生物工程学报  2023, Vol. 39 Issue (3): 1009-1025
http://dx.doi.org/10.13345/j.cjb.220634
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

郑春霞, 王侧容, 张漫漫, 吴启凤, 陈梦苹, 丁晨雨, 何腾霞
ZHENG Chunxia, WANG Cerong, ZHANG Manman, WU Qifeng, CHEN Mengping, DING Chenyu, HE Tengxia
反硝化聚磷菌及其脱氮除磷机理研究进展
Denitrifying phosphate accumulating organisms and its mechanism of nitrogen and phosphorus removal
生物工程学报, 2023, 39(3): 1009-1025
Chinese Journal of Biotechnology, 2023, 39(3): 1009-1025
10.13345/j.cjb.220634

文章历史

Received: August 10, 2022
Accepted: November 15, 2022
Published: November 22, 2022
反硝化聚磷菌及其脱氮除磷机理研究进展
郑春霞 , 王侧容 , 张漫漫 , 吴启凤 , 陈梦苹 , 丁晨雨 , 何腾霞     
贵州大学生命科学学院 农业生物工程研究院 山地生态与农业生物工程协同创新中心 山地植物资源保护与种质创新教育部重点实验室, 贵州 贵阳 550025
摘要:水体富营养化是当前水环境保护工作的重点关注问题,微生物修复富营养化水体具有高效、低耗且不产生二次污染等特点,已经成为富营养化水体生态修复的一种重要方式。近年来,对反硝化聚磷菌的研究及其在污水处理工艺中的应用越来越广泛。不同于传统的反硝化细菌联合聚磷菌去除氮磷工艺,反硝化聚磷菌在交替厌氧、缺氧/好氧条件下能同时进行脱氮除磷而被广泛关注与研究。值得注意的是,近几年报道的部分微生物仅在好氧条件下就可进行同时脱氮除磷,但是其脱氮除磷机理仍未理清。基于此,文中总结了目前发现的反硝化聚磷菌和同时硝化反硝化聚磷微生物的种类及特点,并对其脱氮与除磷的关系及其机理进行了系统性分析,对目前反硝化除磷存在的问题进行了梳理,最后对今后的研究方向进行了展望,以期为完善反硝化聚磷菌的脱氮除磷机理及工艺改进提供参考。
关键词富营养化    反硝化聚磷菌    同时硝化反硝化除磷    关系    机理    
Denitrifying phosphate accumulating organisms and its mechanism of nitrogen and phosphorus removal
ZHENG Chunxia , WANG Cerong , ZHANG Manman , WU Qifeng , CHEN Mengping , DING Chenyu , HE Tengxia     
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
Abstract: Water eutrophication poses great threats to protection of water environment. Microbial remediation of water eutrophication has shown high efficiency, low consumption and no secondary pollution, thus becoming an important approach for ecological remediation. In recent years, researches on denitrifying phosphate accumulating organisms and their application in wastewater treatment processes have received increasing attention. Different from the traditional nitrogen and phosphorus removal process conducted by denitrifying bacteria and phosphate accumulating organisms, the denitrifying phosphate accumulating organisms can simultaneously remove nitrogen and phosphorus under alternated anaerobic and anoxic/aerobic conditions. It is worth noting that microorganisms capable of simultaneously removing nitrogen and phosphorus absolutely under aerobic conditions have been reported in recent years, but the mechanisms remain unclear. This review summarizes the species and characteristics of denitrifying phosphate accumulating organisms and the microorganisms capable of performing simultaneous nitrification-denitrification and phosphorous removal. Moreover, this review analyzes the relationship between nitrogen removal and phosphorus removal and the underlying mechanisms, discusses the challenges of denitrifying phosphorus removal, and prospects future research directions, with the aim to facilitate process improvement of denitrifying phosphate accumulating organisms.
Keywords: eutrophication    denitrifying phosphate accumulating organisms    simultaneous nitrification and denitrification for phosphorus removal    relationship    mechanism    

随着工农业的迅速发展,大量未经处理或处理不完全的废水被排入天然水体中,导致水体富营养化程度日趋严重[1]。氮、磷作为水体富营养化的特征污染物,主要以硝酸盐(NO3)和磷酸盐(PO43–)的形式存在于水生生态系统中,NO3和PO43–的富集会引起藻类及其他浮游生物的快速繁殖,待藻类死亡后,溶解氧被耗尽,且水体透光率大幅降低,造成水质恶化,水生生物大量死亡,生态系统平衡受到破坏[2]。当天然湖泊和水库中氮和磷的浓度分别超过0.2 mg/L和0.02 mg/L时,通常认为该水体已经富营养化[3],富营养化水体不仅会严重危害水生生态系统的稳定,还会扰乱氮与磷的生物地球化学循环[4]。因此,降低或去除废水中的NO3和PO43–是预防水体富营养化的关键。当前废水脱氮除磷方法有物理法、化学法和生物法[5-6],相较于物理、化学法,生物脱氮除磷技术由于其成本低、效率高且不产生二次污染,现已被广泛应用于废水处理中[7-9]

传统的生物脱氮除磷工艺中,活性污泥成分复杂,存在着不同微生物类群,聚磷菌(phosphate accumulating organisms, PAOs)和反硝化细菌之间存在碳源竞争和泥龄差异,致使氮与磷的去除不能同时高效率[10]。另外,传统的生物脱氮除磷过程还需为微生物提供不同的氧环境,这无疑增加了经济与时间成本。与传统的反硝化细菌-聚磷菌联合脱氮除磷工艺相比,反硝化聚磷菌(denitrifying phosphate accumulating organisms, DPAOs)可使脱氮与除磷过程在时间和空间上达到统一,提高生物脱氮除磷的效率,从而实现能源和资源的双重节约,对富营养化水体的治理具有更重要的意义[11]。文献调研发现[12],目前能同时进行硝化反硝化和除磷微生物的研究主要集中在菌株的分离筛选、脱氮除磷效率及影响因素等方面,对其脱氮除磷的机理与脱氮除磷之间的关系缺乏系统性的探索与总结。为了更全面地认识DPAOs的脱氮除磷机理,以便更有目的性地开展后续研究,本文对DPAOs的种类、脱氮除磷机理、脱氮除磷之间的关系以及DPAOs脱氮除磷所存在的问题进行了全面的综述,以期为DPAOs脱氮除磷工艺的改进提供理论支撑。

1 微生物的脱氮与除磷 1.1 传统生物脱氮除磷系统

传统的生物脱氮除磷是通过脱氮细菌与PAOs联合进行,且脱氮与除磷过程分开进行。脱氮过程主要由氨化、硝化和反硝化等细菌通过氨化、硝化和反硝化3个过程实现[5]。其中,氨化过程可将含氮有机物分解,最终释放氨(NH4+-N);在好氧条件下,自养亚硝化菌/硝化菌通过亚硝化和硝化过程将水中的NH4+-N转化为亚硝酸盐(NO2-N)或硝酸盐(NO3-N);反硝化过程是指反硝化细菌以有机碳为电子供体,以硝化过程中产生的NO2-N或NO3-N为电子受体,在厌氧或缺氧条件下将其还原为气态氮的过程[13]。因此,在传统的活性污泥脱氮策略中需要为硝化和反硝化反应创造不同的氧气环境来实现NH4+-N向N2的连续转化。

生物除磷主要依据强化生物除磷(enhanced biological phosphorus removal, EBPR)理论,即PAOs能够进行厌氧释磷和好氧吸磷过程[14]。在厌氧阶段,PAOs通过水解胞内的多聚磷酸盐(poly-phosphate, poly-P)获取能量,磷酸盐被释放到胞外,同时将好氧阶段需要的能源储存在胞内[15]。在好氧阶段,PAOs以厌氧阶段储存的能源作为能量来源,吸收胞外超量磷酸盐并在细胞内合成poly-P,完成聚磷过程,工程上通过排出富含磷的污泥来实现水体中磷的去除[16]

