[1] |
HONG WQ, MO F, ZHANG ZQ, HUANG MY, WEI XW. Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD + metabolism. Frontiers in Cell and Developmental Biology, 2020, 8: 246. DOI:10.3389/fcell.2020.00246
|
|
[2] |
史海波, 赵海, 周春松, 王泉明. β-烟酰胺单核苷酸制备研究进展. 精细化工中间体, 2020, 50(4): 1-5. SHI HB, ZHAO H, ZHOU CS, WANG QM. Progress in synthsis of β-nicotinamide mononucleotide. Fine Chemical Intermediates, 2020, 50(4): 1-5 (in Chinese). DOI:10.19342/j.cnki.issn.1009-9212.2020.04.001
|
|
[3] |
MILLS KF, YOSHIDA S, STEIN LR, GROZIO A, KUBOTA S, SASAKI Y, REDPATH P, MIGAUD ME, APTE RS, UCHIDA K, YOSHINO J, IMAI SI. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metabolism, 2016, 24(6): 795-806. DOI:10.1016/j.cmet.2016.09.013
|
|
[4] |
WANG XN, HU XJ, YANG Y, TAKATA T, SAKURAI T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Research, 2016, 1643, 1-9.
|
|
[5] | |
|
[6] | |
|
[7] |
IMAI SI, YOSHINO J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obesity and Metabolism, 2013, 15(3): 26-33.
|
|
[8] |
das A, HUANG GX, BONKOWSKI MS, LONGCHAMP A, LI C, SCHULTZ MB, KIM LJ, OSBORNE B, JOSHI S, LU YC, TREVIÑO-VILLARREAL JH, KANG MJ, HUNG TT, LEE B, WILLIAMS EO, IGARASHI M, MITCHELL JR, WU LE, TURNER N, ARANY Z, et al. Impairment of an endothelial NAD +-H 2S signaling network is a reversible cause of vascular aging. Cell, 2018, 173(1): 74-89.e20. DOI:10.1016/j.cell.2018.02.008
|
|
[9] |
CHINI CCS, TARRAGÓ MG, CHINI EN. NAD and the aging process: role in life, death and everything in between. Molecular and Cellular Endocrinology, 2017, 455: 62-74. DOI:10.1016/j.mce.2016.11.003
|
|
[10] |
王思蓉, 王言之, 李世芬, 王光路, 张静姝. β-烟酰胺单核苷酸对衰老小鼠的抗氧化作用研究. 甘肃科技, 2021, 37(20): 69-71, 90. WANG SR, WANG YZ, LI SF, WANG GL, ZHANG JS. Antioxidant effect of β-nicotinamide mononucleotide on aging mice. Gansu Science and Technology, 2021, 37(20): 69-71, 90 (in Chinese). DOI:10.3969/j.issn.1000-0952.2021.20.023
|
|
[11] |
PALMER RD, ELNASHAR MM, VACCAREZZA M. Precursor comparisons for the upregulation of nicotinamide adenine dinucleotide. Novel approaches for better aging. Aging Medicine, 2021, 4(3): 214-220. DOI:10.1002/agm2.12170
|
|
[12] |
REITEN OK, WILVANG MA, MITCHELL SJ, HU ZP, FANG EF. Preclinical and clinical evidence of NAD + precursors in health, disease, and ageing. Mechanisms of Ageing and Development, 2021, 199: 111567. DOI:10.1016/j.mad.2021.111567
|
|
[13] |
GROZIO A, MILLS KF, YOSHINO J, BRUZZONE S, SOCIALI G, TOKIZANE K, LEI HC, CUNNINGHAM R, SASAKI Y, MIGAUD ME, IMAI SI. Slc12a8 is a nicotinamide mononucleotide transporter. Nature Metabolism, 2019, 1(1): 47-57. DOI:10.1038/s42255-018-0009-4
|
|
[14] |
CANTÓ C, MENZIES KJ, AUWERX J. NAD + metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metabolism, 2015, 22(1): 31-53. DOI:10.1016/j.cmet.2015.05.023
|
|
[15] |
MOUCHIROUD L, HOUTKOOPER RH, MOULLAN N, KATSYUBA E, RYU D, CANTÓ C, MOTTIS A, JO YS, VISWANATHAN M, SCHOONJANS K, GUARENTE L, AUWERX J. The NAD +/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell, 2013, 154(2): 430-441. DOI:10.1016/j.cell.2013.06.016
|
|
[16] |
BRAIDY N, BERG J, CLEMENT J, KHORSHIDI F, POLJAK A, JAYASENA T, GRANT R, SACHDEV P. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxidants & Redox Signaling, 2019, 30(2): 251-294.
