生物工程学报  2023, Vol. 39 Issue (2): 516-536
http://dx.doi.org/10.13345/j.cjb.220880
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

陈宇娴, 周楚然, 黄建忠, 陶勇, 柯崇榕, 杨欣伟
CHEN Yuxian, ZHOU Churan, HUANG Jianzhong, TAO Yong, KE Chongrong, YANG Xinwei
β-烟酰胺单核苷酸的生理活性与合成研究进展
Advances in physiological activities and synthesis of β-nicotinamide mononucleotide
生物工程学报, 2023, 39(2): 516-536
Chinese Journal of Biotechnology, 2023, 39(2): 516-536
10.13345/j.cjb.220880

文章历史

Received: November 5, 2022
Accepted: December 29, 2022
Published: January 11, 2023
β-烟酰胺单核苷酸的生理活性与合成研究进展
陈宇娴1 , 周楚然1 , 黄建忠1 , 陶勇2 , 柯崇榕1 , 杨欣伟1     
1. 福建师范大学生命科学学院 工业微生物发酵技术国家地方联合工程研究中心 工业微生物教育部工程中心, 福建 福州 350108;
2. 中国科学院微生物研究所, 北京 100101
摘要:烟酰胺单核苷酸(nicotinamide mononucleotide, NMN)作为辅酶Ⅰ (即NAD+)的关键前体之一,广泛存在于多种生物中,β异构体为其活性形式。研究表明β-NMN在多种生理代谢过程中起关键作用,作为抗衰老、改善退行性疾病和代谢性疾病的潜在活性物质,β-NMN的应用价值被深度发掘,实现规模化生产迫在眉睫。生物合成法因其具有高立体结构选择性、反应条件温和、副产物少等优点,成为合成β-NMN的首选方法。本文综述了β-NMN的生理活性、化学合成法和生物合成法,其中重点介绍生物合成法中涉及到的代谢途径,旨在探索利用合成生物学优化β-NMN生产策略的潜力,为β-NMN的代谢途径研究与高效生产提供理论基础。
关键词β-烟酰胺单核苷酸    烟酰胺核糖    磷酸核糖焦磷酸    化学合成    生物合成    
Advances in physiological activities and synthesis of β-nicotinamide mononucleotide
CHEN Yuxian1 , ZHOU Churan1 , HUANG Jianzhong1 , TAO Yong2 , KE Chongrong1 , YANG Xinwei1     
1. Engineering Research Center of Industrial Microbiology, Ministry of Education, National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, Fujian, China;
2. Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
Abstract: Nicotinamide mononucleotide (NMN) is one of the key precursors of coenzyme Ⅰ (NAD+). NMN exists widely in a variety of organisms, and β isomer is its active form. Studies have shown that β-NMN plays a key role in a variety of physiological and metabolic processes. As a potential active substance in anti-aging and improving degenerative and metabolic diseases, the application value of β-NMN has been deeply explored, and it is imminent to achieve large-scale production. Biosynthesis has become the preferred method to synthesize β-NMN because of its high stereoselectivity, mild reaction conditions, and fewer by-products. This paper reviews the physiological activity, chemical synthesis as well as biosynthesis of β-NMN, highlighting the metabolic pathways involved in biosynthesis. This review aims to explore the potential of improving the production strategy of β-NMN by using synthetic biology and provide a theoretical basis for the research of metabolic pathways as well as efficient production of β-NMN.
Keywords: β-nicotinamide mononucleotide    nicotinamide riboside    5-phosphoribosyl-1-pyrophosphate    chemical synthesis    biosynthesis    

烟酰胺单核苷酸(nicotinamide mononucleotide, NMN)属于维生素B族衍生物,是一种天然存在的生物活性核苷酸[1],分子式为C11H15N2O8P,分子量为334.221 g/mol,是辅酶Ⅰ (烟酰胺腺嘌呤二核苷酸, nicotinamide adenine dinucleotide, NAD+)的关键前体之一,富含于蔬菜、真菌、肉类和虾等食物中[2],并且在毛豆、牛油果中尤为丰富[3]。NMN有α和β两种异构体,其中β异构体为NMN的活性形式(以下的β-NMN简写为NMN),结构如图 1所示。

图 1 烟酰胺单核苷酸的分子结构式 Fig. 1 Molecular structures of NMN.

NMN与NAD+在多种细胞代谢的过程中扮演着关键角色,大量研究证明,包括脑组织在内,NAD+分布于所有活细胞中,介导上千种生物催化过程,包括线粒体功能、能量代谢、细胞衰老和死亡等[4]。人体内主要通过以NMN为重要中间产物的补救合成途径补充85%的NAD+[5-8],维持随年龄而降低的NAD+水平[9]。NMN能被迅速吸收进入血液和组织中[10],胞外的NMN可通过3种方式进入细胞(图 2):①NMN通过ADP-核糖基环化酶CD73 (cyclic ADP-ribose synthases, including CD73)去磷酸化为烟酰胺核糖(nicotinamide riboside, NR)后被转运入胞内,NR在烟酰胺核糖激酶(nicotinamide riboside kinase, NRK)的作用下会重新磷酸化生成NMN[11-12];②在Na+的帮助下,通过烟酰胺单核苷酸转运蛋白(nicotinamide mononucleotide transporter, SLC12A8)将NMN直接运输到细胞中[13];③通过ADP-核糖基环化酶CD38 (cyclic ADP-ribose synthases, including CD38)转化、食物摄入与机体内消耗NAD+的酶促反应(如涉及氨肽酶,Ⅲ型蛋白赖氨酸脱乙酰酶和多聚ADP核糖聚合酶等酶促反应)皆可补充细胞内的烟酰胺(nicotinamide, NAM)[14-15],在烟酰胺磷酸核糖转移酶(nicotinamide phosphoribosyltransferase, Nampt)的作用下可直接转化为NMN[16-17]。随后NMN与三磷酸腺苷(adenosine triphosphate, ATP)结合,在烟酰胺单核苷酸腺苷转移酶(nicotinamide mononucleotide adenylyl transferase, NMNAT)的介导下结合生成NAD+[1, 5]。除了NMN补救合成途径,从色氨酸(tryptophan, Trp)开始的从头合成途径与由烟酸(nicotinic acid, NA)开始合成的Preiss-Handler途径也可补充NAD+

图 2 人体内NMN与NAD+的主要代谢途径 Fig. 2 Main metabolic pathways of NMN and NAD+ in human body. NAD+水平由3个独立的生物合成途径维持。以下为关键酶和物质:色氨酸(Trp);吲哚胺2, 3-双加氧酶(IDO);色氨酸2, 3-双加氧酶(TDO);N-甲酰基犬尿氨酸(FK);犬尿氨酸甲酰胺酶(AFMID);犬尿氨酸3-单加氧酶(KMO);3-羟基犬尿氨酸(3-HK);犬尿氨酸酶(KYNU);3-羟基邻氨基苯甲酸(3-HAA);3-羟基邻氨基苯甲酸加氧酶(HAAO);α-氨基-β-羧基粘康酸-ε-半醛(ACMS);α-氨基-β-羧基粘康酸-ε-半醛脱羧酶(ACMSD);喹啉酸(QA);喹啉酸磷酸核糖转移酶(QAPRT);烟酸(NA);烟酸磷酸核糖转移酶(NAPRT);烟酸单核苷酸(NAMN);烟酰胺单核苷酸腺苷转移酶(NMNATs);烟酸腺嘌呤二核苷酸(NAAD);NAD+合成酶(NADSYN);烟酰胺腺嘌呤二核苷酸(NAD+);多聚ADP核糖聚合酶(PARPs);烟酰胺单核苷酸转运蛋白(SLC12A8);ADP-核糖基环化酶(包括CD38、CD73、CD157);胞内烟酰胺磷酸核糖转移酶(iNAMPT);胞外烟酰胺磷酸核糖转移酶(eNAMPT);烟酰胺N-甲基转移酶(NNMT);烟酰胺单核苷酸(NMN);烟酰胺(NAM);烟酰胺核糖(NR);烟酰胺核糖激酶1-2 (NRK 1-2);电子传递链(ETC) NAD+ levels are maintained by three independent biosynthetic pathways. The following are key enzymes and substances: Tryptophan (Trp); Indoleamine 2, 3-dioxygenase (IDO); Tryptophan 2, 3-dioxygenase (TDO); N-formylkynurenine (FK); Arylformamidase (AFMID); Kynurenine 3-monooxygenase (KMO); 3-hydroxykynurenine (3-HK); Kynureninase (KYNU); 3-hydroxyanthranilic acid (3-HAA); 3-hydroxyanthranilic acid oxygenase (HAAO); α-amino-β-carboxymuconate-ε-semialdehyde (ACMS); α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD); Quinolinic acid (QA); Quinolinate phosphoribosyltransferase (QAPRT); Nicotinic acid (NA); Nicotinic acid phosphoribosyltransferase (NAPRT); Nicotinic acid mononucleotide (NAMN); Nicotinamide mononucleotide adenylyl transferases (NMNATs); Nicotinic acid adenine dinucleotide (NAAD); NAD+ synthetase (NADSYN); Nicotinamide adenine dinucleotide (NAD+); Poly (ADP-ribose) polymerases (PARPs); Nicotinamide mononucleotide transporter (SLC12A8); Cyclic ADP-ribose synthases (including CD38, CD73, CD157); Intracellular nicotinamide phosphoribosyltransferase (iNAMPT); Extracellular nicotinamide phosphoribosyltransferase (eNAMPT); Nicotinamide N-methyltransferase (NNMT); Nicotinamide mononucleotide (NMN); Nicotinamide (NAM); Nicotinamide riboside (NR); Nicotinamide riboside kinase 1-2 (NRK 1-2); Electron transport chain (ETC).
1 NMN的生理活性与安全性

