[1] |
DAS A, GHANA P, RUDRAPPA B, GANDHI R, TAVVA VS, MOHANTY A. Genome editing of rice by CRISPR-cas: end-to-end pipeline for crop improvement[A]//Methods in Molecular Biology[M]. New York, NY: Springer US, 2021, 2238: 115-134.
|
|
[2] |
BIBIKOVA M, BEUMER K, TRAUTMAN JK, CARROLL D. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300(5620): 764. DOI:10.1126/science.1079512
|
|
[3] |
HOCKEMEYER D, WANG HY, KIANI S, LAI CS, GAO Q, CASSADY JP, COST GJ, ZHANG L, SANTIAGO Y, MILLER JC, ZEITLER B, CHERONE JM, MENG XD, HINKLEY SJ, REBAR EJ, GREGORY PD, URNOV FD, JAENISCH R. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 2011, 29(8): 731-734. DOI:10.1038/nbt.1927
|
|
[4] | |
|
[5] |
ISHINO Y, SHINAGAWA H, MAKINO K, AMEMURA M, NAKATA A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12): 5429-5433. DOI:10.1128/jb.169.12.5429-5433.1987
|
|
[6] |
JANSEN R, van EMBDEN JDA, GAASTRA W, SCHOULS LM. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6): 1565-1575. DOI:10.1046/j.1365-2958.2002.02839.x
|
|
[7] |
BARRANGOU R, FREMAUX C, DEVEAU H, RICHARDS M, BOYAVAL P, MOINEAU S, ROMERO DA, HORVATH P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712. DOI:10.1126/science.1138140
|
|
[8] |
JINEK M, CHYLINSKI K, FONFARA I, HAUER M, DOUDNA JA, CHARPENTIER E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821. DOI:10.1126/science.1225829
|
|
[9] |
MALI P, YANG LH, ESVELT KM, AACH J, GUELL M, DICARLO JE, NORVILLE JE, CHURCH GM. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826. DOI:10.1126/science.1232033
|
|
[10] |
CONG L, RAN FA, COX D, LIN SL, BARRETTO R, HABIB N, HSU PD, WU XB, JIANG WY, MARRAFFINI LA, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823. DOI:10.1126/science.1231143
|
|
[11] |
HAFT DH, SELENGUT J, MONGODIN EF, NELSON KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 2005, 1(6): e60. DOI:10.1371/journal.pcbi.0010060
|
|
[12] |
MAKAROVA KS, HAFT DH, BARRANGOU R, BROUNS SJJ, CHARPENTIER E, HORVATH P, MOINEAU S, MOJICA FJM, WOLF YI, YAKUNIN AF, van der OOST J, KOONIN EV. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 2011, 9(6): 467-477. DOI:10.1038/nrmicro2577
|
|
[13] |
MAKAROVA KS, WOLF YI, ALKHNBASHI OS, COSTA F, SHAH SA, SAUNDERS SJ, BARRANGOU R, BROUNS SJJ, CHARPENTIER E, HAFT DH, HORVATH P, MOINEAU S, MOJICA FJM, TERNS RM, TERNS MP, WHITE MF, YAKUNIN AF, GARRETT RA, van der OOST J, BACKOFEN R, KOONIN EV. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 2015, 13(11): 722-736. DOI:10.1038/nrmicro3569
|
|
[14] |
冯万有, 蒙丽娜, 陈春, 何立珍, 覃广胜, 石德顺. CRISPR/Cas系统分类和病原体检测的研究进展. 生物技术, 2022, 32(2): 258-267, 251. FENG WY, MENG LN, CHEN C, HE LZ, QIN GS, SHI DS. Classification of CRISPR/Cas system and application in pathogen detection. Biotechnology, 2022, 32(2): 258-267, 251 (in Chinese).
|
|
[15] |
马锦荣. 新型CRISPR/SpCas9-hRedβ基因编辑系统的构建及验证[D]. 杨凌: 西北农林科技大学硕士学位论文, 2021. MA JR. Construction and verification of a novel CRISPR/SpCas9-hRedβ gene editing system[D]. Yangling: Master's Thesis of Northwest A & F University, 2021 (in Chinese).
|
|
[16] |
FRIEDLAND AE, TZUR YB, ESVELT KM, COLAIÁCOVO MP, CHURCH GM, CALARCO JA. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods, 2013, 10(8): 741-743. DOI:10.1038/nmeth.2532
|
|
[17] |
李君, 张毅, 陈坤玲, 单奇伟, 王延鹏, 梁振, 高彩霞. CRISPR/Cas系统: RNA靶向的基因组定向编辑新技术. 遗传, 2013, 35(11): 1265-1273. LI J, ZHANG Y, CHEN KL, SHAN QW, WANG YP, LIANG Z, GAO CX. CRISPR/Cas: a novel way of RNA-guided genome editing. Hereditas, 2013, 35(11): 1265-1273 (in Chinese).
|
|
[18] |
SAMANTA MK, DEY A, GAYEN S. CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Research, 2016, 25(5): 561-573. DOI:10.1007/s11248-016-9953-5
|
|
[19] |
林萌萌, 李春娟, 闫彩霞, 孙全喜, 赵小波, 王娟, 苑翠玲, 单世华. CRISPR/Cas9基因编辑技术在作物中的应用. 核农学报, 2021, 35(6): 1329-1339. LIN MM, LI CJ, YAN CX, SUN QX, ZHAO XB, WANG J, YUAN CL, SHAN SH. Application of CRISPR/Cas9 gene editing technology in crops. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1329-1339 (in Chinese).
|
|
[20] |
刘早利, 陈亚红, 王春台, 刘新琼. 稻瘟病新抗性基因 Pi39候选基因CRISPR/Cas9敲除载体的构建. 中国农学通报, 2016, 32(6): 91-95. LIU ZL, CHEN YH, WANG CT, LIU XQ. Knock-out vector construction of novel blast resistance gene Pi39 candidate gene by CRISPR/Cas9 system. Chinese Agricultural Science Bulletin, 2016, 32(6): 91-95 (in Chinese).