|
|
[17] |
KLIMOVA N, KRISTIAN T. Multi-targeted effect of nicotinamide mononucleotide on brain bioenergetic metabolism. Neurochemical Research, 2019, 44(10): 2280-2287. DOI:10.1007/s11064-019-02729-0
|
|
[18] |
SIMS CA, GUAN YX, MUKHERJEE S, SINGH K, BOTOLIN P, DAVILA A Jr, BAUR JA. Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI Insight, 2018, 3(17): e120182. DOI:10.1172/jci.insight.120182
|
|
[19] |
KISS T, BALASUBRAMANIAN P, VALCARCEL-ARES MN, TARANTINI S, YABLUCHANSKIY A, CSIPO T, LIPECZ A, REGLODI D, ZHANG XA, BARI F, FARKAS E, CSISZAR A, UNGVARI Z. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. GeroScience, 2019, 41(5): 619-630. DOI:10.1007/s11357-019-00074-2
|
|
[20] | |
|
[21] |
LONG AN, OWENS K, SCHLAPPAL AE, KRISTIAN T, FISHMAN PS, SCHUH RA. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer's disease-relevant murine model. BMC Neurology, 2015, 15: 19. DOI:10.1186/s12883-015-0272-x
|
|
[22] |
赵娟, 张健, 余志坚, 曹永强, 陈超, 杨贞耐. 烟酰胺单核苷酸的研究及应用进展. 食品科技, 2018, 43(4): 257-262. ZHAO J, ZHANG J, YU ZJ, CAO YQ, CHEN C, YANG ZN. Progress on research and application of nicotinamide mononucleotides. Food Science and Technology, 2018, 43(4): 257-262 (in Chinese). DOI:10.3969/j.issn.1672-979X.2018.04.005
|
|
[23] |
REVOLLO JR, KÖRNER A, MILLS KF, SATOH A, WANG T, GARTEN A, DASGUPTA B, SASAKI Y, WOLBERGER C, TOWNSEND RR, MILBRANDT J, KIESS W, IMAI SI. Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metabolism, 2007, 6(5): 363-375. DOI:10.1016/j.cmet.2007.09.003
|
|
[24] |
TSUBOTA K. The first human clinical study for NMN has started in Japan. npj Aging and Mechanisms of Disease, 2016, 2: 16021. DOI:10.1038/npjamd.2016.21
|
|
[25] |
GOMES AP, PRICE NL, LING AJY, MOSLEHI JJ, MONTGOMERY MK, RAJMAN L, WHITE JP, TEODORO JS, WRANN CD, HUBBARD BP, MERCKEN EM, PALMEIRA CM, de CABO R, ROLO AP, TURNER N, BELL EL, SINCLAIR DA. Declining NAD + induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell, 2013, 155(7): 1624-1638. DOI:10.1016/j.cell.2013.11.037
|
|
[26] |
王欢. NMN通过NAD+/Sirt3通路改善线粒体功能抑制间充质干细胞衰老的作用研究[D]. 长春: 吉林大学硕士学位论文, 2020. WANG H. NMN improves mitochondrial function and rescues cellular senescence by NAD+/Sirt3 pathway in mesenchymal stem cells[D]. Changchun: Master's Thesis of Jilin University, 2020 (in Chinese).