通过调节生物体内的NMN与NAD+水平,可以在抗衰老[5, 18-19]、改善退行性疾病[20-21]和代谢性疾病[1, 22-23]等方面起重要作用。最近NMN以抗衰老、延长寿命的潜力为人熟知[24],Gomes等[25]发现补充NMN使小鼠体内NAD+含量增加,补充7 d就能够将22个月大的小鼠的线粒体稳态和肌肉功能等关键生化指标恢复到与6个月大的小鼠相似的水平;同时NMN能够改善或逆转与衰老相关的线粒体功能障碍[26-27];590个在老化的神经血管中出现差异表达的基因,204个在NMN作用下恢复表达水平[28]。此外,NMN对退行性疾病具有良好的治疗和修复作用,Wang等[4]发现NMN使淀粉样蛋白-β (amyloid-β, Aβ)寡聚体诱导的细胞死亡数量减少65% (剂量500 mg/kg, 腹腔内),通过改善神经元活力、改善能量代谢和减少活性氧积累,从而阻止阿尔茨海默氏症(Alzheimer’s disease, AD)的恶化;Yao等和邓军等发现NMN可抑制凋亡信号的关键因素C-Jun氨基末端激酶(C-Jun N-terminal kinase, JNK),能够显著降低Aβ寡聚体生成,逆转AD小鼠的认知障碍[29-30]。在改善代谢性疾病方面,Uddin等[31]发现,NMN可以影响肌肉、肝脏等部位的NAD+水平,改善葡萄糖耐受量、增加血浆中的胰岛素;Yoshino等[32]连续7 d和10 d分别向雌性和雄性糖尿病小鼠注射NMN (剂量500 mg/kg, 腹腔内),结果证明小鼠的胰岛素不耐受性均有显著改善,雌性小鼠改善更加明显。长时间在啮齿动物中进行的实验结果表明,在正常和病理生理条件下,进行系统性NMN给药能够有效增强各种外周组织中NAD+生物合成,包括脂肪组织[33]、心脏[34-36]、肾脏[37]、眼睛[38]和血管[39]等。以上结果为进一步研究NMN的生理活性奠定基础,并影响NMN的医疗使用和发展(图 3)。

图 3 NMN和NAD+调节的治疗性前景 Fig. 3 Prospects for therapeutic NMN and NAD+ modulation.

随着对NMN应用价值的深度发掘,NMN的安全性也受到了极大关注,越来越多NMN的相关临床试验已经获得批准(如NCT03151239、UMIN000021309、UMIN000030609、UMIN000036321和UMIN000025739等),将NMN用于治疗各种疾病[40]。Caton等[41]的研究表明,小鼠长期(12个月)口服NMN (剂量300 mg/kg),具有良好的安全性和耐受性。Irie等[42]在口服NMN第一阶段Ⅰ期临床试验表明,NMN在人类中具有良好的耐受性,不会引起脸红、胃部以及肠道不适等副作用;Igarashi等[43]的Ⅱ期临床试验表明,老年男性持续服用6周或12周NMN (剂量250 mg/d),未出现任何不良反应,血液学、肝功能、肾功能指标一切正常;Altay等的Ⅲ期临床试验结果表明,由NAD+前体和数种其他物质组成的鸡尾酒套餐,能使新冠患者的恢复速度提升40%[44];多项临床结果从侧面进一步证明了NMN是一种适合人类使用的安全药物[1]。2020年,日本厚生劳动省批准NMN用于食品生产[45]。2022年,国家药品监督管理局也陆续批准多项NMN化妆品新原料备案。NMN的临床试验结果出炉与相关政策开放,使NMN的高效制备途径引起广泛关注,实现NMN规模化生产迫在眉睫。目前,制备NMN的方法主要可以分为化学合成法及生物合成法2类。

2 NMN的化学合成法

化学合成法实现NMN规模化生产的时间较早,2010年之前,NMN大部分来源于化学合成法[45],其中主要以一磷酸腺苷(adenosine monophosphate, AMP)、四乙酰核糖、NAM等作为原料通过不同的合成步骤完成。

早在1980年,Walt等报道了由AMP生成NAD+的半化学合成方法,其中就包括了由AMP合成关键中间体NMN的步骤。首先,酸催化AMP水解后调pH,得到5-磷酸核糖(ribose 5-phosphate, R-5-P);其次,用无水氨处理无水乙二醇中的R-5-P,得到核糖胺-5-磷酸溶液(ribosamine 5-phosphate, RA-5-P);然后将RA-5-P与1-(2, 4-二硝基苯基)-3-氨基甲酰-氯化吡啶[1-(2, 4-dinitrophenyl)-3-carbamoylpyridinium sodium chloride, NDC]缩合后即可获得NMN (以R-5-P为基准计算产率约为25%)[46-47]。1984年,Walt等同样使用AMP作为原料合成NMN,使用10 mol/L的氢氧化钠(sodium hydroxide, NaOH)调至弱碱性后,在无水条件下经氨气(ammonia, NH3)处理,再与NDC反应生成NMN,虽然减少了酸化水解AMP的过程,但是最终产物含有部分α-NMN (α: β=2:3),存在手性异构体[2, 48],以上方法虽然收率较低,但为后续NMN的化学合成法提供了可借鉴的部分(图 4)。

图 4 以AMP为底物化学合成NMN Fig. 4 Chemical synthesis of NMN with AMP as substrate. 以下为关键物质:一磷酸腺苷(AMP);氯化氢(HCl);氢氧化钠(NaOH);氨气(NH3);乙二醇(C2H6O2);5-磷酸核糖(R-5-P);核糖胺-5-磷酸(RA-5-P);烟酰胺单核苷酸(NMN);1-(2, 4-二硝基苯基)-3-氨基甲酰-氯化吡啶(NDC) The following are key substances: Adenosine monophosphate (AMP); Hydrogen chloride (HCl); Sodium hydroxide (NaOH); Ammonia (NH3); Ethylene glycol (C2H6O2); Ribose 5-phosphate (R-5-P); Ribosamine 5-phosphate (RA-5-P); Nicotinamide mononucleotide (NMN); 1-(2, 4-dinitrophenyl)-3-carbamoylpyridinium sodium chloride (NDC).

此后,以四乙酰核糖为原料制备NMN的方法被研发,并且陆续经过优化(图 5)。1999年,Lee等将四乙酰核糖与溴化氢(hydrogen bromide, HBr)进行溴代反应后得到溴代乙酰核糖(α: β=1:1.5),再与NAM发生缩合反应取代溴基生成核苷,后续使用NH3脱去乙酰基,最终使用三氯氧磷/磷酸三甲酯[phosphorus oxychloride/ trimethyl phosphate, POCl3/PO(OCH3)3]进行酸化,经树脂层析分离纯化可得NMN,以液态二氧化硫(sulfur dioxide, SO2)作糖苷化溶剂时,NMN的产率达到80%。该路线的立体选择性强,能够去除较多α-NMN,纯度约为97%[49],使用NH3脱乙酰基更温和有效,提高了原子经济性;但溴代乙酰核糖不稳定,且反应所需溶剂为液态SO2,对反应仪器要求较高。

图 5 以四乙酰核糖为底物化学合成NMN Fig. 5 Chemical synthesis of NMN with 1, 2, 3, 5-tetra-O-acetyl-d-ribose as substrate. 以下为关键物质:溴化氢(HBr);二氧化硫(SO2);甲醇(CH3OH);1, 1, 1, 3, 3, 3-六甲基二硅氮烷(HMDS);三甲基氯硅烷(TMSCl);三氟甲磺酸三甲基硅酯(TMSOTf);三氯氧磷(POCl3);磷酸三甲酯[PO(OCH3)3];烟酰胺单核苷酸(NMN);烟酰胺(NAM) The following are key substances: Hydrogen bromide (HBr); Sulfur dioxide (SO2); Methanol (CH3OH); 1, 1, 1, 3, 3, 3-hexamethyldisilazane (HMDS); Chlorotrimethylsilane (TMSCl); Trimethylsilyl trifluoromethanesulfonate (TMSOTf); Phosphorus oxychloride (POCl3); Trimethyl phosphate (PO(OCH3)3); Nicotinamide mononucleotide (NMN); Nicotinamide (NAM).

在此基础上,2002年,Tanimori等以四乙酰核糖与NAM为原料,在三氟甲磺酸三甲基硅酯(trimethylsilyl trifluoromethanesulfonate, TMSOTf)的催化下缩合得到三乙酰基烟酰胺核苷三氟甲磺酸盐,用甲醇(methanol, CH3OH)代替碱脱去乙酰基后,使用活性炭进行色谱分离后重结晶得到烟酰胺核苷盐,再经POCl3/PO(OCH3)3磷酸化后可得NMN,产率达到58%。该方法避免了HBr和SO2的使用,但同时产物被消旋,最终α异构体约为13%,且2种异构体分离困难,为工业化生产带来一定困难[50-51]。2004年,Franchetti等改进TMSOTf催化缩合法,先使用硅烷化试剂[如六甲基二硅氮烷(1, 1, 1, 3, 3, 3-hexamethyldisilazane, HMDS)、三甲基氯硅烷(chlorotrimethylsilane, TMSCl)等]对NAM进行烷化保护后,蒸馏出多余的硅烷化试剂,再与四乙酰核糖进行TMSOTf催化缩合,用NH3/CH3OH进行脱保护后,经过POCl3/PO(OCH3)3磷酸化直接生成NMN,实现NMN的立体选择性合成,但烷化反应操作要求绝对无水,条件较为苛刻[52-54]。2018年,魏霞蔚等对TMSOTf催化缩合法进行再次改进,以四乙酰核糖与烟酸乙酯为原料,在TMSOTf催化下发生缩合反应后得到含有烟酸乙酯三乙酰核苷溶液;经有机碱(如甲醇钠、乙醇钠、异丙醇钠等)处理后去乙酰基得到烟酸乙酯核苷盐;经过POCl3/PO(OCH3)3磷酸化后得到5′-烟酸乙酯单核苷酸溶液;通入NH3进行氨解可得NMN粗品,该方法总收率约为64%,最终NMN纯度大于97%。中间体无须纯化,具有原料易得、易放大、收率高等优点,适用于工业化批量生产,但该方法后续仍需使用离子交换树脂进行精制纯化[55],并且TMSOTf催化剂价格昂贵,增加原料成本。

除了以上几种主要方法,按照原料保护基团的种类区分,还可以通过三苯甲酰基-β-d-核糖[56]、2, 2-二甲氧基丙烷[57]与NR[58]等为原料来制备NMN (表 1)。化学合成法存在手性异构体分离困难的问题,同时制备过程中使用了有机溶剂,存在化学残留风险,带来环境污染,不符合绿色生产的要求,因此,生物合成法制备NMN已经成为当前的研究热点[45]