1.2 反硝化聚磷菌 1.2.1 反硝化聚磷菌的种类

不同于传统PAOs仅能利用氧气作为电子受体,DPAOs可在没有氧气的条件下以NO3-N/ NO2-N作为末端电子受体,利用细胞内的聚羟基烷酸酯(poly-β-hydroxyalkanoates, PHA)在缺氧条件下完成脱氮与除磷的双过程,从而高效、低耗地实现对污水脱氮除磷的双重目的[17]。自30多年前利用平板培养技术首次分离出除磷微生物以来,微生物分类鉴定结果表明不动杆菌是生物除磷的主要菌种[18]。近年来,大量具有反硝化脱氮和吸磷能力的DPAOs在活性污泥、地表沉积物、药厂出水处底泥等生境被陆续发现与分离,将DPAOs的种类扩大到了假单胞菌属(Pseudomonas)[19]、陶厄氏菌属(Thauera)[20]、气单胞菌属(Aeromonas)[21]等。其中部分菌株种类及脱氮除磷特点如表 1所示。

表 1 DPAOS及其脱氮除磷特点 Table 1 DPAOs and their characteristics of nitrogen and phosphorus removal
Strain Genus Nitrogen source Carbon source Temperature (℃) pH C/N Nitrogen removal efficiency (%) Phosphorus removal efficiency (%) References
RT1901 Thauera NO3-N Sodium acetate 30 8.00 10 77.71 98.28 [22]
qdcs18 Pseudomonas sp. NH4+-N+NO3-N Sodium acetate 28 8.00 90.00 85.00 [23]
ZK-1 Delftia tsuruhatensis Ammonium sulfate+peptone Sodium acetate 7.85 98.70 90.70 [18]
j16 E. coli NO3-N Sodium acetate 30 7.20–8.00 96.03 94.55 [24]
K14 Pseudomonas NO3-N Sodium pyruvate 27 7.50 10 99.78 98.00 [25]
ZK-2 Pseudomonas aeruginosa NO3-N+NO2-N Sodium acetate 7.00 10 79.62 87.22 [26]
C-17 Pseudomonas sp. NO3-N Sodium acetate 30 87.00 75.00 [27]
N-8 Acinetobacter NO3-N Sodium acetate 7.00–9.00 82.69 69.20 [28]
Q-hrb05 Bacillus sp. NO3-N Sodium acetate 30 7.00 81.00 88.00 [29]
–: Indicates no relevant data in the literature.
1.2.2 反硝化聚磷菌除磷的特点

据前人研究可知,影响DPAOs脱氮除磷的因子有很多,研究较多的有碳源类型、温度、C/N比、pH等,这些因子与细菌细胞生长、酶的活性以及物质能量代谢等密切相关[28]。DPAOs除磷有以下特点:(1) 与其他功能微生物报道相似,目前发现的大部分DPAOs属于嗜温菌,其脱氮除磷的最适温度条件为30 ℃左右,但也有较少的耐低温与耐高温的菌株被报道。如王春丽等[30]分离到一株在低温条件下仍具有脱氮除磷功能的DPAOs H16,环境温度由30 ℃下降到8 ℃后,该菌株的生长并无明显差异,但除磷效能从最高的94%降到58%;DPAOs J16最合适的温度在30 ℃至40 ℃之间,NO3-N和PO43–-P去除率分别达到91%和93%,环境温度高于40 ℃仍能发挥脱氮除磷作用[24]。(2) 适宜DPAOs生长繁殖与脱氮除磷的环境pH为7.0–9.0,即中性或偏碱性环境。如:在酸性环境下,DPAOs生长除磷被抑制,这与酶的活性和细胞膜电荷的变化有关[31];当pH超过8.0后,易形成磷沉淀,影响磷的正常释放及吸收,会降低除磷效率[32]。(3) 碳源可为微生物的生长代谢提供细胞碳架,同时在反硝化除磷(denitrifying P removal, DPR)过程中为DPAOs提供电子供体。有研究表明,碳源类型会影响DPAOs生长和厌氧释磷速度,而乙酸更容易被吸收和转化,如用乙酸盐代替丙酸盐作为碳源,聚-β-羟基丁酸(poly-β-hydroxybutyrate, PHB)与聚羟基戊酸(polyhydroxyvalerate, PHV) 的合成比率比丙酸盐作为碳源时更高[33],因此,乙酸是DPAOs脱氮除磷使用最多的碳源。也有研究认为,碳源主要影响厌氧释磷和反硝化脱氮过程,对磷的吸收影响不大。如Li等[34]的研究结果表明,以丙酸盐代替乙酸盐作为碳源时,氮的去除率降低40.6%,而磷的去除率差异不显著。(4) 因DPAOs脱氮的碳源可由厌氧释磷提供,所需的C/N比与传统的脱氮除磷工艺相比较低,多为10左右,表明DPAOs对于物质能源的利用率更高,用于废水脱氮除磷更加经济节约。

1.3 同时硝化反硝化聚磷菌

1983年,Robertson等[35]研究发现在一些脱氮菌中存在异养硝化和好氧反硝化的偶联过程,此类菌被称为异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification, HN-AD)菌。HN-AD菌具有繁殖速度快、抗逆性强、耐浓度高氨氮,能在好氧条件下同时完成硝化和反硝化过程的特点,可将NH4+-N、NO3-N和NO2-N逐步转化成气态氮,如本课题组分离到的HN-AD菌株台湾假单胞菌(Pseudomonas taiwanensis) EN-F2[36]和链霉菌(Streptomyces mediolani) EM-B2[37]在好氧条件下可以通过同时硝化反硝化去除多种无机氮;近年来的一些报道指出,部分HN-AD菌在硝化反硝化的同时能进行除磷过程[38],即在好氧条件下可同时利用O2、NO3-N或NO2-N作为电子受体氧化有机物获得能量促进磷的吸收,在硝化反硝化脱氮的同时实现过量吸磷作用[39],如菌株HHEP5能进行同时硝化反硝化和除磷(simultaneous nitrification-denitrification and phosphorous removal, SNDPR),氮和磷去除率均达到了90%以上[40],这打破了传统PAOs和DPAOs需要厌氧、缺氧/好氧交替环境的条件限制,具有可观的生态效益、经济效益和广阔的应用前景,该类菌株主要归属于假单胞菌属、陶厄氏菌属、节杆菌属、不动杆菌属等。表 2列举了近年来报道的具有SNDPR能力的菌株种类及脱氮除磷特点。

表 2 SNDPR菌株及其脱氮除磷特点 Table 2 SNDPR strains and their characteristics of nitrogen and phosphorus removal
Strain Genus Optimum nitrogen source Optimum carbon source Optimum temperature (℃) pH C/N The initial concentraion and removal efficiency of N ((mg/L)/%) The initial concentraion and removal efficiency of P ((mg/L)/%) References
NP5 Pseudomonsa putida NH4+-N Succinate 30 10.00 100.00/99.65 70.00/99.55 [38]
SND5 Thauera sp. NO3-N Lactic acid 10.00 80.00/99.20 20.00/90.00 [39]
HHEP5 Arthrobacter sp. NO3-N+ NO2-N Glucose 28 7.50 5.00– 20.00 42.80/95.00 2.56/99.00 [40]
ADP-19 Pseudomonas stutzeri NH4+-N Sodium acetate 30 7.00– 8.00 10.00 100.00/96.50 20.00/73.30 [41]
C-13 Acinetobacter sp. NH4+-N Sodium acetate 30 7.50 10.00 181.00/92.10 134.80/81.70 [42]
GHSP10 Bacillus subtilis NH4+-N+ NO3-N Sodium acetate 28 7.50 10.00– 20.00 50.00/95.84 10/.0089.88 [43]
YG-24 Pseudomonas stutzeri NH4+-N Sodium citrate 30 8.00 35.72/85.28 2.28/51.21 [44]
HW-15 Enterobacter cloacae NH4+-N Sodium acetate 30 8.00 99.76/99.16 36.63/73.00 [45]
GS-5 Bacillus cereus NO3-N Sodium acetate 35 7.50 7.50 34.50/96.00 5.70/84.00 [46]
YP1 Pseudoxanthomonas sp. NO3-N Sodium citrate 8.00 30.00/58.80 8.00/75.30 [47]
ISTOD1 Paracoccus NO3-N Sugarcane molasses 47.53/97.30 13.10/93.00 [48]
‒: Indicates no relevant data in the literature.
1.4 微生物脱氮与除磷的关系