|
|
[27] |
SCHÖNDORF DC, IVANYUK D, BADEN P, SANCHEZ-MARTINEZ A, de CICCO S, YU C, GIUNTA I, SCHWARZ LK, di NAPOLI G, PANAGIOTAKOPOULOU V, NESTEL S, KEATINGE M, PRUSZAK J, BANDMANN O, HEIMRICH B, GASSER T, WHITWORTH AJ, DELEIDI M. The NAD + precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson's disease. Cell Reports, 2018, 23(10): 2976-2988. DOI:10.1016/j.celrep.2018.05.009
|
|
[28] |
KISS T, GILES CB, TARANTINI S, YABLUCHANSKIY A, BALASUBRAMANIAN P, GAUTAM T, CSIPO T, NYÚL-TÓTH Á, LIPECZ A, SZABO C, FARKAS E, WREN JD, CSISZAR A, UNGVARI Z. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience, 2019, 41(4): 419-439. DOI:10.1007/s11357-019-00095-x
|
|
[29] |
YAO ZW, YANG WH, GAO ZQ, JIA P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neuroscience Letters, 2017, 647: 133-140. DOI:10.1016/j.neulet.2017.03.027
|
|
[30] |
邓军, 罗统有, 刘道甫, 许俊伟, 罗明亮, 姚礼伦, 谭志聪. 烟酰胺核苷酸临床研究进展及化学制备方法. 广东化工, 2021, 48(12): 98-100, 88. DENG J, LUO TY, LIU DF, XU JW, LUO ML, YAO LL, TAN ZC. Clinical research and chemical preparation progress of nicotinamide nucleotide. Guangdong Chemical Industry, 2021, 48(12): 98-100, 88 (in Chinese). DOI:10.3969/j.issn.1007-1865.2021.12.039
|
|
[31] |
UDDIN GM, YOUNGSON NA, SINCLAIR DA, MORRIS MJ. Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Frontiers in Pharmacology, 2016, 7: 258.
|
|
[32] |
YOSHINO J, MILLS KF, YOON MJ, IMAI SI. Nicotinamide mononucleotide, a key NAD + intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metabolism, 2011, 14(4): 528-536. DOI:10.1016/j.cmet.2011.08.014
|
|
[33] |
STROMSDORFER KL, YAMAGUCHI S, YOON MJ, MOSELEY AC, FRANCZYK MP, KELLY SC, QI N, IMAI SI, YOSHINO J. NAMPT-mediated NAD + biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Reports, 2016, 16(7): 1851-1860. DOI:10.1016/j.celrep.2016.07.027
|
|
[34] |
MARTIN AS, ABRAHAM DM, HERSHBERGER KA, BHATT DP, MAO L, CUI HX, LIU J, LIU XJ, MUEHLBAUER MJ, GRIMSRUD PA, LOCASALE JW, PAYNE RM, HIRSCHEY MD. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model. JCI Insight, 2017, 2(14): e93885. DOI:10.1172/jci.insight.93885
|
|
[35] |
NORTH BJ, ROSENBERG MA, JEGANATHAN KB, HAFNER AV, MICHAN S, DAI J, BAKER DJ, CEN YN, WU LE, SAUVE AA, van DEURSEN JM, ROSENZWEIG A, SINCLAIR DA. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. The Embo Journal, 2014, 33(13): 1438-1453. DOI:10.15252/embj.201386907
|
|
[36] |
YAMAMOTO T, BYUN J, ZHAI PY, IKEDA Y, OKA S, SADOSHIMA J. Nicotinamide mononucleotide, an intermediate of NAD + synthesis, protects the heart from ischemia and reperfusion. PLoS One, 2014, 9(6): e98972. DOI:10.1371/journal.pone.0098972
|
|
[37] |