表 1 使用不同化学法生产NMN的比较 Table 1 Comparison of NMN production using different chemical methods
Substrates Time Conversion (%) Steps References
AMP 1980 25 3 [46]
AMP 1984 NA 3 [48]
1, 2, 3, 5-tetra-O-acetyl-d-ribose and NAM 1999 80 4 [49]
1, 2, 3, 5-tetra-O-acetyl-d-ribose and NAM 2002 58 4 [50-51]
1, 2, 3, 5-tetra-O-acetyl-d-ribose and NAM 2004 NA 3 [52]
1, 2, 3, 5-tetra-O-acetyl-d-ribose and ethyl nicotinate 2018 NA 4 [55]
NA: Not available.
3 NMN的生物合成法

与化学合成法相比,生物合成法具有高立体结构选择性,反应条件温和、副产物更少、产品纯度更高等优点,因其不含有机溶剂残留与手性问题,且制备的NMN与机体内的构型相同,成为目前NMN绿色环保的制备方法。目前NMN的生物合成制备方法主要包括以下2种:(1) 生物催化法(即酶催化法/全细胞催化法);(2) 微生物发酵法;具体合成途径如下。

3.1 生物催化法

2016年以前,生物催化法合成NMN在研发的同时不断完成工业化,NMN原料售价可控制到1.5‒2.0万元/kg以下。2016年以后,随着NMN代谢途径的深入研究以及代谢工程、酶工程技术的飞速发展,生物催化法已经成为NMN最主要、最有前景的规模化生产方案,目前售价已经降低至千元级别[45],因此本文也主要聚焦在近年研究新进展。

根据提供核糖基与烟酰胺基的核心底物不同,目前生物催化法主要分为2种:第一种是以磷酸核糖焦磷酸(5-phosphoribosyl-1-pyrophosphate, PRPP)和NAM为核心底物,搭配关键酶Nampt合成NMN;另一种是以NR为核心底物,以NRK为关键酶,可与异源表达的多种PRPP与NR生物合成途径相结合。此外,还有其他特殊的方法,如1974年,Jeck等以二磷酸吡啶核苷酸为原料,在焦磷酸化酶的催化水解作用下生成NMN等[59]。生物催化法可高效生产NMN,在反应过程中所用催化酶常进行固定化,使其成为固定化酶(或者固定化细胞),以此达循环利用的目的,减少成本。

3.1.1 生物催化法——以PRPP和NAM为核心底物

早在1957年,Preiss等在人的红细胞提取物中合成PRPP,并且以PRPP和NAM为底物,在红细胞提取物中的酶催化下生成NMN[60],此方法虽然转化率较低,但是揭示了NMN的主要生物合成途径:1分子的PRPP与1分子的NAM在Nampt的催化作用下,生成1分子NMN和1分子焦磷酸盐(inorganic pyrophosphate, PPi)。研究证明Nampt是生物合成途径中的限速酶[61-62],而具有高酶活的Nampt更适用于NMN的工业化生产,可从不同来源中筛选出酶学性质优良的Nampt。Shoji等的研究比较了来自哺乳动物和细菌的10种Nampt在大肠杆菌中的异源表达情况,其中来自松树噬几丁质菌(Chitinophaga pinensis)的Nampt (即CP Nampt)在大肠杆菌中表达效果最佳,酶活为来源于希瓦氏菌(Shewanella oneidensis)的2.4倍[63]。廖一波等经过同源建模和底物NAM分子对接等方式评估后,选择在大肠杆菌中过表达红色稍栖热菌(Meiothermus ruber)来源的Nampt,以PRPP和NAM为底物进行酶催化反应10 min,NMN产量可达34 mg/L,生产效率约为3 mg/(L·min)[64]

除直接筛选外,高效稳定催化生产NMN的另一策略是对Nampt进行改造,而确定晶体结构可能有助于Nampt潜在突变位点的确定,以便于完成酶的理性设计与定向进化,例如:位于人类染色体7q22上的Nampt基因,包含11个外显子和10个内含子,并产生2 357 bp的cDNA,Nampt蛋白含有491个氨基酸,分子量为52 kDa[65-67],X射线晶体结构表明Nampt属于Ⅱ型磷酸核糖基转移酶的二聚体类,二聚体的界面有2个活性位点,能够结合2个NMN分子,其中的保守残基His247、Asp313等与产物NMN结合位点相邻(图 6),可能对催化活性至关重要[68]。傅荣昭等通过基因定点突变,以M. ruber DSM 1279为亲本构建系列高催化活性的Nampt突变体,对F180A、F180W等多个位点进行联合突变,突变体催化活性为野生型的1.2–6.9倍[69]。此外也有研究指出,催化过程可能受到不直接参与转化的其他因素影响,2008年,Burgos等证明ATP水解与NMN合成相关,Nampt催化反应的副产物PPi可促进ATP水解,增强底物亲和力,使Nampt催化效率提高约1 100倍[70]

图 6 Nampt酶活性的关键部位(来自PDB数据库,PDB代码:3DHD) Fig. 6 Crucial sites for Nampt enzymatic activity (from Protein Data Bank, PDB code: 3DHD). 一个单体为绿色,另一个为橙色,NMN呈绿色棒状 One monomer is green, the other is orange, and NMN is shown in green stick shape.

如上所述,PRPP是合成NMN的关键中间体,但其无法稳定存在,因此市场价格较高且来源受限[71],但是从简单的起始原料(如核糖、腺苷、木糖和葡萄糖等)合成关键底物PRPP有以下多种途径[72]

(1) 以核糖作为核心底物时,历经3步酶促反应生成NMN (图 7的A部分橙色模块):①核糖以ATP作为磷酸基团供体,在核糖激酶(ribokinase, RK)催化下生成R-5-P与副产物二磷酸腺苷(adenosine diphosphate, ADP);②R-5-P在磷酸核糖焦磷酸激酶(phosphoribosyl pyrophosphate synthetase, PRPPs)的催化下转化为PRPP,能够将ATP的PPi部分转移到R-5-P的C1-羟基上,从而产生PRPP与副产物AMP;③PRPP与NAM在Nampt的催化作用下结合生成NMN与副产物PPi。Maharjan等共表达Nampt基因与PRPPs1PRPPs2基因(来源于智人Homo sapiens)后,以1%核糖为核心底物,以0.5% NAM为共底物,同时添加1 mmol/L Mg2+和磷酸盐,全细胞催化后可得NMN产量为771.5 mg/L[73]。傅荣昭等以来源于M. ruber DSM 1279的Nampt突变体结合外源添加的PRPPs和RK纯化酶,优化NAM: ATP: 核糖=1–4:1:1–4按摩尔比投放时,转化率最高可达100%,反应8 h最高可获得8.3 g/L NMN[74]。竺伟等以R-5-P为核心底物,NAM为共底物,通过固定化含有Nampt和PRPPs的基因工程菌,通过全细胞催化合成13.3 g/L NMN,转化率为99.5%,其使用的固定化细胞可在一定程度上重复使用,降低部分生产成本[75]

图 7 使用不同底物的NMN生物合成途径 Fig. 7 Biosynthetic pathways of NMN using different substrates. 以下为关键酶和物质:葡萄糖激酶(GK);葡萄糖-6-磷酸脱氢酶(G6PD);6-磷酸葡糖酸内酯酶(PGLS);磷酸葡糖酸脱氢酶(PGD);5-磷酸核糖异构酶(RpiA);磷酸核糖焦磷酸激酶(PRPPs);烟酰胺磷酸核糖转移酶(Nampt);5-磷酸核酮糖(RU5P);5-磷酸核糖(R-5-P);磷酸核糖焦磷酸(PRPP);烟酰胺(NAM);烟酰胺单核苷酸(NMN);木糖还原酶(XR);木糖醇脱氢酶(XDH);木糖异构酶(XI);木酮糖激酶(XK);核酮糖-3-磷酸异构酶(RPE);核糖激酶(RK);AMP核苷酶(Amn);腺苷激酶(Adk);腺嘌呤磷酸核糖转移酶(APRT);三磷酸腺苷(ATP);二磷酸腺苷(ADP);一磷酸腺苷(AMP);焦磷酸盐(PPi);黄嘌呤氧化酶(XOD);次黄苷酸(IMP);次黄嘌呤磷酸核糖转移酶(HPRT);尿苷磷酸酶(UPP);嘧啶核苷磷酸化酶(PyNP);嘌呤核苷磷酸化酶(PNP);磷酸核糖变位酶(PPM);核糖-1-磷酸(R-1-P);烟酰胺核糖(NR);烟酰胺核糖激酶(NRK);烟酰胺核糖转运蛋白(PnuC);烟酸转运蛋白(NiaP);烟酸(NA);烟酸单核苷酸(NAMN);NMN合成酶(NadE);NMN氨基水解酶(PncC) The following are key enzymes and substances: Glucokinase (GK); Glucose-6-phosphate dehydrogenase (G6PD); 6-phosphogluconolactonase (PGLS); Phosphogluconate dehydrogenase (PGD); Ribose 5-phosphate isomerase A (RpiA); Phosphoribosyl pyrophosphate synthetase (PRPPs); Nicotinamide phosphoribosyl transferase (Nampt); Ribulose 5-phosphate (RU5P); Ribose 5-phosphate (R-5-P); 5-phosphoribosyl-1-pyrophosphate (PRPP); Nicotinamide (NAM); Nicotinamide mononucleotide (NMN); Xylose reductase (XR); Xylitol dehydrogenase (XDH); Xylose isomerase (XI); Xylulokinase (XK); Ribulose-phosphate 3-epimerase (RPE); ribokinase (RK); AMP nucleosidase (Amn); Adenosine kinase (Adk); Adenine phosphoribosyltransferase (APRT); Adenosine triphosphate (ATP); Adenosine diphosphate (ADP); Adenosine monophosphate (AMP); Inorganic pyrophosphate (PPi); Xanthine oxidase (XOD); Inosine monophosphate (IMP); Hypoxanthine-guanine phosphoribosyltransferase (HPRT); Uridine phosphorylase (UPP); Pyrimidine nucleoside phosphorylase (PyNP); Purine nucleoside phosphorylase (PNP); Phosphopentomutase (PPM); Ribose 1-phosphate (R-1-P); Nicotinamide riboside (NR); Nicotinamide riboside kinase (NRK); Nicotinamide riboside transporter (PnuC); Niacin transporter (NiaP); Nicotinic acid (NA); Nicotinic acid mononucleotide (NAMN); NMN synthetase (NadE); NMN aminohydrolase (PncC).