在传统的生物脱氮除磷工艺中,脱氮过程与除磷过程分别在不同微生物内完成,由于两个过程对于氧的需求不同,且不同微生物之间存在碳源竞争和生长周期的差异,因此,传统的生物脱氮除磷工艺需要较多的设施才能实现。脱氮与除磷两个过程的联合作用是生物脱氮除磷的前提,DPR工艺将两个过程耦合在一起,可同时进行。有研究表明,将硝化和反硝化耦合后可加速氮的去除率,从而缓解水体生态系统的富营养化,且NO3-N和NO2-N不仅能够诱导反硝化基因的转录,还能够激活聚磷基因的表达[49]。Zhang等[50]认为这是由于有机质分解和硝化作用引起的厌氧状态加速了磷的释放。同样地,磷浓度的增加也可促进硝化和反硝化基因表达,加速硝化和反硝化系统耦合脱氮,提高氮的去除率[51]。Zhang等[52]证明了氮磷循环之间存在相互耦合和相互影响,其依据是富营养化水体中营养物质引起的藻华通常会以有机物的形式积累在沉积物的表面上,有机质的分解会导致缺氧状态致使磷释放,而磷的富集会改变水体中群落的组成和增加Nir型反硝化菌的丰度,最终导致氮的损失。然而,也有研究者发现,游离的NO2-N不仅会抑制微生物对磷的吸收,还会抑制细菌的生长[53-54],过多的NO3-N也会抑制厌氧磷的释放[55],这种现象的产生可能与微生物的种类不同有关。Weiske等[56]发现含磷化合物(3, 4-二甲基吡唑磷酸盐)会抑制微生物硝化过程。综上可知,无论是传统的生物脱氮除磷还是反硝化脱氮除磷,微生物的脱氮与除磷过程均存在相互影响。

2 反硝化聚磷菌脱氮除磷机理 2.1 酶促过程 2.1.1 脱氮过程

微生物的脱氮过程可分为硝化和反硝化过程。其中,硝化过程的氮转化途径为NH4+-N→NH2OH→NO2-N→NO3-N。NH4+-N经氨单加氧酶(ammonia monooxygenase, AMO)催化产生NH2OH,受amo基因调控[57];随后,NH2OH经羟胺氧化还原酶(hydroxylamine oxidoreductase, HAO)催化生成NO2-N,受hao基因调控;最终,NO2-N在nxr基因编码的亚硝酸氧化还原酶(nitrite oxidoreductase, NXR)的催化作用下合成NO3-N[58]。反硝化过程是通过NO3-N→ NO2-N→NO→N2O→N2进行的[59]。NO3-N在硝酸还原酶(nitrate reductase, NR)的作用下还原为NO2-N;NO2-N经亚硝酸还原酶(nitrite reductase, NIR)催化还原为一氧化氮,而NO非常不稳定,在胞内会迅速被一氧化氮还原酶(nitric oxide reductase, NOR)转化为具有稳定N-N键的N2O,N2O会被氧化亚氮还原酶(nitrous oxide reductase, N2OR)催化还原为N2[60]。参与反硝化过程的酶分别由narnirnornos基因编码合成[61]。值得注意的是,上述2个途径分别被称为全程硝化和全程反硝化。然而,也有研究者报道了一些短程硝化反硝化途径可以缩短脱氮过程,如:NH4+-N→ NH2OH→N2、NH4+-N→NO2-N→N2O→N2和NH4+-N→NO3-N→NO2-N→N2O→N2[39, 62-63]。然而,部分HN-AD菌的脱氮机理与上述脱氮过程并不一致,如异养硝化菌粪产碱杆菌(Alcaligenes faecalis) NR[64]不仅存在着与传统脱氮过程相似的氮代谢途径,即NH4+-N→ NH2OH→NO2-N→NO3-N和NO3-N→NO2-N→ N2O→N2,还存在着一条新的代谢途径,即NH4+-N→NH2OH→N2O→N2,该菌的HAO序列与传统的HAO序列存在很大的不同。传统的HAO是将NH2OH转化为NO2-N,而在菌株NR中,HAO除了能将NH2OH转化为NO2-N,还能将其转化为N2O。这是由于部分报道的异养型脱氮菌的关键酶和调控基因序列与传统的自养型脱氮菌存在较大差异,且许多异养型脱氮菌依照自养型脱氮菌的关键酶与基因序列并未完成对其关键酶的纯化以及关键基因的扩增,其脱氮机理的阐明仍缺少实验证据。

2.1.2 除磷过程

无论是在好氧还是缺氧条件下,微生物的聚磷过程都是吸取环境中的磷酸盐,然后以poly-P的形式存于细胞内,此过程是由多聚磷酸盐激酶(polyphosphate kinase, PPK)催化完成的[40],PPK是微生物聚磷的必要酶,因此,有研究者认为所有PAOs都含PPK[65],由ppk基因编码[66]。PPK虽然广泛存在于细菌中,在真菌和古菌中极少被发现。经PPK催化后,ATP末端的磷酸基团和环境中的无机磷酸盐能可逆地转移到长链poly-P上,形成长度达1 000甚至更长的正磷酸盐线状或环状多聚物,反应式如下[67]

由上述反应可知,微生物除磷过程与物质代谢和能量代谢过程密切相关。

2.2 生物化学过程

厌氧条件下,DPAOs胞内的poly-P水解,产生的无机磷酸盐(PO43–-P)会被释放到水中。同时,DPAOs可利用poly-P水解产生的ATP和糖原分解提供的还原力NADH2将易降解的低分子脂肪酸(volatile fatty acids, VFA),如乙酸、丙酸、正丁酸、戊酸和异戊酸等吸收到体内,被活化生成乙酰辅酶A (acetyl-CoA, AcCoA),最终以PHA的形式储存在体内,以上即为DPAOs的厌氧释磷过程。值得注意的是,PHA主要包括PHB和PHV,是一类可生物降解的碳聚合物,既能在有氧条件下作为生化反应的碳源为细胞生长和代谢活动提供ATP,又能在缺氧条件下直接作为能源分解,形成质子驱动力及为电子传递链提供电子[68]。缺氧时,DPAOs利用NO3-N/NO2-N为电子受体,分解厌氧释磷时储存在胞内的PHA为AcCoA,AcCoA可进入三羧酸循环,产生的电子经电子传递产生ATP为自身生长及生命活动供能,释放的H+形成质子驱动力,过量吸取胞外PO43–-P,将PO43–-P以poly-P的形式储存于胞内,NO3-N/NO2-N接受电子后被还原为气态氮,从而实现同步脱氮除磷[69]。在好氧条件下,DPAOs能以O2作为电子受体,将胞内厌氧释磷阶段储存的PHA经一系列氧化反应生成CO2,并产生比缺氧条件下更多的ATP,分别用于微生物生长、糖原合成以及过量摄取环境中的PO43–-P以poly-P的形式储存于菌体细胞内等过程;同时反硝化过程同样能以PHA作为碳源,为NO3-N/NO2-N还原成气态氮提供能量和电子[70]。综上所述,DPAOs的脱氮除磷机理如图 1所示:

图 1 DPAOs的脱氮除磷机理图 Fig. 1 Mechanistic diagram of nitrogen and phosphorus removal by DPAOs. A:厌氧. B:缺氧. C:好氧 A: Anaerobic. B: Anoxic. C: Aerobic.