GUAN Y, WANG SR, HUANG XZ, XIE QH, XU YY, SHANG D, HAO CM. Nicotinamide mononucleotide, an NAD + precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. Journal of the American Society of Nephrology: JASN, 2017, 28(8): 2337-2352. DOI:10.1681/ASN.2016040385
|
|
[38] |
LIN JB, KUBOTA S, BAN N, YOSHIDA M, SANTEFORD A, SENE A, NAKAMURA R, ZAPATA N, KUBOTA M, TSUBOTA K, YOSHINO J, IMAI SI, APTE RS. NAMPT-mediated NAD + biosynthesis is essential for vision in mice. Cell Reports, 2016, 17(1): 69-85. DOI:10.1016/j.celrep.2016.08.073
|
|
[39] |
de PICCIOTTO NE, GANO LB, JOHNSON LC, MARTENS CR, SINDLER AL, MILLS KF, IMAI SI, SEALS DR. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell, 2016, 15(3): 522-530. DOI:10.1111/acel.12461
|
|
[40] |
PODDAR SK, SIFAT AE, HAQUE S, NAHID NA, CHOWDHURY S, MEHEDI I. Nicotinamide mononucleotide: exploration of diverse therapeutic applications of a potential molecule. Biomolecules, 2019, 9(1): 34. DOI:10.3390/biom9010034
|
|
[41] |
CATON PW, KIESWICH J, YAQOOB MM, HOLNESS MJ, SUGDEN MC. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia, 2011, 54(12): 3083-3092. DOI:10.1007/s00125-011-2288-0
|
|
[42] |
IRIE J, INAGAKI E, FUJITA M, NAKAYA H, MITSUISHI M, YAMAGUCHI S, YAMASHITA K, SHIGAKI S, ONO T, YUKIOKA H, OKANO H, NABESHIMA YI, IMAI SI, YASUI M, TSUBOTA K, ITOH H. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocrine Journal, 2020, 67(2): 153-160. DOI:10.1507/endocrj.EJ19-0313
|
|
[43] |
IGARASHI M, NAKAGAWA-NAGAHAMA Y, MIURA M, KASHIWABARA K, YAKU K, SAWADA M, SEKINE R, FUKAMIZU Y, SATO T, SAKURAI T, SATO J, INO K, KUBOTA N, NAKAGAWA T, KADOWAKI T, YAMAUCHI T. Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle function in healthy older men. npj Aging, 2022, 8: 5. DOI:10.1038/s41514-022-00084-z
|
|
[44] |
ALTAY O, ARIF M, LI XY, YANG H, AYDIN M, ALKURT G, KIM W, AKYOL D, ZHANG C, DINLER-DOGANAY G, TURKEZ H, SHOAIE S, NIELSEN J, BORÉN J, OLMUSCELIK O, DOGANAY L, UHLÉN M, MARDINOGLU A. Combined metabolic activators accelerates recovery in mild-to-moderate COVID-19. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(17): e2101222.
|
|
[45] |
任丽梅, 王晓茹, 祁永浩, 韩广欣, 韩天淼, 桂阳, 张淼, 李小兵. β-烟酰胺单核苷酸功能与合成研究进展. 生物资源, 2021, 43(2): 127-132. REN LM, WANG XR, QI YH, HAN GX, HAN TM, GUI Y, ZHANG M, LI XB. Research progress on function and synthesis of β-nicotinamide mononucleotide. Biotic Resources, 2021, 43(2): 127-132 (in Chinese).
|
|
[46] |
WALT DR, RIOS-MERCADILLO VM, AUGÉ J, WHITESIDES GM. Synthesis of nicotinamide adenine dinucleotide (NAD) from adenosine monophosphate (AMP). Journal of the American Chemical Society, 1980, 102(26): 7805-7806. DOI:10.1021/ja00546a041
|
|
[47] |
单欣淑. 烟酰胺腺嘌呤二核苷酸的生物合成研究[D]. 杭州: 浙江大学硕士学位论文, 2020. SHAN XS. Study on the biosynthesis of nicotinamide adenine dinucleotide[D]. Hangzhou: Master's Thesis of Zhejiang University, 2020 (in Chinese).