(2) 以腺苷为核心底物合成NMN,同样可分为3个步骤(图 7的B部分蓝色模块):①腺苷首先通过腺苷激酶(adenosine kinase, Adk)的催化作用消耗1分子ATP转化为AMP与副产物ADP[76];②由腺嘌呤磷酸核糖转移酶(adenine phosphoribosyltransferase, APRT)催化,通过AMP和PPi合成PRPP和腺嘌呤;③合成的PRPP与NAM在Nampt存在下转化为NMN与副产物PPi。周浩使用来自大肠杆菌(Escherichia coli)的APRT,以腺苷作为核心底物,NAM为共底物,在外源添加Adk、APRT、Nampt纯化酶的基础上,最终合成NMN浓度达19.67 g/L,最高转化率可达96%,最终收率约为65%–70%[77]。傅荣昭等以AMP作为核心底物,仅需添加APRT与Nampt突变体纯化酶,完成后2步反应即可获得NMN,当NAM: 焦磷酸或其盐: AMP= 1–4:1–2:1按摩尔比投放时,反应8 h最高得32.3 g/L的NMN粗产品溶液[78]。此外,傅荣昭等还以AMP作为核心底物,在AMP核苷酶(AMP nucleosidase, Amn)的作用下,消耗H2O合成R-5-P和腺嘌呤,再由PRPPs和Nampt共同作用生成NMN;当NAM: ATP: AMP=1–6:1:1–2按摩尔比投放时,通过分步投料方式,最终可获得NMN粗产品溶液12.9 g/L[79]。除了以AMP作为核心底物外,次黄苷酸(inosine monophosphate, IMP)也可以用作核心底物,通过次黄嘌呤磷酸核糖转移酶(hypoxanthine-guanine phosphoribosyltransferase, HPRT)产生PRPP与副产物次黄嘌呤。比如在HPRT和Nampt纯化酶的作用下,当NAM: 焦磷酸或其盐: IMP或其盐=1–3:1–2:1按摩尔比投放时,摩尔转化率可达80%–100%,其中特别加入了黄嘌呤氧化酶(xanthine oxidase, XOD),使次黄嘌呤降解,反应8 h后可获得14.6 g/L NMN粗产品溶液[80]。与以腺苷为原料相比,以AMP或IMP作为生产原料的成本偏高,在实际生产中相对较少应用。

(3) 以葡萄糖作为核心底物合成NMN (图 7的C部分绿色模块,红色箭头标注):①葡萄糖通过磷酸戊糖途径生成5-磷酸核酮糖(ribulose 5-phosphate, RU5P);②5-磷酸核糖异构酶(ribose 5-phosphate isomerase A, RpiA)催化将RU5P变构为R-5-P,随后过程和以R-5-P为原料合成NMN相同,即在PRPPs和Nampt的共同催化作用下结合生成NMN。Liu等通过代谢工程设计加强葡萄糖的代谢通量,即引入加强糖摄取E. coli内源性YgcS基因表达,敲除NMN氨基水解酶(NMN aminohydrolase, PncC)、NMN腺苷转移酶(NMN adenylyltransferase, NadR)、Amn的编码基因以增强前体PRPP和ATP的供应,筛选出来源于贝莱斯芽孢杆菌(Bacillus velezensis)的高酶活Nampt与来源于酿酒酵母(Saccharomyces cerevisiae)的腺苷激酶(adenosine kinase, Ado1),将其高表达后可加强ATP循环,以葡萄糖与NAM为核心底物,在37 ℃、pH 6.0和OD600=50条件下进行全细胞催化,NMN的最高产量为496.2 mg/L[81]。Shoji等过表达6个内源性基因(pgizwfpglgndrpiArpiB)加强了磷酸戊糖途径,在引入内源的PRPPs和CP Nampt酶的同时加强了NMN的转运,即在E. coli中异源表达并筛选了来源于新洋葱伯克霍尔德氏菌(Burkholderia cenocepacia)的烟酸转运蛋白(niacin transporter, NiaP),来源于蕈状芽孢杆菌(Bacillus mycoides)的烟酰胺核糖转运蛋白(nicotinamide riboside transporter, PnuC,可有效地将NMN从胞内转运到胞外),该工程菌能够以葡萄糖和NAM为核心底物反应8 h获得6.79 g/L NMN,以NAM计算的转化率为87%[63]

(4) 木糖同样可以作为核心底物用于NMN核糖基的建构(图 7的C部分绿色模块):首先在木糖还原酶(xylose reductase, XR)作用下还原木糖为木糖醇,随后在木糖醇脱氢酶(xylitol dehydrogenase, XDH)作用下氧化形成木酮糖,再经木酮糖激酶(xylulokinase, XK)消耗1分子ATP磷酸化形成木酮糖-5-磷酸,最后在核酮糖-3-磷酸异构酶(ribulose-phosphate 3-epimerase, RPE)的作用下将木酮糖-5-磷酸变构为RU5P,由此进入磷酸戊糖途径,进而在RpiA的变构作用下将RU5P形成R-5-P,在PRPPs和Nampt的共同催化下生成NMN。傅荣昭等根据以上途径设计并进行酶催化反应,额外加入木糖异构酶(xylose isomerase, XI)将吡喃木糖转化为呋喃形式的木酮糖以增强前体供应,以木糖和NAM作为核心底物,当NAM: ATP: 木糖=1–4:1:1–4按摩尔比投放时,酶催化反应8 h后,最高可获得7.35 g/L的NMN粗产品溶液,摩尔转化率可以达80%–100%[82]。以上2种途径虽然产量不如其他中间产物的酶催化途径,但是能够以葡萄糖、木糖等单糖作为核心底物合成NMN,进一步降低了NMN的合成成本,为NMN的工业化生产提供了新的思路。

无论是哪一种合成PRPP的途径都需要大量昂贵的磷酸盐供体——ATP,工业上通过构建ATP循环系统减少催化过程中的ATP消耗,例如:引入基于多聚磷酸激酶(polyphosphate kinase, PPK)的ATP循环系统可显著降低ATP消耗,从而实现具有成本效益的NMN工业化生产。在某些途径中,ATP消耗的过程会产生副产物PPi,通过添加焦磷酸酶(pyrophosphatase, PPase)将PPi降解为磷酸盐,能够使NMN的产量增加约50%,这可能是因为副产物的降解促进了反应过程[72]

3.1.2 生物催化法——以NR为核心底物

除了使用多种核心底物(如核糖、核苷、葡萄糖和木糖等)优化代谢网络增强PRPP的前体供应外,以具有核糖基和烟酰胺基的NR为直接底物进行催化反应,能够避免使用价格较高且来源受限的PRPP,核心途径为:1分子NR与1分子ATP结合,在NRK的催化作用下磷酸化生成1分子NMN和1分子副产物ADP。2016年,陶军华等以NR为直接底物、以ATP为共底物,在S. cerevisiae来源的NRK的催化作用下生成NMN,转化率达90%以上;经离子交换树脂分离、冻干等后处理纯化后得到的NMN纯度大于95%[83]。2019年,祝俊等通过易错PCR、DNA重排、半理性设计及三维结构模拟等定向进化技术获得的NRK突变体(亲本来源于马克思克鲁维酵母Kluyveromyces marxianus),分别对D45、D58、R161、Y164四个位点进行联合突变,酶活提高1.94–6.39倍;以10 g/L的NR为底物,配合ATP辅因子循环系统进行20 h催化反应合成NMN,转化率大于90%[45, 84]

除了对高酶活的NRK进行突变筛选外,NRK还存在热稳定性普遍较差的问题,提高NRK热稳定性有利于在反应前去除杂酶减少副反应,无需经过柱纯化。肖春英筛选到来源于太瑞斯梭孢壳霉(Thermothielavioides terrestris NRRL 8126,以前称为Thielavia terrestris)的NRK,其最适反应温度为70 ℃,利用65 ℃热处理15 min后的NRK粗酶液,以NR为核心底物,ATP为共底物,在40 ℃、pH 5.0–6.0条件下反应4 h,NMN的转化率可达93%[85]。戴维等针对H. sapiens来源的NRK,通过大分子建模技术,利用定点突变降低蛋白整体结构的自由能,从15个可能与提高蛋白稳定性有关的位点中筛选出突变体NRK15,配合E. coli来源的PPK2实现ATP循环,以NR等为底物,在42 ℃条件下催化3 h后,NMN的底物转化率 > 99%[86]。刘峰等将S. cerevisiae来源的絮凝素锚定蛋白flo1和NRK蛋白串联表达,使NRK高效展示于酿酒酵母细胞壁表面,利用免疫荧光技术筛选到酶活和热稳定性均较高的NRK,该酶以NR等为底物,在40 ℃反应4 h可生成16.44 g/L NMN,转化率达到98.3%[87]。目前市售的NR普遍采用化学法合成,存在化学残留风险,且价格昂贵;通过深入研究NR为核心中间产物的代谢途径后发现其同样能够使用通过多种途径合成,具体代谢途径如下。

(1) 以核糖为核心底物时,与PRPP的合成途径相似,历经4步酶促反应生产NMN (即图 7的a部分橙色虚线框模块):①核糖以ATP作为磷酸基团供体,在RK催化下生成R-5-P与副产物ADP;②R-5-P在磷酸核糖变位酶(phosphopentomutase, PPM)的作用下生成核糖-1-磷酸(ribose 1-phosphate, R-1-P);③R-1-P在NRK的解磷酸作用下合成NR;④NR消耗1分子ATP在NRK的磷酸化作用下合成NMN与ADP。2022年,赵强等首次揭示了NRK的双功能,即对R-1-P具有解磷酸作用和对NR具有磷酸化作用,在反应中加入来源于S. cerevisiae的RK固定化酶、来源于水生栖热菌(Thermus aquaticus)的PPM固定化酶和来源于H. sapiens的NRK固定化酶,以核糖、NAM、ATP为底物,在25 ℃反应4 h可得到30.73 g/L的NMN,底物转化率为92%[88]