与厌氧-缺氧/好氧交替条件下完成脱氮除磷的DPAOs不同,SNDPR菌的脱氮除磷过程均发生在好氧条件下,因而能够在有氧环境中实现同步脱氮除磷[71]。然而,由于该类菌多为近几年发现,研究还处于初期,多停留在菌株的分离与探究环境因子对脱氮除磷效率的影响方面,缺乏对其脱氮除磷机理的系统性探索。但也有研究者发现一些HN-AD菌在有氧条件下也能积累PHB (类似于DPAOs),然后利用O2或NO3-N作为电子受体将PHB作为碳源消耗[39],基于此,笔者结合课题组对HN-AD菌脱氮机理的研究经验与前人对DPAOs脱氮除磷机理的研究报道,预测SNDPR菌株可能的脱氮除磷机理模型(图 2),在异养好氧条件下,具有SNDPR能力的微生物同时能转化含氮化合物并将细胞外PO43–-P摄入胞内。当磷以poly-P的形式积累时,氮化合物经过一系列酶催化形成N2

图 2 SNDPR菌株脱氮除磷机理模型 Fig. 2 Mechanistic model of nitrogen and phosphorus removal by SNDPR strain.
3 反硝化聚磷菌脱氮除磷存在的问题 3.1 反硝化聚磷菌对脱氮除磷影响因子的响应机制还未阐明

反硝化脱氮除磷不仅会受碳源类型、温度、pH和C/N比的影响,还会受重金属离子、污泥龄和抑制剂等的影响。微量金属离子是微生物生命活动所需的营养物质,是生物酶活性的辅助因子,如镁、铜、锌、铁、镍、钴等。然而,对于大多数微生物而言,当金属离子质量浓度达到一定水平时,会降低微生物生长速率和活性,削弱其降解有机物和脱氮除磷的能力,甚至导致死亡[72]。例如最近研究显示[73-74],在城市和工业废水中普遍存在的重金属离子Cu2+和Fe3+,会影响DPAOs脱氮除磷的效率,具体表现为中等浓度的Cu2+ (2 mg/L)可增强NIR和N2OR的活性,大大降低了N2O的生成和排放[73],而中等浓度Fe3+ (40 mg/L)的加入则会增强NOR的活性,提高NOR/N2OR比值,导致N2O大量产生;此外,高浓度金属离子(5 mg/L Cu2+和60 mg/L Fe3+)的加入不仅会抑制DPAOs的生长,同时也会抑制厌氧阶段PHA的合成,降低DPAOs的除磷活性。此外,同一金属离子对不同微生物产生的影响效应也不同,部分微生物对金属离子异常敏感,添加低浓度的金属离子即会降低其脱氮除磷效率,如添加0.5 mg/L Cu2+就会抑制栅藻属(Semondesmus sp.) LX1的生长,进而降低LX1的脱氮除磷效率[75]。因此金属离子对脱氮除磷微生物的影响不尽相同,必须先分析该微生物抗重金属离子的代谢机理入手,才能评估脱氮除磷微生物在重金属离子废水中的应用潜力。此外,在应用抗重金属离子的脱氮除磷微生物时,还须考虑不同金属离子的作用位点,并考虑不同金属离子是否存在相互竞争作用。

综上所述,选择合适的环境条件对DPAOs的生长增殖与脱氮除磷能力有促进作用,但目前对于DPAOs脱氮除磷的影响因子研究多处于生理水平,对于这些环境因素是通过何种代谢通路来进行调控DPAOs脱氮除磷功能、蛋白结构是否会受到重金属离子的影响、受到影响后的蛋白质会发生何种改变以及涉及哪些基因参与其中还处于探索阶段,且各因素之间也可能相互作用,因此,目前还无法建立较为全面的响应模型。

3.2 反硝化除磷过程中会积累NO2-N

反硝化过程是按照NO3-N→NO2-N→ NO→N2O→N2的过程进行的,大部分已报道的反硝化细菌在此过程中均会出现NO2-N积累的现象,这可能是由于电子竞争、微生物种类和碳源类型等因素而导致的。(1) 电子竞争:NO2-N积累的主要原因是NO2-N还原速率远低于NO3-N还原速率,NIR对电子竞争的能力低于NR,且无论碳源足够与否,均会发生电子竞争[76];(2) 微生物种类:能实现反硝化过程的微生物种类繁多,部分反硝化菌可以将NO3-N直接还原成N2,如在活性污泥中常见的假单胞菌(Pseudomonas),它具有全部反硝化还原酶,可将NO3-N还原为N2[77];而有些菌株只能先将NO3-N还原到NO2-N,之后进一步还原或在其他反硝化菌的作用下还原成N2,则会发生NO2-N积累[78-79];(3) 碳源类型:NO2-N的积累还与碳源类型有关,如毕春雪等[80]在以乙酸钠为反硝化碳源时发现了NO2-N累积现象;殷芳芳等[81]利用甲醇、乙醇、乙酸钠、丙酸钠和葡萄糖与生活污水作为碳源时,只有乙酸钠的反硝化系统出现了NO2-N积累现象。黄斯婷等[79]的研究对该现象进行了解释,认为以乙酸(钠)作为碳源的反硝化系统产生NO2-N积累的主要原因是其特殊代谢途径诱导产生的,且糖类物质(如葡萄糖、蔗糖)相比醇类物质(如甲醇、乙醇)和乙酸钠等更容易导致NO2-N的积累。综上所述,NO2-N积累机理已明确,今后可进一步明确NO2-N积累的动力学方程以及相关参数,此外,对于如何有效控制NO2-N的积累还需更深入地研究和探讨。

3.3 反硝化除磷过程中会释放N2O并对环境产生影响

N2O被认为是一种强烈的温室气体,其温室效应潜力是二氧化碳的265倍[82]。N2O可与臭氧发生光化学反应,破坏臭氧层,造成臭氧空洞,使人类和其他生物体暴露于太阳的紫外线下,从而损害人体皮肤、眼睛和免疫系统,这被预测为21世纪臭氧层损耗的主要原因之一[83]。在过去10年中,DPR过程排放的N2O引起了越来越多的关注[84],据报道,在DPR系统中,N2O排放比例为进水氮负荷的2.3%–21.6%[85]。因此,控制DPAOs脱氮除磷过程中N2O的释放对于缓解温室效应具有重要意义。反硝化过程中NO3-N和NO2-N在相应微生物的作用下被还原为N2O或N2,是废水处理过程中产生N2O的主要原因[86]。在该过程中,N2OR将产生的N2O还原为N2,而当N2OR受到低pH,低C/N或有毒物质等因素的抑制时,会导致N2O的积累并释放;另外,一些反硝化菌如荧光假单胞菌(Fluorescent Pseudomonads),不具有氧化亚氮还原酶,其反硝化终产物仅为N2O,并不会再被还原为N2[87]。然而,也有报道发现恶臭假单胞菌(Pseudomonas putida) NP5在SNDPR过程中N2O的排放可以忽略不计,但其机理还未明晰[38]。由此可知,只有进一步理清DPAOs脱氮除磷过程中N2O产生与去除的机理,构建起相应的影响因子响应模型,才能更好地控制N2O的释放。

3.4 反硝化聚磷菌的工程应用

随着对DPAOs和DPR的广泛研究,DPR工艺取得了突破性的进展。DPR技术的研究已经从实验室模拟到工程应用阶段,并取得了一些成果,如单污泥工艺和双污泥工艺。在单污泥系统中,DPAOs和硝化细菌共存于同一活性污泥中,硝化细菌需要较长的好氧时间,这会抑制DPAOs的生长和活性,使得DPR效能难以大幅度提高[88],具有代表性的工艺如:van Loosdrecht等[89]开发的BCFs (biologische-chemische-fosfaat-stikstoverwijdering)工艺,BCFs工艺已应用于工程实践,然而,整个反应过程中由于反应池数量多、面积大、污泥多,对各种不同作用细菌的生长不利,限制了BCFs工艺的应用。在双污泥系统中,硝化过程与反硝化除磷过程各自独立,微生物在各自的最佳环境里生长繁殖,可较好地完成反硝化聚磷菌的富集,实现同步脱氮除磷[90],具有代表性的工艺是DEPHANOX工艺[91],具有污泥产量、能耗和化学需氧量(chemical oxygen demand, COD)消耗低的优点。但进水氮磷比一般不能满足缺氧磷吸收的要求,限制了DEPHANOX工艺在DPR工程中的广泛应用。反硝化除磷污水处理工艺发展迅速,陆续出现了多种新型组合工艺,如与短程硝化反硝化、厌氧氨氧化等耦合的新型反硝化除磷污水处理工艺,在此基础上,李微等[92]采用新型短程硝化-反硝化除磷耦合(anaerobic-anoxic/nitrification-sequencing batch reactor, A2N-SBR)工艺对实际生活污水进行同步脱氮除磷研究发现,稳定运行的A2N-SBR工艺对低C/N的实际生活污水仍具有稳定的脱氮除磷效果,分别达到83.87%和83.55%。