|
|
[48] |
WALT DR, FINDEIS MA, RIOS-MERCADILLO VM, AUGÉ J, WHITESIDES GM. An efficient chemical and enzymic synthesis of nicotinamide adenine dinucleotide (NAD +). Journal of the American Chemical Society, 1984, 106(1): 234-239. DOI:10.1021/ja00313a045
|
|
[49] |
LEE J, CHURCHIL H, CHOI WB, LYNCH JE, ROBERTS FE, VOLANTE RP, REIDER PJ. A chemical synthesis of nicotinamide adenine dinucleotide (NAD +). Chemical Communications, 1999(8): 729-730. DOI:10.1039/a809930h
|
|
[50] |
王波, 孙勇, 文军. 尼克酰胺腺嘌呤二核苷酸的制备方法: CN201210421216.6[P]. 2013-01-16. WANG B, SUN Y, WEN J. Preparation of nicotinamide adenine dinucleotide: CN201210421216.6[P]. 2013-01-16.
|
|
[51] |
TANIMORI S, OHTA T, KIRIHATA M. An efficient chemical synthesis of nicotinamide riboside (NAR) and analogues. Bioorganic & Medicinal Chemistry Letters, 2002, 12(8): 1135-1137.
|
|
[52] |
FRANCHETTI P, PASQUALINI M, PETRELLI R, RICCIUTELLI M, VITA P, CAPPELLACCI L. Stereoselective synthesis of nicotinamide beta-riboside and nucleoside analogs. Bioorganic & Medicinal Chemistry Letters, 2004, 14(18): 4655-4658.
|
|
[53] |
潘钦孩. 辅酶Ⅰ及其中间体化学合成的研究[D]. 杭州: 浙江大学硕士学位论文, 2013. PAN QH. Study on the chemical synthesis of coenzyme Ⅰ and its intermediate[D]. Hangzhou: Master's Thesis of Zhejiang University, 2013 (in Chinese).
|
|
[54] |
张颖, 蒋雨馨, 朱逸浩, 吴剑荣. β-烟酰胺单核苷酸合成技术研究进展. 食品科技, 2020, 45(10): 236-240. ZHANG Y, JIANG YX, ZHU YH, WU JR. Advance in synthesis of β-nicotinamide mononucleotide. Food Science and Technology, 2020, 45(10): 236-240 (in Chinese). DOI:10.13684/j.cnki.spkj.2020.10.038
|
|
[55] |
魏霞蔚, 魏于全. 制备β-烟酰胺单核苷酸或β-烟酰胺核糖的方法: CN201810835636.6[P]. 2018-12-21. WEI XW, WEI YQ. Preparation β-nicotinamide mononucleotide or β-nicotinamide ribose method: CN201810835636.6[P]. 2018-12-21.
|
|
[56] |
MIKHAILOPULO IA, PRICOTA TI, TIMOSHCHUK VA, AKHREM AA. Synthesis of glycosides of nicotinamide and nicotinamide mononucleotide. Synthesis, 1981(5): 388-389.
|
|
[57] |
ZHANG N, SAUVE AA. Synthesis of β-nicotinamide riboside using an efficient two-step methodology. Current Protocols in Nucleic Acid Chemistry, 2017, 71: 14.14.1-14.14.9.
|
|
[58] |
A·索韦, F·S·穆罕默德. 烟酰胺单核苷酸的有效合成: CN201680029859.2[P]. 2021-03-26. SAUVE A, MOHAMMED FS. Effective synthesis of nicotinamide mononucleotide: CN201680029859.2[P]. 2021-03-26 (in Chinese).