(2) 以核苷为核心底物时,可通过3步酶促反应合成NMN (即图 7的b部分蓝色虚线框模块):①核苷与磷酸盐在嘌呤核苷磷酸化酶(purine nucleoside phosphorylase, PNP)或嘧啶核苷磷酸化酶(pyrimidine nucleoside phosphorylase, PyNP)的作用下,脱去相应的嘌呤或嘧啶生成R-1-P;②R-1-P在尿苷磷酸酶(uridine phosphorylase, UPP)或PNP的催化下,与NAM生成关键中间产物NR;③最后NR在NRK的作用下消耗1分子ATP,生成1分子NMN与1分子ADP。2020年,范文超等以鸟苷等为底物,在PNP和UPP突变体(亲本来源于E. coli)和来源于S. cerevisiae S288C的NRK作用下一锅法催化合成NMN,最终浓度可达768.7 mg/L[89]。Zhou等设计了NR磷酸化途径生成NMN,能够以尿苷等为底物,增强NR的前体供应,通过筛选与系统优化后PyNP、PNP、NRK、PPK2四酶级联催化系统实现3 g/L的NMN产量[90]。与其相似的还有于铁妹等[91],以腺苷等为核心底物,在来源于牛(Bos taurus)的PNP作用下合成R-1-P,而后在来源于流感嗜血杆菌(Haemophilus influenzae ATCC 51907)的NRK催化下生成NMN,并且其加入来源于铜绿假单胞菌(Pseudomonas aeruginosa ATCC 15692)的PPK后可实现ATP循环降低工艺成本,经过条件优化于1 L转化罐38 ℃反应15 h,最高可生成75.15 g/L的NMN,底物转化率为90%。

以上生物催化法生产NMN的方案,主要是通过葡萄糖、木糖、核糖以及各种核苷代谢途径中的重要中间产物为核心底物,搭配NAM为共底物提供核糖基与烟酰胺基,增强PRPP、NR的前体供应,共同催化NMN高效合成。并且通过对酶的稳定性、催化活性、辅因子循环体系以及多酶催化系统的全方位优化,进一步提升了NMN生物合成效率。

3.2 微生物发酵法

除了生物催化法合成NMN在近年备受关注,微生物发酵法生产NMN也同样取得了新的研究进展,其核心为高产菌株的选择。首先是通过传统的菌株筛选方法(图 7的C部分绿色模块,红色箭头标注):Sugiyama等以NR营养缺陷型酵母为筛选工具,从174株兼性厌氧乳酸菌中筛选获得3株具有生产活性的菌株[均为果糖芽胞杆菌属(Fructobacillus)],最高能够在YPD培养基(主要成分之一为葡萄糖)中产生1.5 mg/L的NR和2.1 mg/L NMN[92]。赵丽青等以NAM为底物利用土壤中筛选鉴定出的成都肠杆菌(Enterobacter chengduensis 2021T4.7)发酵生产NMN,15 min可达22.6 mg/L的NMN产量[93]

除了传统的菌株筛选方法外,可通过对工程菌进行酶工程、代谢工程等方式的改造构建高产菌株。Black等发现,细胞内NMN水平低可归因于PncC对NMN的降解。因此在ΔpncC大肠杆菌中过表达来源于土拉热弗朗西斯菌(Francisella Tularensis)的NMN合成酶(NMN synthetase, NadE)和来源于青枯雷尔氏菌(Ralstonia solanacearum)的烟酰胺磷酸核糖转移酶NadV (即前文所述Nampt),以1 mmol/L NA为底物,最高可将NMN产量提到501 mg/L,达到了野生型的130倍(即图 7的Ⅰ部分绿色实线框模块)[94]。除敲除降解途径外,也需解除负反馈抑制同时加强前体供应。2018年,Marinescu等以NAM和乳糖为底物,在大肠杆菌中进行重组双顺反子表达,将来自杜克雷嗜血杆菌(Haemophilus ducreyi)的Nampt和来自解淀粉芽孢杆菌(Bacillus amyloliquefaciens)的PRPPs (具有L135I突变解除负反馈抑制)转化到大肠杆菌BL21(DE3) pLysS中,最终发酵12 h获得NMN的产量达15.42 mg/L (或17.26 mg/g总蛋白质) (即图 7的Ⅱ部分橙色实线框模块)[95]

与上述全细胞催化葡萄糖生产NMN的代谢途径相似(图 7的C部分绿色模块,红色箭头标注),2022年,Huang等以葡萄糖和NAM为底物发酵合成NMN,通过对大肠杆菌进行系统性修饰后,异源表达并筛选Nampt [来源于弧菌噬菌体Vibrio bacteriophage KVP40 (VpNadV)]同时共表达解除负反馈抑制的PRPPs基因BaPRSL135I (来源于B. amyloliquefaciens),此外引入来源于B. mycoides的PnuC与来源于B. cenocepacia的NiaP,敲除NMN降解途径中NadR、PncC、UDP糖水解酶(UDP-sugar hydrolase, UshA)和PRPP调控因子(PRPP regulatory factor, purR gene)的编码基因,使其更有利于NMN的生物合成和积累。最后通过优化后的分批补料工艺,在5 L生物反应器水平上,使NMN的滴度达到16.2 g/L,NAM转化率为97.0%,实现目前发酵法最高的NMN滴度[96],不同生物合成法的对比具体见表 2

表 2 使用不同生物合成法生产NMN的比较 Table 2 Comparison of NMN production using different biosynthesis methods
Substrates Strategies Time NMN production (g/L) References
Biological catalysis
  PRPP, NAM Nampt 1957 NA [60]
  PRPP, NAM Overexpression Nampt with mutation 2018 NA [69]
  PRPP, NAM Overexpression Nampt (from M. ruber) 2021 0.034 [64]
  NAM, ribose, phosphate Overexpression Nampt (from H. sapiens), PRPPs1 and PRPPs2 (from H. sapiens) 2021 0.772 [73]
  NAM, ribose, ATP Overexpression Nampt (from M. ruber DSM 1279) with mutation, PRPPs, RK 2016 8.322(conversion=80%‒100%) [74]
  NAM, ATP, R-5-P Overexpression Nampt, PRPPs 2018 13.300(conversion=99.5%) [75]
  NAM, ATP, adenosine Overexpression Nampt, APRT (from E. coli), Adk 2020 19.670(conversion=96%) [77]
  NAM, PPi, AMP Overexpression Nampt with mutation, APRT 2016 32.252(conversion=80%‒100%) [78]
  NAM, ATP, AMP Overexpression Nampt, PRPPs, Amn 2016 12.868(conversion=80%‒100%) [79]
  NAM, PPi, IMP Overexpression Nampt, HPRT, XOD 2016 14.639(conversion=80%‒100%) [80]
  NAM, glucose Overexpression Nampt (from B. velezensis), Ado1 (from S. cerevisiae), PRPPs, G6PD, PGLS, PGD, RpiA, YgcS, deletion of pncC, nadR and amn 2021 0.496 [81]
  NAM, glucose Overexpression Nampt (from C. pinensis), NiaP (from B. cenocepacia), PnuC (from B. mycoides) and PRPPs, G6PD, PGLS, PGD, RpiA, GPI (from E. coli) 2021 6.790(conversion=87%) [63]
  NAM, ATP, d-xylose Overexpression Nampt, PRPPs, XR, XDH, XK, XI, PRE, RpiA 2016 7.353(conversion=80%‒100%) [82]
  NR, ATP Overexpression NRK (from S. cerevisiae) 2016 (conversion > 90%) [83]
  NR, ATP Overexpression NRK with mutation (from K. marxianus), PPK 2019 (conversion > 90%) [84]
  NR, ATP Overexpression NRK (from T. terrestris NRRL 8126) 2020 (conversion=93%) [85]
  NR, ATP Overexpression NRK (from H. sapiens), PPK2 (from E. coli) 2020 (conversion > 99%) [86]
  NR, ATP Overexpression NRK (from S. cerevisiae) and flo1 (from S. cerevisiae) 2021 16.444(conversion=98.3%) [87]
  Ribose, NAM, ATP Overexpression PPM (from T. aquaticus), RK (from S. cerevisiae), NRK (from H. sapiens) 2022 30.730(conversion=92%) [88]
  Guanosine, NAM, ATP, phosphate Overexpression PNP, UPP (from E. coli K-12, MG1655) with mutation, NRK (from S. cerevisiae S288C) 2020 0.769 [89]
  Uridine or AMP Overexpression PyNP, PNP, NRK, PPK2 (or Amn, PRPPs, Nampt) 2022 3.000 [90]
  Adenosine, NAM, ATP Overexpression PNP (from B. taurus), NRK (from H. influenzae ATCC 51907), PPK (from P. aeruginosa ATCC 15692) 2021 75.150(conversion=90%) [91]
Fermentation
  Glucose Fructobacillus 2021 0.002 [92]
  NAM E. chengduensis 2021T4.7 2021 0.023 [93]
  NA Overexpression NadE (from F. Tularensis), NadV (from R. solanacearum) and deletion of pncC 2020 0.501 [94, 97]
  NAM, lactose Overexpression Nampt (from H. ducreyi), PRPPs (from B. amyloliquefaciens with L135I mutation) 2018 0.015 [95]
  NAM, glucose Overexpression Nampt (from Vibrio bacteriophage KVP40), PRPPs (from B. amyloliquefaciens with L135I mutation), NiaP (from B. cenocepacia), PnuC (from B. mycoides), deletion of pncC, nadR, purR and ushA 2022 16.200(conversion=97%) [96]
NA: Not available.
4 结论与展望

近年来的广泛研究和关注,使NMN生理活性研究的空白领域逐渐被填补,同时生物合成所涉及的关键酶基因和代谢途径被阐明,为构建高效稳定的微生物细胞工厂奠定了基础。目前,NMN可以通过不同的途径从相对便宜和简单的起始原料转化而来,但其转化率与产率仍有提高的空间。在未来,利用生物技术、分子生物学和合成生物学相结合的方式,结合代谢工程设计,通过进一步增强核心酶活性与稳定性,引入NAM合成模块,优化异源生物合成途径,优化ATP循环模块,优化发酵生产及培养条件,完善下游纯化工艺等方式,进一步构建经济更强,遗传稳定的微生物细胞工厂,从根本上改变NMN的生产现状。