|
|
[21] |
KOMOR AC, KIM YB, PACKER MS, ZURIS JA, LIU DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420-424. DOI:10.1038/nature17946
|
|
[22] |
GAUDELLI NM, KOMOR AC, REES HA, PACKER MS, BADRAN AH, BRYSON DI, LIU DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464-471. DOI:10.1038/nature24644
|
|
[23] |
LI C, ZHANG R, MENG XB, CHEN S, ZONG Y, LU CJ, QIU JL, CHEN YH, LI JY, GAO CX. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology, 2020, 38(7): 875-882. DOI:10.1038/s41587-019-0393-7
|
|
[24] |
ANZALONE AV, RANDOLPH PB, DAVIS JR, SOUSA AA, KOBLAN LW, LEVY JM, CHEN PJ, WILSON C, NEWBY GA, RAGURAM A, LIU DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149-157. DOI:10.1038/s41586-019-1711-4
|
|
[25] |
LIN QP, ZONG Y, XUE CX, WANG SX, JIN S, ZHU ZX, WANG YP, ANZALONE AV, RAGURAM A, DOMAN JL, LIU DR, GAO CX. Prime genome editing in rice and wheat. Nature Biotechnology, 2020, 38(5): 582-585. DOI:10.1038/s41587-020-0455-x
|
|
[26] |
TANG X, SRETENOVIC S, REN QR, JIA XY, LI MK, FAN TT, YIN D, XIANG SY, GUO YC, LIU L, ZHENG XL, QI YP, ZHANG Y. Plant prime editors enable precise gene editing in rice cells. Molecular Plant, 2020, 13(5): 667-670. DOI:10.1016/j.molp.2020.03.010
|
|
[27] |
XU RF, LI J, LIU XS, SHAN TF, QIN RY, WEI PC. Development of plant prime-editing systems for precise genome editing. Plant Communications, 2020, 1(3): 100043. DOI:10.1016/j.xplc.2020.100043
|
|
[28] |
BUTT H, RAO GS, SEDEEK K, AMAN R, KAMEL R, MAHFOUZ M. Engineering herbicide resistance via prime editing in rice. Plant Biotechnology Journal, 2020, 18(12): 2370-2372. DOI:10.1111/pbi.13399
|
|
[29] |
LU YM, TIAN YF, SHEN RD, YAO Q, ZHONG DT, ZHANG XN, ZHU JK. Precise genome modification in tomato using an improved prime editing system. Plant Biotechnology Journal, 2021, 19(3): 415-417. DOI:10.1111/pbi.13497
|
|
[30] |
WANG L, KAYA HB, ZHANG N, RAI R, WILLMANN MR, CARPENTER SCD, READ AC, MARTIN F, FEI ZJ, LEACH JE, MARTIN GB, BOGDANOVE AJ. Spelling changes and fluorescent tagging with prime editing vectors for plants. Frontiers in Genome Editing, 2021, 3: 617553. DOI:10.3389/fgeed.2021.617553
|
|
[31] |
QI LS, LARSON MH, GILBERT LA, DOUDNA JA, WEISSMAN JS, ARKIN AP, LIM WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183. DOI:10.1016/j.cell.2013.02.022
|
|
[32] |
BIKARD D, JIANG WY, SAMAI P, HOCHSCHILD A, ZHANG F, MARRAFFINI LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 2013, 41(15): 7429-7437. DOI:10.1093/nar/gkt520
|
|
[33] |
MAEDER ML, LINDER SJ, CASCIO VM, FU YF, HO QH, JOUNG JK. CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 2013, 10(10): 977-979. DOI:10.1038/nmeth.2598
|
|
[34] |
赵山山, 邸一桓, 郝光飞. CRISPR-Cas9基因编辑技术在基因功能和作物育种中的研究进展. 分子植物育种, 2019, 17(21): 7087-7093. ZHAO SS, DI YH, HAO GF. Research progress of CRISPR-Cas9 gene editing technology in gene function and crop breeding. Molecular Plant Breeding, 2019, 17(21): 7087-7093 (in Chinese). DOI:10.13271/j.mpb.017.007087
|
|
[35] |
耿敏, 王婷婷, 陶英瑜, 于丽静, 吴铭, 张春玉. 利用CRISPR基因编辑技术构建水稻 OsSLR1敲除突变体. 分子植物育种, 2021, 1-10. GENG M, WANG TT, TAO YY, YU LJ, WU M, ZHANG CY. Rice OsSLR1 mutant created through CRISPR/Cas9 technology. Molecular Plant Breeding, 2021, 1-10 (in Chinese).
|
|
[36] |
MA XL, ZHANG QY, ZHU QL, LIU W, CHEN Y, QIU R, WANG B, YANG ZF, LI HY, LIN YR, XIE YY, SHEN RX, CHEN SF, WANG Z, CHEN YL, GUO JX, CHEN LT, ZHAO XC, DONG ZC, LIU YG. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284. DOI:10.1016/j.molp.2015.04.007
|
|
[37] |
CASINI A, STORCH M, BALDWIN GS, ELLIS T. Bricks and blueprints: methods and standards for DNA assembly. Nature Reviews Molecular Cell Biology, 2015, 16(9): 568-576. DOI:10.1038/nrm4014
|
|
[38] |
时欢, 林玉玲, 赖钟雄, 杜宜殷, 黄鹏林. CRISPR/Cas9介导的植物基因编辑技术研究进展. 应用与环境生物学报, 2018, 24(3): 640-650. SHI H, LIN YL, LAI ZX, DU YY, HUANG PL. Research progress on CRISPR/Cas9-mediated genome editing technique in plants. Chinese Journal of Applied and Environmental Biology, 2018, 24(3): 640-650 (in Chinese). DOI:10.19675/j.cnki.1006-687x.2017.07019
|
|
[39] |
沈兰, 华宇峰, 付亚萍, 李健, 刘庆, 焦晓真, 辛高伟, 王俊杰, 王兴春, 严长杰, 王克剑. 利用CRISPR/Cas9多基因编辑系统在水稻中快速引入遗传多样性. 中国科学: 生命科学, 2017, 47(11): 1186-1195. SHEN L, HUA YF, FU YP, LI J, LIU Q, JIAO XZ, XIN GW, WANG JJ, WANG XC, WANG KJ. Rapid introduction of genetic diversity in rice using CRISPR/Cas9 multi-gene editing system. Scientia Sinica: Vitae, 2017, 47(11): 1186-1195 (in Chinese).