分离并鉴定兼备SND和EBPR潜能的新型细菌,可为积累在富营养化湖泊、水产养殖系统及工业和生活污水中氮磷化合物的同时降解开辟新的道路。如菌株HEPP5在海水养殖和生活污水处理中均具有99%的除磷和95%的除氮能力[40]。但这些细菌的适应性和适用性的研究还非常有限,脱氮除磷性能取决于微生物的种类与其克服自然环境的能力,同时也需挖掘更多新型的具有SNDPR能力的菌种资源,以便在有氧条件下更高效地同时去除氮和磷。

综上所述,无论是DPAOs还是SNDPR在废水处理中的工程应用都还有待继续研究,应加强对连续运行的反硝化脱氮除磷工艺菌种性能的研究,同时结合现有的城市污水厂处理工艺,进行工艺改进和创新,结合先进的自动化控制技术,对工艺过程参数进行优化,使工艺朝着经济高效、低能耗和资源化的方向发展。

4 结语与展望

DPAOs在修复富营养化水体的应用中,已经成为一种高效低耗与节能减排的重要微生物资源。理清DPAOs的脱氮除磷机理不仅能促进对不同代谢途径间相互作用的理解,也有助于现有脱氮除磷工艺的改进,对富营养化水体的生物修复以及其他含氮或磷废水中的治理具有重要意义。然而,基于前人研究报道和文献分析,本文系统分析了现有DPAOs的分布、脱氮除磷之间的关系及机理,但仍存在诸多尚未明确的地方,未来还可以从以下几个方面开展研究:(1) 对DPAOs的研究多集中于生化水平上的氮磷代谢过程,调控DPAOs氮磷代谢过程的关键基因和酶类还未明确,可从基因组、转录组、蛋白组和代谢组等多组学协同分析,更加全面地理解DPAOs的脱氮除磷机理;(2) 目前在控制N2O的释放方面的研究较少,分离筛选出既不产N2O又不积累亚硝酸盐的生物脱氮除磷菌株资源是未来氮磷污染废水治理理想的方式之一;(3) 反硝化脱氮除磷过程影响因子的响应机制尚未阐明,可结合反应动力学、光谱扫描分析等技术方法研究一些关键调控因子,构建影响因子响应模型;(4) 可通过构建高效脱氮除磷的基因工程菌来提高脱氮除磷效率,其显著优势在于能够通过基因重组或基因编辑等技术手段调控微生物的氮磷代谢过程。但构建高效脱氮除磷的基因工程DPAOs还有赖于挖掘野生菌株的高效功能基因。