|
|
[59] | |
|
[60] | |
|
[61] |
REVOLLO JR, GRIMM AA, IMAI SI. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Current Opinion in Gastroenterology, 2007, 23(2): 164-170. DOI:10.1097/MOG.0b013e32801b3c8f
|
|
[62] |
LIU L, SU XY, QUINN WJ 3rd, HUI S, KRUKENBERG K, FREDERICK DW, REDPATH P, ZHAN L, CHELLAPPA K, WHITE E, MIGAUD M, MITCHISON TJ, BAUR JA, RABINOWITZ JD. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metabolism, 2018, 27(5): 1067-1080.e5. DOI:10.1016/j.cmet.2018.03.018
|
|
[63] |
SHOJI S, YAMAJI T, MAKINO H, ISHII J, KONDO A. Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide. Metabolic Engineering, 2021, 65: 167-177. DOI:10.1016/j.ymben.2020.11.008
|
|
[64] |
廖一波, 吴旻晖, 梁书利, 林影. 烟酰胺磷酸核糖转移酶在大肠杆菌中的表达及催化合成烟酰胺单核苷酸. 现代食品科技, 2021, 37(2): 87-93, 182. LIAO YB, WU MH, LING SL, LIN Y. Expression of nicotinamide phosphoribosyltransferase in Escherichia coli and catalytic synthesis of nicotinamide mononucleotide. Modern Food Science and Technology, 2021, 37(2): 87-93, 182 (in Chinese).
|
|
[65] |
SOMMER G, GARTEN A, PETZOLD S, BECK-SICKINGER AG, BLÜHER M, STUMVOLL M, FASSHAUER M. Visfatin/PBEF/Nampt: structure, regulation and potential function of a novel adipokine. Clinical Science (London, England: 1979), 2008, 115(1): 13-23. DOI:10.1042/CS20070226
|
|
[66] |
SUN ZJ, LEI H, ZHANG ZE. Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. Cytokine & Growth Factor Reviews, 2013, 24(5): 433-442.
|
|
[67] |
ZHU YM, XU P, HUANG X, SHUAI W, LIU L, ZHANG S, ZHAO R, HU XY, WANG G. From rate-limiting enzyme to therapeutic target: the promise of NAMPT in neurodegenerative diseases. Frontiers in Pharmacology, 2022, 13: 920113. DOI:10.3389/fphar.2022.920113
|
|
[68] |
WANG T, ZHANG XB, BHEDA P, REVOLLO JR, IMAI SI, WOLBERGER C. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nature Structural & Molecular Biology, 2006, 13(7): 661-662.
|
|
[69] |
傅荣昭, 张琦. 一种烟酰胺磷酸核糖转移酶突变体及其应用: CN201680003981.2[P]. 2021-05-25. FU RZ, ZHANG Q. A mutant of nicotinamide phosphoribosyltransferase and its application: CN201680003981.2[P]. 2021-05-25 (in Chinese).
|
|
[70] |
BURGOS ES, SCHRAMM VL. Weak coupling of ATP hydrolysis to the chemical equilibrium of human nicotinamide phosphoribosyltransferase. Biochemistry, 2008, 47(42): 11086-11096. DOI:10.1021/bi801198m
|
|
[71] |
HOVE-JENSEN B, ANDERSEN KR, KILSTRUP M, MARTINUSSEN J, SWITZER RL, WILLEMOËS M. Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance. Microbiology and Molecular Biology Reviews: MMBR, 2016, 81(1): e00040-e00016.
|
|
[72] |
SHEN Q, ZHANG SJ, XUE YZ, PENG F, CHENG DY, XUE YP, ZHENG YG. Biological synthesis of nicotinamide mononucleotide. Biotechnology Letters, 2021, 43(12): 2199-2208.
|
|
[73] |
MAHARJAN A, SINGHVI M, KIM BS. Biosynthesis of a therapeutically important nicotinamide mononucleotide through a phosphoribosyl pyrophosphate synthetase 1 and 2 engineered strain of Escherichia coli. ACS Synthetic Biology, 2021, 10(11): 3055-3065.
|
|
[74] |
傅荣昭, 张琦. 一种制备烟酰胺单核苷酸的方法: CN201680003986.5[P]. 2021-04-02. FU RZ, ZHANG Q. A method for preparing nicotinamide mononucleotide: CN201680003986.5[P]. 2021-04-02 (in Chinese).
