[1] |
HÄNSCH R, MENDEL RR. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 2009, 12(3): 259-266. DOI:10.1016/j.pbi.2009.05.006
|
|
[2] |
CLEMENS S. Metal ligands in micronutrient acquisition and homeostasis. Plant, Cell & Environment, 2019, 42(10): 2902-2912.
|
|
[3] |
ZHANG XX, ZHANG D, SUN W, WANG TZ. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. International Journal of Molecular Sciences, 2019, 20(10): 2424. DOI:10.3390/ijms20102424
|
|
[4] |
YUAN DS, STEARMAN R, DANCIS A, DUNN T, BEELER T, KLAUSNER RD. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(7): 2632-2636. DOI:10.1073/pnas.92.7.2632
|
|
[5] |
ZHANG J, WU LH, WANG MY. Iron and zinc biofortification in polished rice and accumulation in rice plant (Oryza sativa L.) as affected by nitrogen fertilization. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2008, 58(3): 267-272.
|
|
[6] |
BASHIR K, TAKAHASHI R, NAKANISHI H, NISHIZAWA NK. The road to micronutrient biofortification of rice: progress and prospects. Frontiers in Plant Science, 2013, 4: 15.
|
|
[7] |
BOONYAVES K, WU TY, GRUISSEM W, BHULlar NK. Enhanced grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Frontiers in Plant Science, 2017, 8: 130.
|
|
[8] |
BOUIS HE, HOTZ C, MCClaFFERTY B, MEENAKSHI JV, PFEIFFER WH. Biofortification: a new tool to reduce micronutrient malnutrition[J]. Food and Nutrition Bulletin, 2011, 32(1 Suppl): S31-S40.
|
|
[9] |
HU H, JIN Q, KAVAN P. A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures. Sustainability, 2014, 6(9): 5820-5838. DOI:10.3390/su6095820
|
|
[10] |
YU JP, LIU CL, LIN H, ZHANG B, LI XX, YUAN QL, LIU TJ, HE HY, WEI ZR, DING SL, ZHANG C, GAO HS, GUO LB, WANG Q, QIAN Q, SHANG LG. Loci and natural alleles for cadmium-mediated growth responses revealed by a genome wide association study and transcriptome analysis in rice. BMC Plant Biology, 2021, 21(1): 1-15. DOI:10.1186/s12870-020-02777-7
|
|
[11] |
KHUSH G, BRAR D. Plant introduction and rice improvement for south Asia. Indian Journal of Plant Genetic Resources, 2005, 18: 2-3.
|
|
[12] |
中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中污染物限量: GB2762—2017[S]. 中国标准出版社, 2017. NHFPC, State Food and Drug Administration. National Food Safety Standard Limit of Pollutants in Food: GB2762—2017[S]. China Standard Press, 2017 (in Chinese).
|
|
[13] |
URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice, 2012, 5(1): 5. DOI:10.1186/1939-8433-5-5
|
|
[14] |
CHENG SP. Heavy metal pollution in China: origin, pattern and control. Environmental Science and Pollution Research, 2003, 10(3): 192-198. DOI:10.1065/espr2002.11.141.1
|
|
[15] |
JULIANO BO. Rice in human nutrition[C]. Cereals International Proceedings of an International Conference, Brisbane. 1991.
|
|
[16] |
MASUDA H, AUNG MS, NISHIZAWA NK. Iron biofortification of rice using different transgenic approaches. Rice, 2013, 6(1): 40. DOI:10.1186/1939-8433-6-40
|
|
[17] |
QU LQ, TAKAIWA F. Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnology Journal, 2004, 2(2): 113-125. DOI:10.1111/j.1467-7652.2004.00055.x
|
|
[18] |
QU LQ, YOSHIHARA T, OOYAMA A, GOTO F, TAKAIWA F. Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta, 2005, 222(2): 225-233. DOI:10.1007/s00425-005-1530-8
|
|
[19] |
MASUDA H, ISHIMARU Y, AUNG MS, KOBAYASHI T, KAKEI Y, TAKAHASHI M, HIGUCHI K, NAKANISHI H, NISHIZAWA NK. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Scientific Reports, 2012, 2: 543. DOI:10.1038/srep00543
|
|
[20] |
SAPPIN-DIDIER V, VANSUYTS G, MENCH M, BRIAT JF. Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin. Plant and Soil, 2005, 270(1): 189-197. DOI:10.1007/s11104-004-1494-7
|
|
[21] |
KIM SA, PUNSHON T, LANZIROTTI A, LI LT, ALONSO JM, ECKER JR, KAPLAN J, GUERINOT ML. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science, 2006, 314(5803): 1295-1298. DOI:10.1126/science.1132563
|
|
[22] |
ZHANG Y, XU YH, YI HY, GONG JM. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. The Plant Journal: for Cell and Molecular Biology, 2012, 72(3): 400-410. DOI:10.1111/j.1365-313X.2012.05088.x
|
|
[23] |
LUO JS, GU TY, YANG Y, ZHANG ZH. A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis. Plant Molecular Biology, 2019, 100(4): 561-569.