参考文献
[1]
HONG WQ, MO F, ZHANG ZQ, HUANG MY, WEI XW. Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Frontiers in Cell and Developmental Biology, 2020, 8: 246. DOI:10.3389/fcell.2020.00246
[2]
史海波, 赵海, 周春松, 王泉明. β-烟酰胺单核苷酸制备研究进展. 精细化工中间体, 2020, 50(4): 1-5.
SHI HB, ZHAO H, ZHOU CS, WANG QM. Progress in synthsis of β-nicotinamide mononucleotide. Fine Chemical Intermediates, 2020, 50(4): 1-5 (in Chinese). DOI:10.19342/j.cnki.issn.1009-9212.2020.04.001
[3]
MILLS KF, YOSHIDA S, STEIN LR, GROZIO A, KUBOTA S, SASAKI Y, REDPATH P, MIGAUD ME, APTE RS, UCHIDA K, YOSHINO J, IMAI SI. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metabolism, 2016, 24(6): 795-806. DOI:10.1016/j.cmet.2016.09.013
[4]
WANG XN, HU XJ, YANG Y, TAKATA T, SAKURAI T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Research, 2016, 1643, 1-9.
[5]
VERDIN E. NAD+ in aging, metabolism, and neurodegeneration. Science, 2015, 350(6265): 1208-1213. DOI:10.1126/science.aac4854
[6]
李旺, 郭文彬, 王晓季. 烟酰胺单核苷酸(NMN)的活性与化学制备的研究进展. 江西科技师范大学学报, 2020(6): 112-115.
LI W, GUO WB, WANG XJ. Progress of the activity and synthesis of nicotinamide mononucleotide (NMN). Journal of Jiangxi Science & Technology Normal University, 2020(6): 112-115 (in Chinese).
[7]
IMAI SI, YOSHINO J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obesity and Metabolism, 2013, 15(3): 26-33.
[8]
das A, HUANG GX, BONKOWSKI MS, LONGCHAMP A, LI C, SCHULTZ MB, KIM LJ, OSBORNE B, JOSHI S, LU YC, TREVIÑO-VILLARREAL JH, KANG MJ, HUNG TT, LEE B, WILLIAMS EO, IGARASHI M, MITCHELL JR, WU LE, TURNER N, ARANY Z, et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell, 2018, 173(1): 74-89.e20. DOI:10.1016/j.cell.2018.02.008
[9]
CHINI CCS, TARRAGÓ MG, CHINI EN. NAD and the aging process: role in life, death and everything in between. Molecular and Cellular Endocrinology, 2017, 455: 62-74. DOI:10.1016/j.mce.2016.11.003
[10]
王思蓉, 王言之, 李世芬, 王光路, 张静姝. β-烟酰胺单核苷酸对衰老小鼠的抗氧化作用研究. 甘肃科技, 2021, 37(20): 69-71, 90.
WANG SR, WANG YZ, LI SF, WANG GL, ZHANG JS. Antioxidant effect of β-nicotinamide mononucleotide on aging mice. Gansu Science and Technology, 2021, 37(20): 69-71, 90 (in Chinese). DOI:10.3969/j.issn.1000-0952.2021.20.023
[11]
PALMER RD, ELNASHAR MM, VACCAREZZA M. Precursor comparisons for the upregulation of nicotinamide adenine dinucleotide. Novel approaches for better aging. Aging Medicine, 2021, 4(3): 214-220. DOI:10.1002/agm2.12170
[12]
REITEN OK, WILVANG MA, MITCHELL SJ, HU ZP, FANG EF. Preclinical and clinical evidence of NAD+ precursors in health, disease, and ageing. Mechanisms of Ageing and Development, 2021, 199: 111567. DOI:10.1016/j.mad.2021.111567
[13]
GROZIO A, MILLS KF, YOSHINO J, BRUZZONE S, SOCIALI G, TOKIZANE K, LEI HC, CUNNINGHAM R, SASAKI Y, MIGAUD ME, IMAI SI. Slc12a8 is a nicotinamide mononucleotide transporter. Nature Metabolism, 2019, 1(1): 47-57. DOI:10.1038/s42255-018-0009-4
[14]
CANTÓ C, MENZIES KJ, AUWERX J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metabolism, 2015, 22(1): 31-53. DOI:10.1016/j.cmet.2015.05.023
[15]
MOUCHIROUD L, HOUTKOOPER RH, MOULLAN N, KATSYUBA E, RYU D, CANTÓ C, MOTTIS A, JO YS, VISWANATHAN M, SCHOONJANS K, GUARENTE L, AUWERX J. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell, 2013, 154(2): 430-441. DOI:10.1016/j.cell.2013.06.016
[16]
BRAIDY N, BERG J, CLEMENT J, KHORSHIDI F, POLJAK A, JAYASENA T, GRANT R, SACHDEV P. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxidants & Redox Signaling, 2019, 30(2): 251-294.
[17]
KLIMOVA N, KRISTIAN T. Multi-targeted effect of nicotinamide mononucleotide on brain bioenergetic metabolism. Neurochemical Research, 2019, 44(10): 2280-2287. DOI:10.1007/s11064-019-02729-0
[18]
SIMS CA, GUAN YX, MUKHERJEE S, SINGH K, BOTOLIN P, DAVILA A Jr, BAUR JA. Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI Insight, 2018, 3(17): e120182. DOI:10.1172/jci.insight.120182
[19]
KISS T, BALASUBRAMANIAN P, VALCARCEL-ARES MN, TARANTINI S, YABLUCHANSKIY A, CSIPO T, LIPECZ A, REGLODI D, ZHANG XA, BARI F, FARKAS E, CSISZAR A, UNGVARI Z. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. GeroScience, 2019, 41(5): 619-630. DOI:10.1007/s11357-019-00074-2
[20]
LIN JM, PAN YC, WANG JY. NAD+ and its precursors in human longevity. Quantitative Biology, 2015, 3(4): 193-198. DOI:10.1007/s40484-015-0055-9
[21]
LONG AN, OWENS K, SCHLAPPAL AE, KRISTIAN T, FISHMAN PS, SCHUH RA. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer's disease-relevant murine model. BMC Neurology, 2015, 15: 19. DOI:10.1186/s12883-015-0272-x
[22]
赵娟, 张健, 余志坚, 曹永强, 陈超, 杨贞耐. 烟酰胺单核苷酸的研究及应用进展. 食品科技, 2018, 43(4): 257-262.
ZHAO J, ZHANG J, YU ZJ, CAO YQ, CHEN C, YANG ZN. Progress on research and application of nicotinamide mononucleotides. Food Science and Technology, 2018, 43(4): 257-262 (in Chinese). DOI:10.3969/j.issn.1672-979X.2018.04.005
[23]
REVOLLO JR, KÖRNER A, MILLS KF, SATOH A, WANG T, GARTEN A, DASGUPTA B, SASAKI Y, WOLBERGER C, TOWNSEND RR, MILBRANDT J, KIESS W, IMAI SI. Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metabolism, 2007, 6(5): 363-375. DOI:10.1016/j.cmet.2007.09.003
[24]
TSUBOTA K. The first human clinical study for NMN has started in Japan. npj Aging and Mechanisms of Disease, 2016, 2: 16021. DOI:10.1038/npjamd.2016.21
[25]
GOMES AP, PRICE NL, LING AJY, MOSLEHI JJ, MONTGOMERY MK, RAJMAN L, WHITE JP, TEODORO JS, WRANN CD, HUBBARD BP, MERCKEN EM, PALMEIRA CM, de CABO R, ROLO AP, TURNER N, BELL EL, SINCLAIR DA. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell, 2013, 155(7): 1624-1638. DOI:10.1016/j.cell.2013.11.037
[26]
王欢. NMN通过NAD+/Sirt3通路改善线粒体功能抑制间充质干细胞衰老的作用研究[D]. 长春: 吉林大学硕士学位论文, 2020.
WANG H. NMN improves mitochondrial function and rescues cellular senescence by NAD+/Sirt3 pathway in mesenchymal stem cells[D]. Changchun: Master's Thesis of Jilin University, 2020 (in Chinese).
[27]
SCHÖNDORF DC, IVANYUK D, BADEN P, SANCHEZ-MARTINEZ A, de CICCO S, YU C, GIUNTA I, SCHWARZ LK, di NAPOLI G, PANAGIOTAKOPOULOU V, NESTEL S, KEATINGE M, PRUSZAK J, BANDMANN O, HEIMRICH B, GASSER T, WHITWORTH AJ, DELEIDI M. The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson's disease. Cell Reports, 2018, 23(10): 2976-2988. DOI:10.1016/j.celrep.2018.05.009
[28]
KISS T, GILES CB, TARANTINI S, YABLUCHANSKIY A, BALASUBRAMANIAN P, GAUTAM T, CSIPO T, NYÚL-TÓTH Á, LIPECZ A, SZABO C, FARKAS E, WREN JD, CSISZAR A, UNGVARI Z. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience, 2019, 41(4): 419-439. DOI:10.1007/s11357-019-00095-x
[29]
YAO ZW, YANG WH, GAO ZQ, JIA P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neuroscience Letters, 2017, 647: 133-140. DOI:10.1016/j.neulet.2017.03.027
[30]
邓军, 罗统有, 刘道甫, 许俊伟, 罗明亮, 姚礼伦, 谭志聪. 烟酰胺核苷酸临床研究进展及化学制备方法. 广东化工, 2021, 48(12): 98-100, 88.
DENG J, LUO TY, LIU DF, XU JW, LUO ML, YAO LL, TAN ZC. Clinical research and chemical preparation progress of nicotinamide nucleotide. Guangdong Chemical Industry, 2021, 48(12): 98-100, 88 (in Chinese). DOI:10.3969/j.issn.1007-1865.2021.12.039
[31]
UDDIN GM, YOUNGSON NA, SINCLAIR DA, MORRIS MJ. Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Frontiers in Pharmacology, 2016, 7: 258.
[32]
YOSHINO J, MILLS KF, YOON MJ, IMAI SI. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metabolism, 2011, 14(4): 528-536. DOI:10.1016/j.cmet.2011.08.014