参考文献
[1]
YU S, MIAO CP, SONG H, HUANG YQ, CHEN W, HE XY. Efficiency of nitrogen and phosphorus removal by six macrophytes from eutrophic water. International Journal of Phytoremediation, 2019, 21(7): 643-651. DOI:10.1080/15226514.2018.1556582
[2]
YANG L, REN YX, ZHAO SQ, LIANG X, WANG JP. Isolation and characterization of three heterotrophic nitrifying-aerobic denitrifying bacteria from a sequencing batch reactor. Annals of microbiology, 2016, 66(2): 737-747. DOI:10.1007/s13213-015-1161-7
[3]
DOU M, MA XK, ZHANG Y, ZHANG YY, SHI YX. Modeling the interaction of light and nutrients as factors driving lake eutrophication. Ecological Modelling, 2019, 400: 41-52. DOI:10.1016/j.ecolmodel.2019.03.015
[4]
AHLSTRÖM H, CORNELL SE. Governance, polycentricity and the global nitrogen and phosphorus cycles. Environmental Science & Policy, 2018, 79: 54-65.
[5]
牛晓倩, 周胜虎, 邓禹. 脱氮微生物及脱氮工艺研究进展. 生物工程学报, 2021, 37(10): 3505-3519.
NIU XQ, ZHOU SH, DENG Y. Advances in denitrification microorganisms and processes. Chinese Journal of Biotechnology, 2021, 37(10): 3505-3519 (in Chinese). DOI:10.13345/j.cjb.210407
[6]
ZAHED MA, SALEHI S, TABARI Y, FARRAJI H, ATAEI-KACHOOEI S, ZINATIZADEH AA, KAMALI N, MAHJOURI M. Phosphorus removal and recovery: state of the science and challenges. Environmental Science and Pollution Research International, 2022, 29(39): 58561-58589. DOI:10.1007/s11356-022-21637-5
[7]
LU XY, DUAN HR, OEHMEN A, CARVALHO G, YUAN ZG, YE L. Achieving combined biological short-cut nitrogen and phosphorus removal in a one sludge system with side-stream sludge treatment. Water Research, 2021, 203: 117563. DOI:10.1016/j.watres.2021.117563
[8]
JIN P, CHEN YY, XU T, CUI ZW, ZHENG ZW. Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control. Bioresource Technology, 2019, 281: 392-400. DOI:10.1016/j.biortech.2019.02.119
[9]
LIANG DH, HU YY, CHENG JH, CHEN YC. Simultaneous sulfamethoxazole biodegradation and nitrogen conversion in low C/N ratio pharmaceutical wastewater by Achromobacter sp. JL9. The Science of the Total Environment, 2020, 703: 135586. DOI:10.1016/j.scitotenv.2019.135586
[10]
狄斐, 隋倩雯, 高超龙, 钟慧, 徐东耀, 魏源送. 反硝化除磷工艺实现亚硝酸盐积累的参数优化. 中国环境科学, 2022, 42(6): 2647-2655.
DI F, SUI QW, GAO CL, ZHONG H, XU DY, WEI YS. Parameter optimization for the achievement of nitrite accumulation by denitrifying phosphorus removal process. China Environmental Science, 2022, 42(6): 2647-2655 (in Chinese). DOI:10.3969/j.issn.1000-6923.2022.06.018
[11]
KUBA T, SMOLDERS G, van LOOSDRECHT MCM, HEIJNEN JJ. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor. Water Science and Technology, 1993, 27(5/6): 241-252.
[12]
WU T, YANG SS, ZHONG L, PANG JW, ZHANG LY, XIA XF, YANG F, XIE GJ, LIU BF, REN NQ, DING J. Simultaneous nitrification, denitrification and phosphorus removal: what have we done so far and how do we need to do in the future?. Sci Total Environ, 2022, 856(Pt 1): 158977.
[13]
RAHIMI S, MODIN O, MIJAKOVIC I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology Advances, 2020, 43: 107570. DOI:10.1016/j.biotechadv.2020.107570
[14]
REY-MARTÍNEZ N, BADIA-FABREGAT M, GUISASOLA A, BAEZA JA. Glutamate as sole carbon source for enhanced biological phosphorus removal. Science of the Total Environment, 2019, 657: 1398-1408. DOI:10.1016/j.scitotenv.2018.12.064
[15]
WANG L, SHEN N, OEHMEN A, ZHOU Y. The impact of temperature on the metabolism of volatile fatty acids by polyphosphate accumulating organisms (PAOs). Environmental Research, 2020, 188: 109729. DOI:10.1016/j.envres.2020.109729
[16]
ANDERS A, WEIGAND H, CAKIR H, KORNHAAS U, PLATEN H. Phosphorus recycling from activated sludge of full-scale wastewater treatment plants by fast inversion of the biological phosphorus elimination mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106403. DOI:10.1016/j.jece.2021.106403
[17]
LI Y, ZHAO SY, ZHANG JJ, HE Y, ZHANG JQ, GE R. Screening and diversity analysis of aerobic denitrifying phosphate accumulating bacteria cultivated from A2O activated sludge. Processes, 2019, 7(11): 827. DOI:10.3390/pr7110827
[18]
LI HK, LIU H, ZENG QQ, XU MY, LI YY, WANG W, ZHONG YM. Isolation and appraisal of a non-fermentative bacterium, Delftia tsuruhatensis, as denitrifying phosphate-accumulating organism and optimal growth conditions. Journal of Water Process Engineering, 2020, 36: 101296. DOI:10.1016/j.jwpe.2020.101296
[19]
CHEN P, WU JK, LU XW, YU R. Denitrifying phosphorus removal and microbial community characteristics of two-sludge DEPHANOX system: effects of COD/TP ratio. Biochemical Engineering Journal, 2021, 172: 108059. DOI:10.1016/j.bej.2021.108059
[20]
YUN G, LEE H, HONG Y, KIM S, DAIGGER GT, YUN Z. The difference of morphological characteristics and population structure in PAO and DPAO granular sludges. Journal of Environmental Sciences, 2019, 76: 388-402. DOI:10.1016/j.jes.2018.06.003
[21]
李慧, 刘丹丹, 陈文清. 反硝化聚磷菌的筛选及脱氮除磷特性. 环境工程, 2016, 34(4): 25-28, 90.
LI H, LIU DD, CHEN WQ. Screening of denitrifying phosphate accumulating organisms and its characteristics of nitrogen and phosphorus removal. Environmental Engineering, 2016, 34(4): 25-28, 90 (in Chinese). DOI:10.13205/j.hjgc.201604006
[22]
REN T, CHI YL, WANG Y, SHI X, JIN X, JIN PK. Diversified metabolism makes novel Thauera strain highly competitive in low carbon wastewater treatment. Water Research, 2021, 206: 117742. DOI:10.1016/j.watres.2021.117742
[23]
朱卫强, 陈舒, 张培玉. 2株反硝化聚磷菌的筛选及其影响因素. 环境工程学报, 2016, 10(6): 3295-3302.
ZHU WQ, CHEN S, ZHANG PY. Selection of two denitrifying phosphorus-accumulating bacterium and their influencing factors. Chinese Journal of Environmental Engineering, 2016, 10(6): 3295-3302 (in Chinese).
[24]
XU HY, JIN R, ZHANG C, WU YP, WANG XH. Isolation and identification of an aerobic denitrifying phosphorus removing bacteria and analysis of the factors influencing denitrification and phosphorus removal. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2018, 78(11): 2288-2296. DOI:10.2166/wst.2018.514
[25]
HOU PF, SUN XL, FANG ZM, FENG YY, GUO YY, WANG QK, CHEN CX. Simultaneous removal of phosphorous and nitrogen by ammonium assimilation and aerobic denitrification of novel phosphate-accumulating organism Pseudomonas chloritidismutans K14. Bioresource Technology, 2021, 340: 125621. DOI:10.1016/j.biortech.2021.125621
[26]
LIU H, WANG Q, SUN YF, ZHOU KQ, LIU W, LU Q, MING CB, FENG XD, DU JJ, JIA XS, LI J. Isolation of a non-fermentative bacterium, Pseudomonas aeruginosa, using intracellular carbon for denitrification and phosphorus-accumulation and relevant metabolic mechanisms. Bioresource Technology, 2016, 211: 6-15. DOI:10.1016/j.biortech.2016.03.051
[27]
XIE E, DING AZ, ZHENG L, DOU JF, ANDERSON B, HUANG XL, JING RT. Screening and characterizing a denitrifying phosphorus-accumulating bacterium isolated from a circular plug-flow reactor. Environmental Technology, 2016, 37(22): 2823-2829. DOI:10.1080/09593330.2016.1167247
[28]
ZHENG L, WU X, DING A, WANG S, ZHANG S, XIE E. Phosphorus release and uptake of a denitrifying phosphorus-accumulating bacterium with different electron acceptors. Applied Ecology and Environmental Research, 2020, 18(6): 7865-7880. DOI:10.15666/aeer/1806_78657880
[29]
马放, 杨菲菲, 李昂, 崔潇, 张倩, 姜欣欣, 魏利, 张晓昕. 1株高效反硝化聚磷菌的生物学特性研究. 环境科学, 2011, 32(9): 2710-2715.
MA F, YANG FF, LI A, CUI X, ZHANG Q, JIANG XX, WEI L, ZHANG XX. Biological characteristics of denitrifying polyphosphate-accumulating organisms. Environmental Science, 2011, 32(9): 2710-2715 (in Chinese). DOI:10.13227/j.hjkx.2011.09.007