|
|
[40] |
蔡曼君. 玉米产量性状相关基因Emp10及Ter1的定位与克隆[D]. 武汉: 华中农业大学博士学位论文, 2019. CAI MJ. Fine mapping and cloning of the yield trait related genes Emp10 and Ter1 in maize[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2019 (in Chinese).
|
|
[41] |
LIU L, ZHANG JL, XU JY, LI YF, GUO LQ, WANG ZR, ZHANG XC, ZHAO B, GUO YD, ZHANG N. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Science, 2020, 301: 110683. DOI:10.1016/j.plantsci.2020.110683
|
|
[42] |
FENG C, YUAN J, WANG R, LIU Y, BIRCHLER JA, HAN FP. Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics, 2016, 43(1): 37-43. DOI:10.1016/j.jgg.2015.10.002
|
|
[43] |
刘玉琛, 丘式浚, 金曼, 邓汉超, 尹梅, 陈竹锋, 周向阳, 唐晓艳. CRISPR/Cas9技术在创制番茄雄性不育株系中的应用研究. 农业生物技术学报, 2019, 27(6): 951-960. LIU YC, QIU SJ, JIN M, DENG HC, YIN M, CHEN ZF, ZHOU XY, TANG XY. Study on the application of CRISPR/Cas9 technology in development of tomato ( Solanum lycopersicum) male sterile line. Journal of Agricultural Biotechnology, 2019, 27(6): 951-960 (in Chinese).
|
|
[44] |
CAI YP, CHEN L, LIU XJ, GUO C, SUN S, WU CX, JIANG BJ, HAN TF, HOU WS. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnology Journal, 2018, 16(1): 176-185. DOI:10.1111/pbi.12758
|
|
[45] |
吴艳, 侯智红, 程群, 董利东, 芦思佳, 南海洋, 甘卓然, 林永波. 大豆 GmSPL3基因家族功能初探. 大豆科学, 2019, 38(5): 694-703. WU Y, HOU ZH, CHENG Q, DONG LD, LU SJ, NAN HY, GAN ZR, LIN YB. Preliminary study on the function of GmSPL3 gene family in soybean. Soybean Science, 2019, 38(5): 694-703 (in Chinese).
|
|
[46] |
梁敏敏, 张华丽, 陈俊宇, 戴冬青, 杜成兴, 王惠梅, 马良勇. 利用CRISPR/Cas9技术创制抗稻瘟病香型早籼温敏核不育系. 中国水稻科学, 2022, 36(3): 248-258. LIANG MM, ZHANG HL, CHEN JY, DAI DQ, DU CX, WANG HM, MA LY. Developing fragrant early indica TGMS line with blast resistance by using CRISPR/Cas9 technology. Chinese Journal of Rice Science, 2022, 36(3): 248-258 (in Chinese).
|
|
[47] |
ZHENG M, ZHANG L, TANG M, LIU JL, LIU HF, YANG HL, FAN SH, TERZAGHI W, WANG HZ, HUA W. Knockout of two Bna MAX 1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed ( Brassica napus L.). Plant Biotechnology Journal, 2020, 18(3): 644-654. DOI:10.1111/pbi.13228
|
|
[48] |
OLALEKAN MUSA AMOO. 利用CRISPR/CAS9技术鉴定BRANCHED1和BRANCHED2基因参与调控油菜分枝的功能[D]. 武汉: 华中农业大学硕士学位论文, 2020. OLALEKAN MA. CRISPR/CAS9 technique was used to identify the functions of BRANCHED1 and BRANCHED2 genes involved in regulating the branches of rapeseed[D]. Wuhan: Master's Thesis of Huazhong Agricultural University, 2020 (in Chinese).
