. British Journal of Experimental Pathology, 1922, 3(5): 252-260.
|