|
|
[75] |
竺伟, 张小飞. 固定化全细胞一步酶法催化制备β-烟酰胺单核苷酸: CN201810940729.5[P]. 2018-12-07. ZHU W, ZHANG XF. Immobilized whole cell one-step enzymatic catalytic preparation β-nicotinamide mononucleotide: CN201810940729.5[P]. 2018-12-07 (in Chinese).
|
|
[76] |
PARK J, GUPTA RS. Adenosine kinase and ribokinase-the RK family of proteins. Cellular and Molecular Life Sciences, 2008, 65(18): 2875-2896.
|
|
[77] |
周浩. 用于制备烟酰胺单核苷酸的酶组合物及酶法制备烟酰胺单核苷酸的方法: CN202010058700.1[P]. 2020-05-22. ZHOU H. Enzyme composition for preparing nicotinamide mononucleotide and method for preparing nicotinamide mononucleotide by enzymatic method: CN202010058700.1[P]. 2020-05-22 (in Chinese).
|
|
[78] |
傅荣昭, 张琦. 一种制备烟酰胺单核苷酸的方法: CN201680003975.7[P]. 2021-04-27. FU RZ, ZHANG Q. A method for preparing nicotinamide mononucleotide: CN201680003975.7[P]. 2021-04-27 (in Chinese).
|
|
[79] |
傅荣昭, 张琦. 一种制备烟酰胺单核苷酸的方法: CN201680003974.2[P]. 2021-04-27. FU RZ, ZHANG Q. A method for preparing nicotinamide mononucleotide: CN201680003974.2[P]. 2021-04-27 (in Chinese).
|
|
[80] |
傅荣昭, 张琦. 一种制备烟酰胺单核苷酸的方法: CN201680003973.8[P]. 2021-05-25. FU RZ, ZHANG Q. A method for preparing nicotinamide mononucleotide: CN201680003973.8[P]. 2021-05-25 (in Chinese).
|
|
[81] |
LIU Y, YASAWONG M, YU B. Metabolic engineering of Escherichia coli for biosynthesis of β-nicotinamide mononucleotide from nicotinamide. Microbial Biotechnology, 2021, 14(6): 2581-2591.
|
|
[82] |
傅荣昭, 张琦. 一种制备烟酰胺单核苷酸的方法: CN201680003960.0[P]. 2021-07-27. FU RZ, ZHANG Q. A method for preparing nicotinamide mononucleotide: CN201680003960.0[P]. 2021-07-27 (in Chinese).
|
|
[83] |
陶军华, 付敏杰, 梁晓亮. 一种酶法制备β-烟酰胺单核苷酸的方法: CN201611245619.4[P]. 2021-07-23. TAO JH, FU MJ, LIANG XL. A method of enzymatic preparation β-nicotinamide mononucleotide: CN201611245619.4[P]. 2021-07-23 (in Chinese).
|
|
[84] |
祝俊, 李斌, 徐飞, 余允东, 刘双喜, 李二军, 张超, 邢飞, 马晶晶, 张晨晨, 许昇. 一种烟酰胺磷酸核糖转移酶突变体及其应用: CN201910723177.7[P]. 2022-09-13. ZHU J, LI B, XU F, YU YD, LIU SX, LI EJ, ZHANG C, XING F, MA JJ, ZHANG CC, XU S. A mutant of nicotinamide phosphoribosyltransferase and it's application: CN201910723177.7[P]. 2022-09-13 (in Chinese).
|
|
[85] |
肖春英. 烟酰胺核糖激酶及其应用: CN202011473646.3[P]. 2021-04-06. XIAO CY. Nicotinamide ribokinase and its application: CN202011473646.3[P]. 2021-04-06 (in Chinese).
|
|
[86] |
戴维, 周嘉莹, 余允东, 刘慧, 徐广见. 热稳定性和活性增强的烟酰胺核糖激酶突变体及其编码基因和应用: CN202011561179. X[P]. 2021-03-26. DAI W, ZHOU JY, YU YD, LIU H, XU GJ. Nicotinamide ribokinase mutant with enhanced thermal stability and activity and its coding gene and application: CN202011561179. X[P]. 2021-03-26 (in Chinese).