[30]
王春丽, 马放, 王强. 一株耐低温反硝化聚磷菌的筛选及其特性研究. 环境工程学报, 2007, 1(4): 21-24.
WANG CL, MA F, WANG Q. Screening of a low temperature-resistant denitrifying polyphosphate-accumulating organisms and its characteristics. Chinese Journal of Environmental Engineering, 2007, 1(4): 21-24 (in Chinese). DOI:10.3969/j.issn.1673-9108.2007.04.005
[31]
韦佳敏, 刘文如, 程洁红, 沈耀良. 反硝化除磷的影响因素及聚磷菌与聚糖菌耦合新工艺的研究进展. 化工进展, 2020, 39(11): 4608-4618.
WEI JM, LIU WR, CHENG JH, SHEN YL. Influencing factors of denitrifying phosphorus removal and advance research on novel process of coupling PAOs and GAOs. Chemical Industry and Engineering Progress, 2020, 39(11): 4608-4618 (in Chinese). DOI:10.16085/j.issn.1000-6613.2020-0179
[32]
WEI JM, HUANG HM, CHENG C, JIANG ZY, LIU WR, SHEN YL. Effect of sludge retention time and pH on the denitrifying phosphorus removal process. Huan Jing Ke Xue=Huanjing Kexue, 2019, 40(4): 1900-1905.
[33]
MIAO L, WANG SY, LI BK, CAO TH, ZHANG FZ, WANG Z, PENG YZ. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate. Water Research, 2016, 100: 405-412. DOI:10.1016/j.watres.2016.05.010
[34]
LI C, WANG Q, JIA WL. N2O reduction during denitrifying phosphorus removal with propionate as carbon source. Environmental Science and Pollution Research, 2022, 29(9): 12390-12398. DOI:10.1007/s11356-021-14629-4
[35]
ROBERTSON LA, CORNELISSE R, de vos P, HADIOETOMO R, KUENEN JG. Aerobic denitrification in various heterotrophic nitrifiers. Antonie Van Leeuwenhoek, 1989, 56(4): 289-299. DOI:10.1007/BF00443743
[36]
ZHANG MM, HE TX, CHEN MP, WU QF. Ammonium and hydroxylamine can be preferentially removed during simultaneous nitrification and denitrification by Pseudomonas taiwanensis EN-F2. Bioresource Technology, 2022, 350: 126912. DOI:10.1016/j.biortech.2022.126912
[37]
HE TX, WU QF, DING CY, CHEN MP, ZHANG MM. Hydroxylamine and nitrite are removed effectively by Streptomyces mediolani strain EM-B2. Ecotoxicology and Environmental Safety, 2021, 224: 112693. DOI:10.1016/j.ecoenv.2021.112693
[38]
YANG L, WANG XH, CUI S, REN YX, YU J, CHEN N, XIAO Q, GUO LK, WANG RH. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5. Bioresource Technology, 2019, 285: 121360. DOI:10.1016/j.biortech.2019.121360
[39]
WANG QK, HE JZ. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5. Water Research, 2020, 185: 116300. DOI:10.1016/j.watres.2020.116300
[40]
ZHANG MY, PAN LQ, LIU LP, SU C, DOU L, SU ZP, HE ZY. Phosphorus and nitrogen removal by a novel phosphate-accumulating organism, Arthrobacter sp. HHEP5 capable of heterotrophic nitrification-aerobic denitrification: safety assessment, removal characterization, mechanism exploration and wastewater treatment. Bioresource Technology, 2020, 312: 123633. DOI:10.1016/j.biortech.2020.123633
[41]
LI BT, JING FY, WU DS, XIAO B, HU ZQ. Simultaneous removal of nitrogen and phosphorus by a novel aerobic denitrifying phosphorus-accumulating bacterium, Pseudomonas stutzeri ADP-19. Bioresource Technology, 2021, 321: 124445. DOI:10.1016/j.biortech.2020.124445
[42]
CHEN HJ, ZHOU WZ, ZHU SN, LIU F, QIN L, XU C, WANG ZM. Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification. Bioresource Technology, 2021, 322: 124507. DOI:10.1016/j.biortech.2020.124507
[43]
ZHANG MY, PAN LQ, SU C, LIU LP, DOU L. Simultaneous aerobic removal of phosphorus and nitrogen by a novel salt-tolerant phosphate-accumulating organism and the application potential in treatment of domestic sewage and aquaculture sewage. Science of the Total Environment, 2021, 758: 143580. DOI:10.1016/j.scitotenv.2020.143580
[44]
LI CE, YANG JS, WANG X, WANG ET, LI BZ, HE RX, YUAN HL. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresource Technology, 2015, 182: 18-25. DOI:10.1016/j.biortech.2015.01.100
[45]
WAN WJ, HE DL, XUE ZJ. Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium Enterobacter cloacae HW-15. Ecological Engineering, 2017, 99: 199-208. DOI:10.1016/j.ecoleng.2016.11.030
[46]
ROUT PR, BHUNIA P, DASH RR. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresource Technology, 2017, 244: 484-495. DOI:10.1016/j.biortech.2017.07.186
[47]
WANG HY, ZHANG W, YE YP, HE QL, ZHANG SL. Isolation and characterization of Pseudoxanthomonas sp. strain YP1 capable of denitrifying phosphorus removal (DPR). Geomicrobiology Journal, 2018, 35(6): 537-543. DOI:10.1080/01490451.2017.1420710
[48]
MEDHI K, THAKUR IS. Bioremoval of nutrients from wastewater by a denitrifier Paracoccus denitrificans ISTOD1. Bioresource Technology Reports, 2018, 1: 56-60. DOI:10.1016/j.biteb.2018.02.006
[49]
LV XM, SHAO MF, LI CL, LI J, LIU DY, GAO XL, XIA X. Operation performance and microbial community dynamics of phosphorus removal sludge with different electron acceptors. Journal of Industrial Microbiology and Biotechnology, 2014, 41(7): 1099-1108. DOI:10.1007/s10295-014-1444-1
[50]
ZHANG Y, SONG CL, ZHOU ZJ, CAO XY, ZHOU YY. Coupling between nitrification and denitrification as well as its effect on phosphorus release in sediments of Chinese Shallow Lakes. Water, 2019, 11(9): 1809. DOI:10.3390/w11091809
[51]
KIM H, BAE HS, REDDY KR, OGRAM A. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary. Water Research, 2016, 106: 51-61. DOI:10.1016/j.watres.2016.09.048
[52]
ZHANG Y, SONG CL, JI L, LIU YQ, XIAO J, CAO XY, ZHOU YY. Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes. Science of the Total Environment, 2018, 627: 1294-1302. DOI:10.1016/j.scitotenv.2018.01.327
[53]
SAITO T, BRDJANOVIC D, van LOOSDRECHT MCM. Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Research, 2004, 38(17): 3760-3768. DOI:10.1016/j.watres.2004.05.023
[54]
ZHOU Y, PIJUAN MT, YUAN ZG. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms. Biotechnology and Bioengineering, 2007, 98(4): 903-912. DOI:10.1002/bit.21458
[55]
DAI XH, GU ZB, DAI LL, SHEN CM, ZHOU W, HUANG JH, WANG W, LIU ZG. Comparison of anaerobic phosphorus release from activated sludge with three carbon sources. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2021, 83(6): 1327-1334. DOI:10.2166/wst.2021.047
[56]
WEISKE A, BENCKISER G, HERBERT T, OTTOW J. Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biology and Fertility of Soils, 2001, 34(2): 109-117. DOI:10.1007/s003740100386
[57]
RAJTA A, BHATIA R, SETIA H, PATHANIA P. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. Journal of Applied Microbiology, 2020, 128(5): 1261-1278. DOI:10.1111/jam.14476
[58]
王彤, 汪涵, 周明达, 冉小川, 王伟刚, 吴敏, 王亚宜. 污水脱氮功能微生物的组学研究进展. 微生物学通报, 2021, 48(12): 4844-4870.
WANG T, WANG H, ZHOU MD, RAN XC, WANG WG, WU M, WANG YY. Advances in omics of functional microorganisms for nitrogen removal in wastewater. Microbiology China, 2021, 48(12): 4844-4870 (in Chinese). DOI:10.13344/j.microbiol.china.210386
[59]
HE TX, XIE DT, NI JP, LI Z, LI ZL. Nitrous oxide produced directly from ammonium, nitrate and nitrite during nitrification and denitrification. Journal of Hazardous Materials, 2020, 388: 122114. DOI:10.1016/j.jhazmat.2020.122114
[60]
ZHANG ZZ, ZHANG Y, CHEN YG. Recent advances in partial denitrification in biological nitrogen removal: from enrichment to application. Bioresource Technology, 2020, 298: 122444. DOI:10.1016/j.biortech.2019.122444
[61]
KUYPERS MMM, MARCHANT HK, KARTAL B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5): 263-276. DOI:10.1038/nrmicro.2018.9
[62]
RONAN E, AQEEL H, WOLFAARDT GM, LISS SN. Recent advancements in the biological treatment of high strength ammonia wastewater. World Journal of Microbiology and Biotechnology, 2021, 37(9): 158. DOI:10.1007/s11274-021-03124-0