|
|
[49] |
LIU HY, WANG K, TANG HL, GONG Q, DU LP, PEI XW, YE XG. CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. Journal of Genetics and Genomics, 2020, 47(9): 563-575. DOI:10.1016/j.jgg.2020.08.004
|
|
[50] |
LU Y, WANG JY, CHEN B, MO SD, LIAN L, LUO YM, DING DH, DING YH, CAO Q, LI YC, LI Y, LIU GZ, HOU QQ, CHENG TT, WEI JT, ZHANG YR, CHEN GW, SONG C, HU Q, SUN S, FAN GY, WANG YT, LIU ZT, SONG BA, ZHU JK, LI HR, JIANG LJ. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nature Plants, 2021, 7(11): 1445-1452. DOI:10.1038/s41477-021-01019-4
|
|
[51] |
DONG OX, YU S, JAIN R, ZHANG N, DUONG PQ, BUTLER C, LI Y, LIPZEN A, MARTIN JA, BARRY KW, SCHMUTZ J, TIAN L, RONALD PC. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications, 2020, 11(1): 1178. DOI:10.1038/s41467-020-14981-y
|
|
[52] |
罗旻, 顾华. CRISPR-dCas9系统在基因表达调控中的最新研究进展. 实验室研究与探索, 2016, 35(3): 20-23. LUO M, GU H. The state of the art of CRISPR-dCas9 system on regulating level of gene expression. Research and Exploration in Laboratory, 2016, 35(3): 20-23 (in Chinese). DOI:10.3969/j.issn.1006-7167.2016.03.006
|
|
[53] |
刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展. 遗传, 2020, 42(5): 435-443. LIU SY, YI GQ, TANG ZL, CHEN B. Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements. Hereditas, 2020, 42(5): 435-443 (in Chinese). DOI:10.16288/j.yczz.19-390
|
|
[54] | |
|
[55] |
MORADPOUR M, ABDULAH SNA. CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnology Journal, 2020, 18(1): 32-44. DOI:10.1111/pbi.13232
|
|
[56] |
PIATEK A, ALI Z, BAAZIM H, LI LX, ABULFARAJ A, AL-SHAREEF S, AOUIDA M, MAHFOUZ MM. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnology Journal, 2015, 13(4): 578-589. DOI:10.1111/pbi.12284
|
|
[57] |
LOWDER LG, ZHANG DW, BALTES NJ, PAUL JW III, TANG X, ZHENG XL, VOYTAS DF, HSIEH TF, ZHANG Y, QI YP. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology, 2015, 169(2): 971-985. DOI:10.1104/pp.15.00636
|
|
[58] |
RODRÍGUEZ-LEAL D, LEMMON ZH, MAN J, BARTLETT ME, LIPPMAN ZB. Engineering quantitative trait variation for crop improvement by genome editing. Cell, 2017, 171(2): 470-480. e8. DOI:10.1016/j.cell.2017.08.030
|
|
[59] |
XING SN, CHEN KL, ZHU HC, ZHANG R, ZHANG HW, LI BB, GAO CX. Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21(1): 230. DOI:10.1186/s13059-020-02146-5
|
|
[60] |
ZENG DC, LIU TL, MA XL, WANG B, ZHENG ZY, ZHANG YL, XIE XR, YANG BW, ZHAO Z, ZHU QL, LIU YG. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5′UTR-intron editing improves grain quality in rice. Plant Biotechnology Journal, 2020, 18(12): 2385-2387. DOI:10.1111/pbi.13427
|
|
[61] |
ZHU HC, LI C, GAO CX. Publisher correction: applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 2020, 21(11): 712. DOI:10.1038/s41580-020-00304-y
|
|
[62] |
HAYUT SF, BESSUDO CM, LEVY AA. Targeted recombination between homologous chromosomes for precise breeding in tomato. Nature Communications, 2017, 8: 15605. DOI:10.1038/ncomms15605
|
|
[63] |
SCHMIDT C, PACHER M, PUCHTA H. Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system. The Plant Journal, 2019, 98(4): 577-589. DOI:10.1111/tpj.14322
|
|
[64] |
SCHMIDT C, FRANSZ P, RÖNSPIES M, DREISSIG S, FUCHS J, HECKMANN S, HOUBEN A, PUCHTA H. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nature Communications, 2020, 11(1): 4418. DOI:10.1038/s41467-020-18277-z
|
|
[65] |
BEYING N, SCHMIDT C, PACHER M, HOUBEN A, PUCHTA H. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nature Plants, 2020, 6(6): 638-645. DOI:10.1038/s41477-020-0663-x
|
|
[66] |
BRUNNER E, YAGI R, DEBRUNNER M, BECK-SCHNEIDER D, BURGER A, ESCHER E, MOSIMANN C, HAUSMANN G, BASLER K. CRISPR-induced double-strand breaks trigger recombination between homologous chromosome arms. Life Science Alliance, 2019, 2(3): e201800267. DOI:10.26508/lsa.201800267
|
|
[67] |
程丽华, 刘玉, 牛挺. 应用CRISPR-Cas9基因编辑技术实现染色体大片段缺失. 中华血液学杂志, 2017, 38(5): 427-431. CHENG LH, LIU Y, NIU T. Chromosomal large fragment deletion induced by CRISPR/Cas9 gene editing system. Chinese Journal of Hematology, 2017, 38(5): 427-431 (in Chinese).
|
|
[68] |
LI RQ, CHAR SN, YANG B. Creating large chromosomal deletions in rice using CRISPR/Cas9[A]//Methods in Molecular Biology[M]. New York, NY: Springer New York, 2019: 47-61.
|
|
[69] |
ISHIMARU K, HIROTSU N, MADOKA Y, MURAKAMI N, HARA N, ONODERA H, KASHIWAGI T, UJIIE K, SHIMIZU BI, ONISHI A, MIYAGAWA H, KATOH E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 2013, 45(6): 707-711. DOI:10.1038/ng.2612
|
|
[70] |
王加峰, 郑才敏, 刘维, 罗文龙, 王慧, 陈志强, 郭涛. 基于CRISPR/Cas9技术的水稻千粒重基因 tgw6突变体的创建. 作物学报, 2016, 42(8): 1160-1167. WANG JF, ZHENG CM, LIU W, LUO WL, WANG H, CHEN ZQ, GUO T. Construction of tgw6 mutants in rice based on CRISPR/Cas9 technology. Acta Agronomica Sinica, 2016, 42(8): 1160-1167 (in Chinese).
|
|
[71] |
LIBAULT M, ZHANG XC, GOVINDARAJULU M, QIU J, ONG YT, BRECHENMACHER L, BERG RH, HURLEY-SOMMER A, TAYLOR CG, STACEY G. A member of the highly conserved FWL (tomato FW 2.2-like) gene family is essential for soybean nodule organogenesis. The Plant Journal, 2010, 62(5): 852-864. DOI:10.1111/j.1365-313X.2010.04201.x
|
|
[72] |
王玲玲. 水稻穗粒数调控基因OsFWL2的功能研究[D]. 扬州: 扬州大学硕士学位论文, 2018. WANG LL. Functional analysis of OsFWL2 gene involved in grain number regulation in rice[D]. Yangzhou: Master's Thesis of Yangzhou University, 2018 (in Chinese).