|
|
[24] |
LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 –ΔΔCT method. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262
|
|
[25] |
GONG JM, LEE DA, SCHROEDER JI. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(17): 10118-10123. DOI:10.1073/pnas.1734072100
|
|
[26] |
MOMONOI K, YOSHIDA K, MANO S, TAKAHASHI H, NAKAMORI C, SHOJI K, NITTA A, NISHIMURA M. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. The Plant Journal: for Cell and Molecular Biology, 2009, 59(3): 437-447. DOI:10.1111/j.1365-313X.2009.03879.x
|
|
[27] |
YOSHIDA K, NEGISHI T. The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals. Phytochemistry, 2013, 94: 60-67. DOI:10.1016/j.phytochem.2013.04.017
|
|
[28] |
CONNORTON JM, JONES ER, RODRÍGUEZ- RAMIRO I, FAIRWEATHER-TAIT S, UAUY C, BALK J. Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiology, 2017, 174(4): 2434-2444. DOI:10.1104/pp.17.00672
|
|
[29] |
CHE J, YAMAJI N, MA JF. Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. The New Phytologist, 2021, 230(3): 1049-1062. DOI:10.1111/nph.17219
|
|
[30] |
LUCCA P, HURRELL R, POTRYKUS I. Fighting iron deficiency anemia with iron-rich rice[J]. Journal of the American College of Nutrition, 2002, 21(3 Suppl): 184S-190S.
|
|
[31] |
LIU XF, JIN WL, THEIL EC. Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(7): 3653-3658. DOI:10.1073/pnas.0636928100
|
|
[32] |
VASCONCELOS M, DATTA K, OLIVA N, KHALEKUZZAMAN M, TORRIZO L, KRISHNAN S, OLIVEIRA M, GOTO F, DATTA SK. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Science, 2003, 164(3): 371-378. DOI:10.1016/S0168-9452(02)00421-1
|
|
[33] | |
|
[34] |
WIRTH J, POLETTI S, AESCHLIMANN B, YAKANDAWAla N, DROSSE B, OSORIO S, TOHGE T, FERNIE AR, GÜNTHER D, GRUISSEM W, SAUTTER C. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnology Journal, 2009, 7(7): 631-644. DOI:10.1111/j.1467-7652.2009.00430.x
|
|
[35] |
ISHIMARU Y, SUZUKI M, TSUKAMOTO T, SUZUKI K, NAKAZONO M, KOBAYASHI T, WADA Y, WATANABE S, MATSUHASHI S, TAKAHASHI M, NAKANISHI H, MORI S, NISHIZAWA NK. Rice plants take up iron as an Fe 3+-phytosiderophore and as Fe 2+. The Plant Journal: for Cell and Molecular Biology, 2006, 45(3): 335-346. DOI:10.1111/j.1365-313X.2005.02624.x
|
|
[36] |
TAKAHASHI R, ISHIMARU Y, SENOURA T, SHIMO H, ISHIKAWA S, ARAO T, NAKANISHI H, NISHIZAWA NK. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011, 62(14): 4843-4850. DOI:10.1093/jxb/err136
|
|
[37] |
TAKAHASHI R, ISHIMARU Y, SHIMO H, OGO Y, SENOURA T, NISHIZAWA NK, NAKANISHI H. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell & Environment, 2012, 35(11): 1948-1957.
|
|
[38] |
BASHIR K, TAKAHASHI R, AKHTAR S, ISHIMARU Y, NAKANISHI H, NISHIZAWA NK. The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice, 2013, 6(1): 31. DOI:10.1186/1939-8433-6-31
|
|