[63]
HE TX, ZHANG MM, DING CY, WU QF, CHEN MP, MOU SL, CHENG DJ, DUAN SJ, WANG Y. New insight into the nitrogen removal capacity and mechanism of Streptomyces mediolani EM-B2. Bioresource Technology, 2022, 348: 126819. DOI:10.1016/j.biortech.2022.126819
[64]
吕清浩. 异养硝化菌Alcaligenes faecalis strain NR氮代谢途径的研究[D]. 重庆: 重庆大学硕士学位论文, 2015.
LV QH. Metabolic pathway of nitrogen by heterotrophic nitrification bacteria Alcaligenes faecalis strain NR[D]. Chongqing: Master's Thesis of Chongqing University, 2015 (in Chinese).
[65]
ZHENG XL, SUN PD, LOU JQ, FANG ZG, GUO MX, SONG YQ, TANG XD, JIANG T. The long-term effect of nitrite on the granule-based enhanced biological phosphorus removal system and the reversibility. Bioresource Technology, 2013, 132: 333-341. DOI:10.1016/j.biortech.2013.01.042
[66]
SHIVANI S, ANKITA R, HEMA S, RANJANA B. Simultaneous nitrification-denitrification by phosphate accumulating microorganisms. World Journal of Microbiology & Biotechnology, 2020, 36(10): 151.
[67]
SHI TY, GE Y, ZHAO N, HU XM, YUAN ZM. Polyphosphate kinase of Lysinibacillus sphaericus and its effects on accumulation of polyphosphate and bacterial growth. Microbiological Research, 2015, 172: 41-47. DOI:10.1016/j.micres.2014.12.002
[68]
缪新年, 程诚, 朱琳, 潘家成, 刘文如, 沈耀良. 短程硝化和反硝化除磷耦合工艺研究进展. 水处理技术, 2020, 46(12): 12-16, 24.
MIAO XN, CHENG C, ZHU L, PAN JC, LIU WR, SHEN YL. Research progress on the coupling process of short-cut nitrification and denitrification for phosphorus removal. Technology of Water Treatment, 2020, 46(12): 12-16, 24 (in Chinese).
[69]
李微, 王宇琦, 侯云鹤, 王贺, 陈一鸣, 高明杰, 祝雷. 反硝化除磷戈登氏菌属的富集及其菌剂制备. 微生物学通报, 2022, 49(6): 2022-2036.
LI W, WANG YQ, HOU YH, WANG H, CHEN YM, GAO MJ, ZHU L. Enrichment and agent preparation of Gordonia for denitrifying phosphorus removal. Microbiology China, 2022, 49(6): 2022-2036 (in Chinese).
[70]
赵伟华, 郑姝卉, 王凯. 污水反硝化除磷技术的机理与工艺研究进展. 水处理技术, 2020, 46(7): 1-5, 25.
ZHAO WH, ZHENG SH, WANG K. Research progress of the mechanism and process of the wastewater denitrifying phosphorus removal. Technology of Water Treatment, 2020, 46(7): 1-5, 25 (in Chinese).
[71]
王雨阳, 李茹莹. 同步脱氮除磷复配菌剂对河流水质净化效果研究. 环境科学学报, 2022, 42(5): 187-194.
WANG YY, LI RY. Study on river water purification by the mixed culture of simultaneous nitrogen and phosphorus removal bacteria. Acta Scientiae Circumstantiae, 2022, 42(5): 187-194 (in Chinese).
[72]
马晓冬. 重金属镍(Ni)对强化生物除磷及微生物的影响. 基因组学与应用生物学, 2018, 37(12): 5630-5639.
MA XD. Effect of heavy metal nickel (Ni) on enhanced biological phosphorus removal and microorganisms. Genomics and Applied Biology, 2018, 37(12): 5630-5639 (in Chinese).
[73]
CHEN YF, WANG Q, ZHAO S, YANG WH, WANG HY, JIA WL. Removal of nutrients and emission of nitrous oxide during simultaneous nitrification, denitrification and phosphorus removal process with metal ions addition. International Biodeterioration & Biodegradation, 2019, 142: 143-150.
[74]
ZHANG LH, ZHANG MS, YOU SJ, MA DM, ZHAO JT, CHEN Z. Effect of Fe3+ on the sludge properties and microbial community structure in a lab-scale A2O process. Science of the Total Environment, 2021, 780: 146505.
[75]
HE YT, HONG Y, LIU XY, ZHANG Q, LIU PR, WANG SY. Influences of carbon and nitrogen sources and metal ions on the heterotrophic culture of Scenedesmus sp. LX1. Environmental Science and Pollution Research, 2019, 26(13): 13381-13389.
[76]
DU R, PENG YZ, CAO SB, LI BK, WANG SY, NIU M. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation. Applied Microbiology and Biotechnology, 2016, 100(4): 2011-2021.
[77]
STOUTHAMER AH. Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes. Antonie Van Leeuwenhoek, 1992, 61(1): 1-33.
[78]
董晓莹, 彭党聪. 不同碳氮比下污水反硝化过程中亚硝氮积累的特性研究. 环境科学学报, 2017, 37(9): 3349-3355.
DONG XY, PENG DC. Nitrite accumulation in denitrification with different C/N ratios. Acta Scientiae Circumstantiae, 2017, 37(9): 3349-3355 (in Chinese).
[79]
黄斯婷, 杨庆, 刘秀红, 冯红利, 彭永臻. 不同碳源条件下污水处理反硝化过程亚硝态氮积累特性的研究进展. 水处理技术, 2015, 41(7): 21-25.
HUANG ST, YANG Q, LIU XH, FENG HL, PENG YZ. Review on nitrite accumulation during the denitrification of wastewater treatment with different carbon sources. Technology of Water Treatment, 2015, 41(7): 21-25 (in Chinese).
[80]
毕春雪, 于德爽, 杜世明, 王晓霞, 陈光辉, 王钧, 巩秀珍, 都叶奇. 乙酸钠作为碳源不同污泥源短程反硝化过程亚硝酸盐积累特性. 环境科学, 2019, 40(2): 783-790.
BI CX, YU DS, DU SM, WANG XX, CHEN GH, WANG J, GONG XZ, DU YQ. Nitrite accumulation characteristics of partial denitrification in different sludge sources using sodium acetate as carbon source. Environmental Science, 2019, 40(2): 783-790 (in Chinese).
[81]
殷芳芳, 王淑莹, 昂雪野, 侯红勋, 彭永臻, 王伟. 碳源类型对低温条件下生物反硝化的影响. 环境科学, 2009, 30(1): 108-113.
YIN FF, WANG SY, ANG XY, HOU HX, PENG YZ, WANG W. Effects of carbon source types on denitrification performance at low temperature. Environmental Science, 2009, 30(1): 108-113 (in Chinese).
[82]
MCAULIFFE GA, LÓPEZ-AIZPÚN M, BLACKWELL MSA, CASTELLANO-HINOJOSA A, DARCH T, EVANS J, HORROCKS C, LE COCQ K, TAKAHASHI T, HARRIS P, LEE MRF, CARDENAS L. Elucidating three-way interactions between soil, pasture and animals that regulate nitrous oxide emissions from temperate grazing systems. Agriculture, Ecosystems & Environment, 2020, 300: 106978.
[83]
LENHART K, BEHRENDT T, GREINER S, STEINKAMP J, WELL R, GIESEMANN A, KEPPLER F. Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. The New Phytologist, 2019, 221(3): 1398-1408.
[84]
WISNIEWSKI K, KOWALSKI M, MAKINIA J. Modeling nitrous oxide production by a denitrifying-enhanced biologically phosphorus removing (EBPR) activated sludge in the presence of different carbon sources and electron acceptors. Water Research, 2018, 142: 55-64.
[85]
LIU YW, PENG L, CHEN XM, NI BJ. Mathematical modeling of nitrous oxide production during denitrifying phosphorus removal process. Environmental Science & Technology, 2015, 49(14): 8595-8601.
[86]
ROY S, NIRAKAR P, YONG NGH, STEFAN W. Denitrification kinetics indicates nitrous oxide uptake is unaffected by electron competition in Accumulibacter. Water Research, 2021, 189: 116557.
[87]
PEDROUSO A, Val del RÍO Á, MORALES N, VÁZQUEZ-PADÍN JR, CAMPOS JL, MÉNDEZ R, MOSQUERA-CORRAL A. Nitrite oxidizing bacteria suppression based on in situ free nitrous acid production at mainstream conditions. Separation and Purification Technology, 2017, 186: 55-62.
[88]
DU SM, YU DS, ZHAO J, WANG XX, BI CX, ZHEN JY, YUAN MF. Achieving deep-level nutrient removal via combined denitrifying phosphorus removal and simultaneous partial nitrification-endogenous denitrification process in a single-sludge sequencing batch reactor. Bioresource Technology, 2019, 289: 121690.
[89]
van LOOSDRECHT MCM, BRANDSE FA, de VRIES AC. Upgrading of waste water treatment processes for integrated nutrient removal—the BCFS® process. Water Science and Technology, 1998, 37(9): 209-217.
[90]
卞晓峥, 闫阁, 黄健平, 邱林. 双污泥系统反硝化除磷新工艺研究进展. 水处理技术, 2021, 47(7): 19-24.
BIAN XZ, YAN G, HUANG JP, QIU L. Progess of new process of two-sludge denitrification phosphorus removal. Technology of Water Treatment, 2021, 47(7): 19-24 (in Chinese).
[91]
RYU HD, KIM D, KIM KY, LEE SI. Enhancement of nitrogen removal in a modified dephanox process. Environmental Engineering Science, 2008, 25(4): 601-614.
[92]
李微, 刘静, 孟海停, 祝雷, 傅金祥. A2/N-SBR工艺短程反硝化除磷脱氮研究. 环境工程, 2016, 34(8): 62-67.
LI W, LIU J, MENG HT, ZHU L, FU JX. Shortcut denitrifying phosphorus removal in a2/n-sbr process. Environmental Engineering, 2016, 34(8): 62-67 (in Chinese).