|
|
[73] |
任俊, 曹跃炫, 黄勇, 董慧荣, 刘庆, 王克剑. 基因编辑技术及其水稻中的发展和应用. 中国稻米, 2021, 27(4): 92-100. REN J, CAO YX, HUANG Y, DONG HR, LIU Q, WANG KJ. Development and application of genome editing technology in rice. China Rice, 2021, 27(4): 92-100 (in Chinese). DOI:10.3969/j.issn.1006-8082.2021.04.019
|
|
[74] |
邵高能, 谢黎虹, 焦桂爱, 魏祥进, 圣忠华, 唐绍清, 胡培松. 利用CRISPR/CAS9技术编辑水稻香味基因 Badh2. 中国水稻科学, 2017, 31(2): 216-222. SHAO GN, XIE LH, JIAO GA, WEI XJ, SHENG ZH, TANG SQ, HU PS. CRISPR/CAS9-mediated editing of the fragrant gene Badh2 in rice. Chinese Journal of Rice Science, 2017, 31(2): 216-222 (in Chinese).
|
|
[75] |
祁永斌, 张礼霞, 王林友, 宋建, 王建军. 利用CRISPR/Cas9技术编辑水稻香味基因 Badh2. 中国农业科学, 2020, 53(8): 1501-1509. QI YB, ZHANG LX, WANG LY, SONG J, WANG JJ. CRISPR/Cas9 targeted editing for the fragrant gene Badh2 in rice. Scientia Agricultura Sinica, 2020, 53(8): 1501-1509 (in Chinese).
|
|
[76] |
ZHOU H, XIA D, ZHAO D, LI YH, LI PB, WU B, GAO GJ, ZHANG QL, WANG GW, XIAO JH, LI XH, YU SB, LIAN XM, HE YQ. The origin of Wxla provides new insights into the improvement of grain quality in rice. Journal of Integrative Plant Biology, 2021, 63(5): 878-888. DOI:10.1111/jipb.13011
|
|
[77] |
冯璇, 王新, 韩悦, 白德朗, 许可, 刘芳, 覃宝祥, 罗继景, 韦政, 邱永福, 李容柏. CRISPR/Cas9介导基因组编辑培育糯稻不育系WX209A. 基因组学与应用生物学, 2018, 37(4): 1589-1596. FENG X, WANG X, HAN Y, BAI DL, XU K, LIU F, QIN BX, LUO JJ, WEI Z, QIU YF, LI RB. CRISPR/Cas9 mediated genomic editing breeding for glutinous CMS line WX209A in rice. Genomics and Applied Biology, 2018, 37(4): 1589-1596 (in Chinese). DOI:10.13417/j.gab.037.001589
|
|
[78] |
PENG B, KONG HL, LI YB, WANG LQ, ZHONG M, SUN L, GAO GJ, ZHANG QL, LUO LJ, WANG GW, XIE WB, CHEN JX, YAO W, PENG Y, LEI L, LIAN XM, XIAO JH, XU CG, LI XH, HE YQ. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications, 2014, 5: 4847. DOI:10.1038/ncomms5847
|
|
[79] |
WANG SY, YANG YH, GUO M, ZHONG CY, YAN CJ, SUN SY. Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system. The Crop Journal, 2020, 8(3): 457-464. DOI:10.1016/j.cj.2020.02.005
|
|
[80] |
LIU DF, CHEN XJ, LIU JQ, YE JC, GUO ZJ. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany, 2012, 63(10): 3899-3911. DOI:10.1093/jxb/ers079
|
|
[81] |
WANG FJ, WANG CL, LIU PQ, LEI CL, HAO W, GAO Y, LIU YG, ZHAO KJ. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One, 2016, 11(4): e0154027.
|
|
[82] |
徐鹏, 王宏, 涂燃冉, 刘群恩, 吴玮勋, 傅秀民, 曹立勇, 沈希宏. 利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性. 中国水稻科学, 2019, 33(4): 313-322. XU P, WANG H, TU RR, LIU QE, WU WX, FU XM, CAO LY, SHEN XH. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system. Chinese Journal of Rice Science, 2019, 33(4): 313-322 (in Chinese).
|
|
[83] |
郝巍. 利用CRISPR/Cas9技术对水稻白叶枯病感病相关基因HW3进行定点修饰及功能分析[D]. 北京: 中国农业科学院硕士学位论文, 2016. HAO W. Identification of a susceptibility-related gene HW3 for bacterial blight of rice by using CRISPR/Cas9 system[D]. Beijing: Master's Thesis of Chinese Academy of Agricultural Sciences, 2016 (in Chinese).
|
|
[84] |
YUAN M, CHU ZH, LI XH, XU CG, WANG SP. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. The Plant Cell, 2010, 22(9): 3164-3176. DOI:10.1105/tpc.110.078022
|
|
[85] |
KIM YA, MOON H, PARK CJ. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice (N Y), 2019, 12(1): 67.
|
|
[86] |
饶玉春, 戴志俊, 朱怡彤, 姜嘉骥, 马若盈, 王予烨, 王跃星. 水稻抗干旱胁迫的研究进展. 浙江师范大学学报(自然科学版), 2020, 43(4): 417-429. RAO YC, DAI ZJ, ZHU YT, JIANG JJ, MA RY, WANG YY, WANG YX. Advances in research of drought resistance in rice. Journal of Zhejiang Normal University (Natural Sciences), 2020, 43(4): 417-429 (in Chinese).
|
|
[87] |
周天顺, 余东, 刘玲, 欧阳宁, 袁贵龙, 段美娟, 袁定阳. 利用CRISPR/Cas9技术编辑AFP1基因提高水稻耐逆性. 中国水稻科学, 2021, 35(1): 11-18. ZHOU TS, YU D, LIU L, OUYANG N, YUAN GL, DUAN MJ, YUAN DY. CRISPR/Cas9-mediated editing of AFP1 improves rice stress tolerance. Chinese Journal of Rice Science, 2021, 35(1): 11-18 (in Chinese).
|
|
[88] |
OKUZAKI A, SHIMIZU T, KAKU K, KAWAI K, TORIYAMA K. A novel mutated acetolactate synthase gene conferring specific resistance to pyrimidinyl carboxy herbicides in rice. Plant Molecular Biology, 2007, 64(1/2): 219-224.