[33]
STROMSDORFER KL, YAMAGUCHI S, YOON MJ, MOSELEY AC, FRANCZYK MP, KELLY SC, QI N, IMAI SI, YOSHINO J. NAMPT-mediated NAD+ biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Reports, 2016, 16(7): 1851-1860. DOI:10.1016/j.celrep.2016.07.027
[34]
MARTIN AS, ABRAHAM DM, HERSHBERGER KA, BHATT DP, MAO L, CUI HX, LIU J, LIU XJ, MUEHLBAUER MJ, GRIMSRUD PA, LOCASALE JW, PAYNE RM, HIRSCHEY MD. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model. JCI Insight, 2017, 2(14): e93885. DOI:10.1172/jci.insight.93885
[35]
NORTH BJ, ROSENBERG MA, JEGANATHAN KB, HAFNER AV, MICHAN S, DAI J, BAKER DJ, CEN YN, WU LE, SAUVE AA, van DEURSEN JM, ROSENZWEIG A, SINCLAIR DA. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. The Embo Journal, 2014, 33(13): 1438-1453. DOI:10.15252/embj.201386907
[36]
YAMAMOTO T, BYUN J, ZHAI PY, IKEDA Y, OKA S, SADOSHIMA J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One, 2014, 9(6): e98972. DOI:10.1371/journal.pone.0098972
[37]
GUAN Y, WANG SR, HUANG XZ, XIE QH, XU YY, SHANG D, HAO CM. Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. Journal of the American Society of Nephrology: JASN, 2017, 28(8): 2337-2352. DOI:10.1681/ASN.2016040385
[38]
LIN JB, KUBOTA S, BAN N, YOSHIDA M, SANTEFORD A, SENE A, NAKAMURA R, ZAPATA N, KUBOTA M, TSUBOTA K, YOSHINO J, IMAI SI, APTE RS. NAMPT-mediated NAD+ biosynthesis is essential for vision in mice. Cell Reports, 2016, 17(1): 69-85. DOI:10.1016/j.celrep.2016.08.073
[39]
de PICCIOTTO NE, GANO LB, JOHNSON LC, MARTENS CR, SINDLER AL, MILLS KF, IMAI SI, SEALS DR. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell, 2016, 15(3): 522-530. DOI:10.1111/acel.12461
[40]
PODDAR SK, SIFAT AE, HAQUE S, NAHID NA, CHOWDHURY S, MEHEDI I. Nicotinamide mononucleotide: exploration of diverse therapeutic applications of a potential molecule. Biomolecules, 2019, 9(1): 34. DOI:10.3390/biom9010034
[41]
CATON PW, KIESWICH J, YAQOOB MM, HOLNESS MJ, SUGDEN MC. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia, 2011, 54(12): 3083-3092. DOI:10.1007/s00125-011-2288-0
[42]
IRIE J, INAGAKI E, FUJITA M, NAKAYA H, MITSUISHI M, YAMAGUCHI S, YAMASHITA K, SHIGAKI S, ONO T, YUKIOKA H, OKANO H, NABESHIMA YI, IMAI SI, YASUI M, TSUBOTA K, ITOH H. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocrine Journal, 2020, 67(2): 153-160. DOI:10.1507/endocrj.EJ19-0313
[43]
IGARASHI M, NAKAGAWA-NAGAHAMA Y, MIURA M, KASHIWABARA K, YAKU K, SAWADA M, SEKINE R, FUKAMIZU Y, SATO T, SAKURAI T, SATO J, INO K, KUBOTA N, NAKAGAWA T, KADOWAKI T, YAMAUCHI T. Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle function in healthy older men. npj Aging, 2022, 8: 5. DOI:10.1038/s41514-022-00084-z
[44]
ALTAY O, ARIF M, LI XY, YANG H, AYDIN M, ALKURT G, KIM W, AKYOL D, ZHANG C, DINLER-DOGANAY G, TURKEZ H, SHOAIE S, NIELSEN J, BORÉN J, OLMUSCELIK O, DOGANAY L, UHLÉN M, MARDINOGLU A. Combined metabolic activators accelerates recovery in mild-to-moderate COVID-19. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(17): e2101222.
[45]
任丽梅, 王晓茹, 祁永浩, 韩广欣, 韩天淼, 桂阳, 张淼, 李小兵. β-烟酰胺单核苷酸功能与合成研究进展. 生物资源, 2021, 43(2): 127-132.
REN LM, WANG XR, QI YH, HAN GX, HAN TM, GUI Y, ZHANG M, LI XB. Research progress on function and synthesis of β-nicotinamide mononucleotide. Biotic Resources, 2021, 43(2): 127-132 (in Chinese).
[46]
WALT DR, RIOS-MERCADILLO VM, AUGÉ J, WHITESIDES GM. Synthesis of nicotinamide adenine dinucleotide (NAD) from adenosine monophosphate (AMP). Journal of the American Chemical Society, 1980, 102(26): 7805-7806. DOI:10.1021/ja00546a041
[47]
单欣淑. 烟酰胺腺嘌呤二核苷酸的生物合成研究[D]. 杭州: 浙江大学硕士学位论文, 2020.
SHAN XS. Study on the biosynthesis of nicotinamide adenine dinucleotide[D]. Hangzhou: Master's Thesis of Zhejiang University, 2020 (in Chinese).
[48]
WALT DR, FINDEIS MA, RIOS-MERCADILLO VM, AUGÉ J, WHITESIDES GM. An efficient chemical and enzymic synthesis of nicotinamide adenine dinucleotide (NAD+). Journal of the American Chemical Society, 1984, 106(1): 234-239. DOI:10.1021/ja00313a045
[49]
LEE J, CHURCHIL H, CHOI WB, LYNCH JE, ROBERTS FE, VOLANTE RP, REIDER PJ. A chemical synthesis of nicotinamide adenine dinucleotide (NAD+). Chemical Communications, 1999(8): 729-730. DOI:10.1039/a809930h
[50]
王波, 孙勇, 文军. 尼克酰胺腺嘌呤二核苷酸的制备方法: CN201210421216.6[P]. 2013-01-16.
WANG B, SUN Y, WEN J. Preparation of nicotinamide adenine dinucleotide: CN201210421216.6[P]. 2013-01-16.
[51]
TANIMORI S, OHTA T, KIRIHATA M. An efficient chemical synthesis of nicotinamide riboside (NAR) and analogues. Bioorganic & Medicinal Chemistry Letters, 2002, 12(8): 1135-1137.
[52]
FRANCHETTI P, PASQUALINI M, PETRELLI R, RICCIUTELLI M, VITA P, CAPPELLACCI L. Stereoselective synthesis of nicotinamide beta-riboside and nucleoside analogs. Bioorganic & Medicinal Chemistry Letters, 2004, 14(18): 4655-4658.
[53]
潘钦孩. 辅酶Ⅰ及其中间体化学合成的研究[D]. 杭州: 浙江大学硕士学位论文, 2013.
PAN QH. Study on the chemical synthesis of coenzyme Ⅰ and its intermediate[D]. Hangzhou: Master's Thesis of Zhejiang University, 2013 (in Chinese).
[54]
张颖, 蒋雨馨, 朱逸浩, 吴剑荣. β-烟酰胺单核苷酸合成技术研究进展. 食品科技, 2020, 45(10): 236-240.
ZHANG Y, JIANG YX, ZHU YH, WU JR. Advance in synthesis of β-nicotinamide mononucleotide. Food Science and Technology, 2020, 45(10): 236-240 (in Chinese). DOI:10.13684/j.cnki.spkj.2020.10.038
[55]
魏霞蔚, 魏于全. 制备β-烟酰胺单核苷酸或β-烟酰胺核糖的方法: CN201810835636.6[P]. 2018-12-21.
WEI XW, WEI YQ. Preparation β-nicotinamide mononucleotide or β-nicotinamide ribose method: CN201810835636.6[P]. 2018-12-21.
[56]
MIKHAILOPULO IA, PRICOTA TI, TIMOSHCHUK VA, AKHREM AA. Synthesis of glycosides of nicotinamide and nicotinamide mononucleotide. Synthesis, 1981(5): 388-389.
[57]
ZHANG N, SAUVE AA. Synthesis of β-nicotinamide riboside using an efficient two-step methodology. Current Protocols in Nucleic Acid Chemistry, 2017, 71: 14.14.1-14.14.9.
[58]
A·索韦, F·S·穆罕默德. 烟酰胺单核苷酸的有效合成: CN201680029859.2[P]. 2021-03-26.
SAUVE A, MOHAMMED FS. Effective synthesis of nicotinamide mononucleotide: CN201680029859.2[P]. 2021-03-26 (in Chinese).
[59]
JECK R, HEIK P, WOENCKHAUS C. Simple methods of preparing nicotinamide mononucleotide. FEBS Letters, 1974, 42(2): 161-164. DOI:10.1016/0014-5793(74)80776-3
[60]
PREISS J, HANDLER P. Enzymatic synthesis of nicotinamide mononucleotide. Journal of Biological Chemistry, 1957, 225(2): 759-770. DOI:10.1016/S0021-9258(18)64875-6
[61]
REVOLLO JR, GRIMM AA, IMAI SI. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Current Opinion in Gastroenterology, 2007, 23(2): 164-170. DOI:10.1097/MOG.0b013e32801b3c8f
[62]
LIU L, SU XY, QUINN WJ 3rd, HUI S, KRUKENBERG K, FREDERICK DW, REDPATH P, ZHAN L, CHELLAPPA K, WHITE E, MIGAUD M, MITCHISON TJ, BAUR JA, RABINOWITZ JD. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metabolism, 2018, 27(5): 1067-1080.e5. DOI:10.1016/j.cmet.2018.03.018
[63]
SHOJI S, YAMAJI T, MAKINO H, ISHII J, KONDO A. Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide. Metabolic Engineering, 2021, 65: 167-177. DOI:10.1016/j.ymben.2020.11.008
[64]
廖一波, 吴旻晖, 梁书利, 林影. 烟酰胺磷酸核糖转移酶在大肠杆菌中的表达及催化合成烟酰胺单核苷酸. 现代食品科技, 2021, 37(2): 87-93, 182.