|
|
[87] |
刘峰, 熊绪千, 刘梦元, 刘喜元. 烟酰胺核苷激酶全酵母细胞及其生物催化合成NMN工艺: CN202110020769. X[P]. 2021-04-16. LIU F, XIONG XQ, LIU MY, LIU XY. Nicotinamide nucleoside kinase whole yeast cell and its biocatalytic process for NMN synthesis: CN202110020769. X[P]. 2021-04-16 (in Chinese).
|
|
[88] |
赵强, 赵士敏, 周晶辉, 曾红宇, 许岗. 一种基于酶法合成烟酰胺单核苷酸的方法: CN202110120111.6[P]. 2022-08-26. ZHAO Q, ZHAO SM, ZHOU JH, ZENG HY, XU G. A method for synthesis of nicotinamide mononucleotide based on enzymatic method: CN202110120111.6[P]. 2022-08-26 (in Chinese).
|
|
[89] |
范文超, 王金刚, 梁岩, 高书良, 袁圣伦, 任亮. 一种尿苷磷酸酶突变体及其应用: CN202010772689.5[P]. 2021-11-26. FAN WC, WANG JG, LIANG Y, GAO SL, YUAN SL, REN L. A uridine phosphatase mutant and its application: CN202010772689.5[P]. 2021-11-26 (in Chinese).
|
|
[90] |
ZHOU CL, FENG J, WANG J, HAO N, WANG X, CHEN KQ. Design of an in vitro multienzyme cascade system for the biosynthesis of nicotinamide mononucleotide. Catalysis Science & Technology, 2022, 12(4): 1080-1091.
|
|
[91] |
于铁妹, 林立峰, 凌瑞枚, 秦国富, 何秀秀, 谭文静, 潘俊锋, 刘建. 一种β-烟酰胺单核苷酸的酶催化合成方法: CN202110397653.8[P]. 2021-07-27. YU TM, LIN LF, LING RM, QING GF, HE XX, TAN WJ, PAN JF, LIU J. An enzyme catalyzed synthesis method of β-nicotinamide mononucleotide: CN202110397653.8[P]. 2021-07-27 (in Chinese).
|
|
[92] |
SUGIYAMA K, IIJIMA K, YOSHINO M, DOHRA H, TOKIMOTO Y, NISHIKAWA K, IDOGAKI H, YOSHIDA N. Nicotinamide mononucleotide production by fructophilic lactic acid bacteria. Scientific Reports, 2021, 11: 7662.
|
|
[93] |
赵丽青, 陈建生, 段志刚, 张海潮. 一株产烟酰胺单核苷酸的成都肠杆菌及其应用: CN202110250748.7[P]. 2021-11-05. ZHAO LQ, CHEN JS, DUAN ZG, ZHANG HC. An Enterobacter chengduensis producing nicotinamide mononucleotide and its application: CN202110250748.7[P]. 2021-11-05 (in Chinese).
|
|
[94] |
BLACK WB, ASPACIO D, BEVER D, KING E, ZHANG LY, LI H. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor. Microbial Cell Factories, 2020, 19(1): 150.
|
|
[95] |
MARINESCU GC, POPESCU RG, STOIAN G, DINISCHIOTU A. β-nicotinamide mononucleotide (NMN) production in Escherichia coli. Scientific Reports, 2018, 8: 12278.
|
|
[96] |
HUANG ZS, LI N, YU SQ, ZHANG WP, ZHANG TM, ZHOU JW. Systematic engineering of Escherichia coli for efficient production of nicotinamide mononucleotide from nicotinamide. ACS Synthetic Biology, 2022, 11(9): 2979-2988.
|
|
[97] |
BLACK WB, ZHANG LY, MAK WS, MAXEL S, CUI YT, KING E, FONG B, MARTINEZ AS, SIEGEL JB, LI H. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nature Chemical Biology, 2020, 16(1): 87-94.
|
|