|
|
[89] |
WANG MG, WANG ZD, MAO YF, LU YM, YANG RF, TAO XP, ZHU JK. Optimizing base editors for improved efficiency and expanded editing scope in rice. Plant Biotechnology Journal, 2019, 17(9): 1697-1699.
|
|
[90] |
WANG FQ, XU Y, LI WQ, CHEN ZH, WANG J, FAN FJ, TAO YJ, JIANG YJ, ZHU QH, YANG J. Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing. The Crop Journal, 2021, 9(2): 305-312.
|
|
[91] |
ISHIMARU Y, BASHIR K, NAKANISHI H, NISHIZAWA NK. OsNRAMP5, a major player for constitutive iron and manganese uptake in rice. Plant Signaling & Behavior, 2012, 7(7): 763-766.
|
|
[92] |
龙起樟, 黄永兰, 唐秀英, 王会民, 芦明, 袁林峰, 万建林. 利用CRISPR/Cas9敲除 OsNramp5基因创制低镉籼稻. 中国水稻科学, 2019, 33(5): 407-420. LONG QZ, HUANG YL, TANG XY, WANG HM, LU M, YUAN LF, WAN JL. Creation of low-Cd-accumulating indica rice by disruption of OsNramp5 gene via CRISPR/Cas9. Chinese Journal of Rice Science, 2019, 33(5): 407-420 (in Chinese).
|
|
[93] |
吴明基, 林艳, 刘华清, 陈建民, 付艳萍, 杨绍华, 王锋. 利用CRISPR/Cas-9技术创制水稻温敏核不育系. 福建农业学报, 2018, 33(10): 1011-1015. WU MJ, LIN Y, LIU HQ, CHEN JM, FU YP, YANG SH, WANG F. Development of thermo-sensitive male sterile rice with CRISPR/Cas9 technology. Fujian Journal of Agricultural Sciences, 2018, 33(10): 1011-1015 (in Chinese).
|
|
[94] |
SHEN L, DONG GJ, ZHANG Y, HU GC, ZHANG Q, HU GL, XU B, REN DY, HU J, ZHU L, GAO ZY, ZHANG GH, GUO LB, ZENG DL, QIAN Q. Rapid creation of new photoperiod-/thermo-sensitive genic male-sterile rice materials by CRISPR/Cas9 system. Rice Science, 2019, 26(2): 129-132.
|
|
[95] |
LIU CL, CAO YW, HUA YF, DU GJ, LIU Q, WEI X, SUN TT, LIN JR, WU MG, CHENG ZK, WANG KJ. Concurrent disruption of genetic interference and increase of genetic recombination frequency in hybrid rice using CRISPR/Cas9. Frontiers in Plant Science, 2021, 12: 757152.
|
|
[96] |
王延鹏, 程曦, 高彩霞, 邱金龙. 利用基因组编辑技术创制抗白粉病小麦. 遗传, 2014, 36(8): 848. WANG YP, CHENG X, GAO CX, QIU JL. Creating powdery mildew resistant wheat by genome editing technology. Hereditas, 2014, 36(8): 848 (in Chinese).
|
|
[97] |
ZHANG Y, LIANG Z, ZONG Y, WANG YP, LIU JX, CHEN KL, QIU JL, GAO CX. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7: 12617.
|
|
[98] |
SÁNCHEZ-LEÓN S, GIL-HUMANES J, OZUNA CV, GIMÉNEZ MJ, SOUSA C, VOYTAS DF, BARRO F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 2018, 16(4): 902-910.
|
|
[99] |
杨瑞芳, 朴钟泽, 万常照, 李钢夑, 龚长春, 白建江. 高抗性淀粉水稻新品种优糖稻2号的选育及其特征特性. 中国稻米, 2020, 26(1): 94-95, 99. YANG RF, PIAO ZZ, WAN CZ, LI GX, GONG CC, BAI JJ. Breeding and characteristics of new rice variety youtangdao 2 with high resistant starch. China Rice, 2020, 26(1): 94-95, 99 (in Chinese).
|
|
[100] |
李晶莹. CRISPR/Cas9介导的水稻基因编辑技术体系构建与高抗性淀粉小麦新种质创制[D]. 北京: 中国农业科学院博士学位论文, 2021. LI JY. Development of different toolkits for CRISPR/Cas9-mediated rice genome editing and creation of novel wheat germplasm high in resistant starch[D]. Beijing: Doctoral Dissertation of Chinese Academy of Agricultural Sciences, 2021 (in Chinese).
|
|
[101] |
ZHANG YW, BAI Y, WU GH, ZOU SH, CHEN YF, GAO CX, TANG DZ. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal, 2017, 91(4): 714-724. DOI:10.1111/tpj.13599
|
|
[102] |
LI J, WANG Z, HE GM, MA LG, DENG XW. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. Journal of Genetics and Genomics, 2020, 47(5): 263-272. DOI:10.1016/j.jgg.2020.05.004
|
|
[103] |
孙清栩. 小麦雄性不育突变体HTS-1中TaEPFL1基因的克隆、定位及表达分析[D]. 南充: 西华师范大学硕士学位论文, 2019. SUN QX. Cloning, localization and expression analysis of TaEPFL1 gene in the pistillody line of common wheat HTS-1[D]. Nanchong: Master's Thesis of China West Normal University, 2019 (in Chinese).
|
|
[104] |
朱金洁. CRISPR-Cas9介导的玉米基因组定点编辑研究[D]. 北京: 中国农业大学博士学位论文, 2015. ZHU JJ. Targeted genome editing in maize using CRISPR-Cas9[D]. Beijing: Doctoral Dissertation of China Agricultural University, 2015 (in Chinese).