LIAO YB, WU MH, LING SL, LIN Y. Expression of nicotinamide phosphoribosyltransferase in Escherichia coli and catalytic synthesis of nicotinamide mononucleotide. Modern Food Science and Technology, 2021, 37(2): 87-93, 182 (in Chinese).
[65]
SOMMER G, GARTEN A, PETZOLD S, BECK-SICKINGER AG, BLÜHER M, STUMVOLL M, FASSHAUER M. Visfatin/PBEF/Nampt: structure, regulation and potential function of a novel adipokine. Clinical Science (London, England: 1979), 2008, 115(1): 13-23. DOI:10.1042/CS20070226
[66]
SUN ZJ, LEI H, ZHANG ZE. Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. Cytokine & Growth Factor Reviews, 2013, 24(5): 433-442.
[67]
ZHU YM, XU P, HUANG X, SHUAI W, LIU L, ZHANG S, ZHAO R, HU XY, WANG G. From rate-limiting enzyme to therapeutic target: the promise of NAMPT in neurodegenerative diseases. Frontiers in Pharmacology, 2022, 13: 920113. DOI:10.3389/fphar.2022.920113
[68]
WANG T, ZHANG XB, BHEDA P, REVOLLO JR, IMAI SI, WOLBERGER C. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nature Structural & Molecular Biology, 2006, 13(7): 661-662.
[69]
傅荣昭, 张琦. 一种烟酰胺磷酸核糖转移酶突变体及其应用: CN201680003981.2[P]. 2021-05-25.
FU RZ, ZHANG Q. A mutant of nicotinamide phosphoribosyltransferase and its application: CN201680003981.2[P]. 2021-05-25 (in Chinese).
[70]
BURGOS ES, SCHRAMM VL. Weak coupling of ATP hydrolysis to the chemical equilibrium of human nicotinamide phosphoribosyltransferase. Biochemistry, 2008, 47(42): 11086-11096. DOI:10.1021/bi801198m
[71]
HOVE-JENSEN B, ANDERSEN KR, KILSTRUP M, MARTINUSSEN J, SWITZER RL, WILLEMOËS M. Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance. Microbiology and Molecular Biology Reviews: MMBR, 2016, 81(1): e00040-e00016.
[72]
SHEN Q, ZHANG SJ, XUE YZ, PENG F, CHENG DY, XUE YP, ZHENG YG. Biological synthesis of nicotinamide mononucleotide. Biotechnology Letters, 2021, 43(12): 2199-2208.
[73]
MAHARJAN A, SINGHVI M, KIM BS. Biosynthesis of a therapeutically important nicotinamide mononucleotide through a phosphoribosyl pyrophosphate synthetase 1 and 2 engineered strain of Escherichia coli. ACS Synthetic Biology, 2021, 10(11): 3055-3065.
[74]
傅荣昭, 张琦. 一种制备烟酰胺单核苷酸的方法: CN201680003986.5[P]. 2021-04-02.
FU RZ, ZHANG Q. A method for preparing nicotinamide mononucleotide: CN201680003986.5[P]. 2021-04-02 (in Chinese).
[75]
竺伟, 张小飞. 固定化全细胞一步酶法催化制备β-烟酰胺单核苷酸: CN201810940729.5[P]. 2018-12-07.
ZHU W, ZHANG XF. Immobilized whole cell one-step enzymatic catalytic preparation β-nicotinamide mononucleotide: CN201810940729.5[P]. 2018-12-07 (in Chinese).
[76]
PARK J, GUPTA RS. Adenosine kinase and ribokinase-the RK family of proteins. Cellular and Molecular Life Sciences, 2008, 65(18): 2875-2896.
[77]
周浩. 用于制备烟酰胺单核苷酸的酶组合物及酶法制备烟酰胺单核苷酸的方法: CN202010058700.1[P]. 2020-05-22.
ZHOU H. Enzyme composition for preparing nicotinamide mononucleotide and method for preparing nicotinamide mononucleotide by enzymatic method: CN202010058700.1[P]. 2020-05-22 (in Chinese).
[78]
傅荣昭, 张琦. 一种制备烟酰胺单核苷酸的方法: CN201680003975.7[P]. 2021-04-27.
FU RZ, ZHANG Q. A method for preparing nicotinamide mononucleotide: CN201680003975.7[P]. 2021-04-27 (in Chinese).
[79]
傅荣昭, 张琦. 一种制备烟酰胺单核苷酸的方法: CN201680003974.2[P]. 2021-04-27.
FU RZ, ZHANG Q. A method for preparing nicotinamide mononucleotide: CN201680003974.2[P]. 2021-04-27 (in Chinese).
[80]
傅荣昭, 张琦. 一种制备烟酰胺单核苷酸的方法: CN201680003973.8[P]. 2021-05-25.
FU RZ, ZHANG Q. A method for preparing nicotinamide mononucleotide: CN201680003973.8[P]. 2021-05-25 (in Chinese).
[81]
LIU Y, YASAWONG M, YU B. Metabolic engineering of Escherichia coli for biosynthesis of β-nicotinamide mononucleotide from nicotinamide. Microbial Biotechnology, 2021, 14(6): 2581-2591.
[82]
傅荣昭, 张琦. 一种制备烟酰胺单核苷酸的方法: CN201680003960.0[P]. 2021-07-27.
FU RZ, ZHANG Q. A method for preparing nicotinamide mononucleotide: CN201680003960.0[P]. 2021-07-27 (in Chinese).
[83]
陶军华, 付敏杰, 梁晓亮. 一种酶法制备β-烟酰胺单核苷酸的方法: CN201611245619.4[P]. 2021-07-23.
TAO JH, FU MJ, LIANG XL. A method of enzymatic preparation β-nicotinamide mononucleotide: CN201611245619.4[P]. 2021-07-23 (in Chinese).
[84]
祝俊, 李斌, 徐飞, 余允东, 刘双喜, 李二军, 张超, 邢飞, 马晶晶, 张晨晨, 许昇. 一种烟酰胺磷酸核糖转移酶突变体及其应用: CN201910723177.7[P]. 2022-09-13.
ZHU J, LI B, XU F, YU YD, LIU SX, LI EJ, ZHANG C, XING F, MA JJ, ZHANG CC, XU S. A mutant of nicotinamide phosphoribosyltransferase and it's application: CN201910723177.7[P]. 2022-09-13 (in Chinese).
[85]
肖春英. 烟酰胺核糖激酶及其应用: CN202011473646.3[P]. 2021-04-06.
XIAO CY. Nicotinamide ribokinase and its application: CN202011473646.3[P]. 2021-04-06 (in Chinese).
[86]
戴维, 周嘉莹, 余允东, 刘慧, 徐广见. 热稳定性和活性增强的烟酰胺核糖激酶突变体及其编码基因和应用: CN202011561179. X[P]. 2021-03-26.
DAI W, ZHOU JY, YU YD, LIU H, XU GJ. Nicotinamide ribokinase mutant with enhanced thermal stability and activity and its coding gene and application: CN202011561179. X[P]. 2021-03-26 (in Chinese).
[87]
刘峰, 熊绪千, 刘梦元, 刘喜元. 烟酰胺核苷激酶全酵母细胞及其生物催化合成NMN工艺: CN202110020769. X[P]. 2021-04-16.
LIU F, XIONG XQ, LIU MY, LIU XY. Nicotinamide nucleoside kinase whole yeast cell and its biocatalytic process for NMN synthesis: CN202110020769. X[P]. 2021-04-16 (in Chinese).
[88]
赵强, 赵士敏, 周晶辉, 曾红宇, 许岗. 一种基于酶法合成烟酰胺单核苷酸的方法: CN202110120111.6[P]. 2022-08-26.
ZHAO Q, ZHAO SM, ZHOU JH, ZENG HY, XU G. A method for synthesis of nicotinamide mononucleotide based on enzymatic method: CN202110120111.6[P]. 2022-08-26 (in Chinese).
[89]
范文超, 王金刚, 梁岩, 高书良, 袁圣伦, 任亮. 一种尿苷磷酸酶突变体及其应用: CN202010772689.5[P]. 2021-11-26.
FAN WC, WANG JG, LIANG Y, GAO SL, YUAN SL, REN L. A uridine phosphatase mutant and its application: CN202010772689.5[P]. 2021-11-26 (in Chinese).
[90]
ZHOU CL, FENG J, WANG J, HAO N, WANG X, CHEN KQ. Design of an in vitro multienzyme cascade system for the biosynthesis of nicotinamide mononucleotide. Catalysis Science & Technology, 2022, 12(4): 1080-1091.
[91]
于铁妹, 林立峰, 凌瑞枚, 秦国富, 何秀秀, 谭文静, 潘俊锋, 刘建. 一种β-烟酰胺单核苷酸的酶催化合成方法: CN202110397653.8[P]. 2021-07-27.
YU TM, LIN LF, LING RM, QING GF, HE XX, TAN WJ, PAN JF, LIU J. An enzyme catalyzed synthesis method of β-nicotinamide mononucleotide: CN202110397653.8[P]. 2021-07-27 (in Chinese).
[92]
SUGIYAMA K, IIJIMA K, YOSHINO M, DOHRA H, TOKIMOTO Y, NISHIKAWA K, IDOGAKI H, YOSHIDA N. Nicotinamide mononucleotide production by fructophilic lactic acid bacteria. Scientific Reports, 2021, 11: 7662.
[93]
赵丽青, 陈建生, 段志刚, 张海潮. 一株产烟酰胺单核苷酸的成都肠杆菌及其应用: CN202110250748.7[P]. 2021-11-05.
ZHAO LQ, CHEN JS, DUAN ZG, ZHANG HC. An Enterobacter chengduensis producing nicotinamide mononucleotide and its application: CN202110250748.7[P]. 2021-11-05 (in Chinese).
[94]
BLACK WB, ASPACIO D, BEVER D, KING E, ZHANG LY, LI H. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor. Microbial Cell Factories, 2020, 19(1): 150.
[95]
MARINESCU GC, POPESCU RG, STOIAN G, DINISCHIOTU A. β-nicotinamide mononucleotide (NMN) production in Escherichia coli. Scientific Reports, 2018, 8: 12278.
[96]
HUANG ZS, LI N, YU SQ, ZHANG WP, ZHANG TM, ZHOU JW. Systematic engineering of Escherichia coli for efficient production of nicotinamide mononucleotide from nicotinamide. ACS Synthetic Biology, 2022, 11(9): 2979-2988.
[97]
BLACK WB, ZHANG LY, MAK WS, MAXEL S, CUI YT, KING E, FONG B, MARTINEZ AS, SIEGEL JB, LI H. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nature Chemical Biology, 2020, 16(1): 87-94.
β-烟酰胺单核苷酸的生理活性与合成研究进展
陈宇娴 , 周楚然 , 黄建忠 , 陶勇 , 柯崇榕 , 杨欣伟