|
|
[105] |
SVITASHEV S, YOUNG JK, SCHWARTZ C, GAO HR, FALCO SC, CIGAN AM. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 2015, 169(2): 931-945. DOI:10.1104/pp.15.00793
|
|
[106] |
SHI JR, GAO HR, WANG HY, LAFITTE HR, ARCHIBALD RL, YANG MZ, HAKIMI SM, MO H, HABBEN JE. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 2017, 15(2): 207-216. DOI:10.1111/pbi.12603
|
|
[107] |
张翔, 史亚兴, 卢柏山, 武莹, 刘亚, 王元东, 杨进孝, 赵久然. 利用CRISPR/Cas9技术编辑 BADH2-1/ BADH2-2创制香米味道玉米新种质. 中国农业科学, 2021, 54(10): 2064-2075. ZHANG X, SHI YX, LU BS, WU Y, LIU Y, WANG YD, YANG JX, ZHAO JR. Creation of new maize variety with fragrant rice like flavor by editing BADH2-1 and BADH2-2 using CRISPR/Cas9. Scientia Agricultura Sinica, 2021, 54(10): 2064-2075 (in Chinese). DOI:10.3864/j.issn.0578-1752.2021.10.003
|
|
[108] |
SVITASHEV S, SCHWARTZ C, LENDERTS B, YOUNG JK, MARK CIGAN A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7: 13274. DOI:10.1038/ncomms13274
|
|
[109] |
何雪蒨. 大豆慢生型根瘤菌TetR-like蛋白Blr7023调控大豆异黄酮外排机制研究[D]. 兰州: 兰州大学硕士学位论文, 2021. HE XQ. Regulatory mechanism of a TetR-like Blr7023 protein of Bradyrhizobium diazoefficiens in the efflux of soybean isoflavonoids[D]. Lanzhou: Master's Thesis of Lanzhou University, 2021 (in Chinese).
|
|
[110] |
柏梦焱, 袁珏慧, 孙嘉丰, 厉苏宁, 关跃峰. 基于CRISPR-Cas9基因编辑技术创制大豆gmnark超结瘤突变体. 大豆科学, 2019, 38(4): 525-532. BAI MY, YUAN JH, SUN JF, LI SN, GUAN YF. Generation of gmnark mutant with supernodulation via CRISPR-Cas9 in soybean. Soybean Science, 2019, 38(4): 525-532 (in Chinese).
|
|
[111] |
蔡宇鹏. CRISPR/Cas9介导的大豆基因组定点编辑研究[D]. 北京: 中国农业科学院硕士学位论文, 2016. CAI YP. CRISPR/Cas9-mediated genome editing in soybean[D]. Beijing: Master's Thesis of Chinese Academy of Agricultural Sciences, 2016 (in Chinese).
|
|
[112] |
侯智红, 吴艳, 程群, 董利东, 芦思佳, 南海洋, 甘卓然, 刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系. 作物学报, 2019, 45(6): 839-847. HOU ZH, WU Y, CHENG Q, DONG LD, LU SJ, NAN HY, GAN ZR, LIU BH. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agronomica Sinica, 2019, 45(6): 839-847 (in Chinese).
|
|
[113] |
MA J, SUN S, WHELAN J, SHOU HX. CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds. International Journal of Molecular Sciences, 2021, 22(8): 3877. DOI:10.3390/ijms22083877
|
|
[114] |
李慧卿, 陈超, 陈冉冉, 宋雪薇, 李佶娜, 朱延明, 丁晓东. 利用CRISPR/Cas9双基因敲除系统初步解析大豆GmSnRK 1.1和GmSnRK 1.2对ABA及碱胁迫的响应. 遗传, 2018, 40(6): 496-507. LI HQ, CHEN C, CHEN RR, SONG XW, LI JN, ZHU YM, DING XD. Preliminary analysis of the role of GmSnRK 1.1 and GmSnRK 1.2 in the ABA and alkaline stress response of the soybean using the CRISPR/Cas9-based gene double-knockout system. Hereditas, 2018, 40(6): 496-507 (in Chinese).
|
|
[115] |
李晓. 马铃薯原生质体培养再生及利用CRISPR/Cas9瞬时转化的研究[D]. 呼和浩特: 内蒙古大学硕士学位论文, 2019. LI X. Regeneration of potato protoplasts and transient transformation using CRISPR/Cas9[D]. Hohhot: Master's Thesis of Inner Mongolia University, 2019 (in Chinese).
|
|
[116] |
ZEEMAN SC, KOSSMANN J, SMITH AM. Starch: its metabolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology, 2010, 61: 209-234. DOI:10.1146/annurev-arplant-042809-112301
|
|
[117] |
赵国超. 利用CRISPR/Cas9技术选育马铃薯低龙葵素、抗低温糖化和支链淀粉高的新品系[D]. 呼和浩特: 内蒙古大学硕士学位论文, 2019. ZHAO GC. A new potato strain with low solanine, low temperature saccharification resistance and high amylopectin content was selected by CRISPR/Cas9 technology[D]. Hohhot: Master's Thesis of Inner Mongolia University, 2019 (in Chinese).
|
|
[118] |
ANDERSSON M, TURESSON H, NICOLIA A, FÄLT AS, SAMUELSSON M, HOFVANDER P. Efficient targeted multiallelic mutagenesis in tetraploid potato ( Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 2017, 36(1): 117-128. DOI:10.1007/s00299-016-2062-3
|
|
[119] |
ENCISO-RODRIGUEZ F, MANRIQUE-CARPINTERO NC, NADAKUDUTI SS, BUELL CR, ZARKA D, DOUCHES D. Overcoming self-incompatibility in diploid potato using CRISPR-Cas9. Frontiers in Plant Science, 2019, 10: 376. DOI:10.3389/fpls.2019.00376
|
|
[120] |
郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019, 49(10): 1185-1212. GUO T, YU H, QIU J, LI JY, HAN B, LIN HX. Advances in rice genetics and breeding by molecular design in China. Scientia Sinica: Vitae, 2019, 49(10): 1185-1212 (in Chinese).
|
|
[121] |
LI TD, YANG XP, YU Y, SI XM, ZHAI XW, ZHANG HW, DONG WX, GAO CX, XU C. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 2018, 36(12): 1160-1163. DOI:10.1038/nbt.4273
|
|
[122] |
ZSÖGÖN A, ČERMÁK T, NAVES ER, NOTINI MM, EDEL KH, WEINL S, FRESCHI L, VOYTAS DF, KUDLA J, PERES LEP. De novo domestication of wild tomato using genome editing. Nature Biotechnology, 2018, 36(12): 1211-1216. DOI:10.1038/nbt.4272
|
|
[123] |
ZHU XG, ZHU JK. Precision genome editing heralds rapid de novo domestication for new crops. Cell, 2021, 184(5): 1133-1134. DOI:10.1016/j.cell.2021.02.004
|
|
[124] |
YU H, LIN T, MENG XB, DU HL, ZHANG JK, LIU GF, CHEN MJ, JING YH, KOU LQ, LI XX, GAO Q, LIANG Y, LIU XD, FAN ZL, LIANG YT, CHENG ZK, CHEN MS, TIAN ZX, WANG YH, CHU CC, et al. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184(5): 1156-1170.e14. DOI:10.1016/j.cell.2021.01.013
|
|
[125] |
袁伟曦, 喻云梅, 胡春财, 赵祖国. CRISPR/Cas9技术存在的问题及其改进措施的研究进展. 生物技术通报, 2017, 33(4): 70-77. YUAN WX, YU YM, HU CC, ZHAO ZG. Current issues and progress in the application of CRISPR/Cas9 technique. Biotechnology Bulletin, 2017, 33(4): 70-77 (in Chinese).
|
|
[126] |
BAO AL, BURRITT DJ, CHEN HF, ZHOU XN, CAO D, TRAN LS P. The CRISPR/Cas9 system and its applications in crop genome editing. Critical Reviews in Biotechnology, 2019, 39(3): 321-336. DOI:10.1080/07388551.2018.1554621
|
|
[127] |
姚祝平, 程远, 万红建, 李志邈, 叶青静, 阮美颖, 王荣青, 周国治, 杨悦俭. CRISPR/Cas9基因编辑技术在植物基因工程育种中的应用. 分子植物育种, 2017, 15(7): 2647-2655. YAO ZP, CHENG Y, WAN HJ, LI ZM, YE QJ, RUAN MY, WANG RQ, ZHOU GZ, YANG YJ. Application of CRISPR/Cas9 genome editing technology in plant genetic engineering breeding. Molecular Plant Breeding, 2017, 15(7): 2647-2655 (in Chinese).
|
|
[128] |
LIANG Z, CHEN KL, LI TD, ZHANG Y, WANG YP, ZHAO Q, LIU JX, ZHANG HW, LIU CM, RAN YD, GAO CX. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 2017, 8: 14261. DOI:10.1038/ncomms14261
|
|
[129] |
LIU Q, JIAO XZ, MENG XB, WANG C, XU C, TIAN ZX, XIE CX, LI GY, LI JY, YU H, WANG KJ. FED: a web tool for foreign element detection of genome-edited organism. Science China Life Sciences, 2021, 64(1): 167-170. DOI:10.1007/s11427-020-1731-9
|
|
[130] | |
|
[131] |
范德佳, 陈士强, 王建华, 张容, 刘建凤, 陈秀兰, 何震天. 利用CRISPR/Cas技术改良作物抗病性的研究进展. 江苏农业学报, 2020, 36(5): 1312-1321. FAN DJ, CHEN SQ, WANG JH, ZHANG R, LIU JF, CHEN XL, HE ZT. Advances in improvement of crop disease resistance using CRISPR/Cas technology. Jiangsu Journal of Agricultural Sciences, 2020, 36(5): 1312-1321 (in Chinese). DOI:10.3969/j.issn.1000-4440.2020.05.031
|
|
[132] |
WANG P, ZHAO FJ, KOPITTKE PM. Engineering crops without genome integration using nanotechnology. Trends in Plant Science, 2019, 24(7): 574-577. DOI:10.1016/j.tplants.2019.05.004
|
|
[133] |
张玉苗, 李蓉, 鲁瑶, 林玉玲, 赖钟雄, 徐涵. 基于提高CRISPR/Cas基因编辑效率的研究进展. 热带作物学报, 2019, 40(10): 2006-2015. ZHANG YM, LI R, LU Y, LIN YL, LAI ZX, XU H. Research progress on improving CRISPR/Cas genome editing efficiency. Chinese Journal of Tropical Crops, 2019, 40(10): 2006-2015 (in Chinese). DOI:10.3969/j.issn.1000-2561.2019.10.013
|
|
[134] |
MARTIN-ORTIGOSA S, PETERSON DJ, VALENSTEIN JS, LIN VSY, TREWYN BG, LYZNIK LA, WANG K. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiology, 2014, 164(2): 537-547. DOI:10.1104/pp.113.233650
|
|
[135] |
KWAK SY, LEW TTS, SWEENEY CJ, KOMAN VB, WONG MH, BOHMERT-TATAREV K, SNELL KD, SEO JS, CHUA NH, STRANO MS. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnology, 2019, 14(5): 447-455. DOI:10.1038/s41565-019-0375-4
|
|
[136] |
MITTER N, WORRALL EA, ROBINSON KE, LI P, JAIN RG, TAOCHY C, FLETCHER SJ, CARROLL BJ, LU GQM, XU ZP. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 2017, 3: 16207. DOI:10.1038/nplants.2016.207
|
|
[137] |
ZHAO X, MENG ZG, WANG Y, CHEN WJ, SUN CJ, CUI B, CUI JH, YU ML, ZENG ZH, GUO SD, LUO D, CHENG JQ, ZHANG R, CUI HX. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants, 2017, 3(12): 956-964. DOI:10.1038/s41477-017-0063-z
|
|
[138] |
FERNIE AR, YAN JB. De novo domestication: an alternative route toward new crops for the future. Molecular Plant, 2019, 12(5): 615-631. DOI:10.1016/j.molp.2019.03.016
|
|