[1] | |
|
[2] |
CROFTS TS, GASPARRINI AJ, DANTAS G. Next-generation approaches to understand and combat the antibiotic resistome. Nature Reviews Microbiology, 2017, 15(7): 422-434. DOI:10.1038/nrmicro.2017.28
|
|
[3] |
BILLAMBOZ M, FATIMA Z, HAMEED S, JAWHARA S. Promising drug candidates and new strategies for fighting against the emerging superbug Candida auris. Microorganisms, 2021, 9(3): 634. DOI:10.3390/microorganisms9030634
|
|
[4] |
FRANCI G, FALANGA A, GALDIERO S, PALOMBA L, RAI M, MORELLI G, GALDIERO M. Silver nanoparticles as potential antibacterial agents. Molecules: Basel, Switzerland, 2015, 20(5): 8856-8874. DOI:10.3390/molecules20058856
|
|
[5] |
WU Q, MIAO WS, ZHANG YD, GAO HJ, HUI D. Mechanical properties of nanomaterials: a review. Nanotechnology Reviews, 2020, 9(1): 259-273. DOI:10.1515/ntrev-2020-0021
|
|
[6] |
CAI XC, XIE ZX, LI DD, KASSYMOVA M, ZANG SQ, JIANG HL. Nano-sized metal-organic frameworks: synthesis and applications. Coordination Chemistry Reviews, 2020, 417: 213366. DOI:10.1016/j.ccr.2020.213366
|
|
[7] |
孙明辉, 肖菲, 徐梦楠, 王卓平, 王帅. 纳米银线可拉伸透明导电薄膜研究进展: 材料、器件与应用. 中国科学: 化学, 2021, 51(12): 1549-1562. SUN MH, XIAO F, XU MN, WANG ZP, WANG S. Research progress of silver nanowire-based stretchable transparent conductive film: materials, devices and applications. Scientia Sinica: Chimica, 2021, 51(12): 1549-1562 (in Chinese).
|
|
[8] |
陈永义, 鲍立荣, 汪辉, 宁政, 钟贤东, 曹金乐, 沈瑞琪, 张伟. 激光液相烧蚀法制备纳米粒子研究进展. 中国激光, 2021, 48(6): 25-42. CHEN YY, BAO LR, WANG H, NING Z, ZHONG XD, CAO JL, SHEN RQ, ZHANG W. Research progress in preparation of nanoparticles by laser ablation in liquid. Chinese Journal of Lasers, 2021, 48(6): 25-42 (in Chinese).
|
|
[9] |
SKIBA MI, VOROBYOVA VI, KOSOGINA IV. Preparation of silver nanoparticles in a plasma-liquid system in the presence of PVA: antimicrobial, catalytic, and sensing properties. Journal of Chemistry, 2020, 2020: 1-9.
|
|
[10] |
鲁曦泽, 姜宇凡, 李英华, 郝嘉言, 谭文宇, 任晓宇. 新型湿法纳米银制备技术及其毒性行为. 功能材料, 2022, 53(2): 2094-2100. LU XZ, JIANG YF, LI YH, HAO JY, TAN WY, REN XY. A new wet preparation method of nano-silver and its toxic behavior. Journal of Functional Materials, 2022, 53(2): 2094-2100 (in Chinese). DOI:10.3969/j.issn.1001-9731.2022.02.014
|
|
[11] |
LI GL, WANG GH. Synthesis of nanometer-sized TiO2 particles by a microemulsion method. Nanostructured Materials, 1999, 11(5): 663-668. DOI:10.1016/S0965-9773(99)00354-2
|
|
[12] |
KUMAR SS, VENKATESWARLU P, RAO VR, RAO GN. Synthesis, characterization and optical properties of zinc oxide nanoparticles. International Nano Letters, 2013, 3(1): 30. DOI:10.1186/2228-5326-3-30
|
|
[13] |
SINGH H, DU J, YI TH. Biosynthesis of silver nanoparticles using Aeromonas sp. THG-FG1.2 and its antibacterial activity against pathogenic microbes. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(3): 584-590. DOI:10.3109/21691401.2016.1163715
|
|
[14] |
LI WR, SUN TL, ZHOU SL, MA YK, SHI QS, XIE XB, HUANG XM. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. International Biodeterioration & Biodegradation, 2017, 123: 304-310.
|
|
[15] |
姚希燕, 唐晓宁, 王晓楠, 张彬, 夏振昊. 无机抗菌材料抗菌机理研究进展. 材料导报, 2021, 35(1): 1105-1111. YAO XY, TANG XN, WANG XN, ZHANG B, XIA ZH. Research progress on antibacterial mechanisms of inorganic antibacterial materials. Materials Reports, 2021, 35(1): 1105-1111 (in Chinese).
|
|
[16] |
KHALANDI B, ASADI N, MILANI M, DAVARAN S, ABADI AJN, ABASI E, AKBARZADEH A. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Research, 2017, 67(2): 70-76.
|
|
[17] |
SONDI I, SALOPEK-SONDI B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004, 275(1): 177-182. DOI:10.1016/j.jcis.2004.02.012
|
|
[18] |
le PAPE H, SOLANO-SERENA F, CONTINI P, DEVILLERS C, MAFTAH A, LEPRAT P. Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver; bactericidal activity of ACF(Ag) mediated by ROS. Journal of Inorganic Biochemistry, 2004, 98(6): 1054-1060. DOI:10.1016/j.jinorgbio.2004.02.025
|
|
[19] | |
|
[20] | |
|
[21] |
YIN IX, ZHANG J, ZHAO IS, MEI ML, LI QL, CHU CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine, 2020, 15: 2555-2562. DOI:10.2147/IJN.S246764
|
|
[22] |
VAZQUEZ-MUÑOZ R, BORREGO B, JUÁREZ-MORENO K, GARCÍA-GARCÍA M, MOTA MORALES JD, BOGDANCHIKOVA N, HUERTA-SAQUERO A. Toxicity of silver nanoparticles in biological systems: does the complexity of biological systems matter?. Toxicology Letters, 2017, 276: 11-20. DOI:10.1016/j.toxlet.2017.05.007
|
|
[23] |
CHATTERJEE AK, CHAKRABORTY R, BASU T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology, 2014, 25(13): 135101. DOI:10.1088/0957-4484/25/13/135101
|
|
[24] |
李马成, 黄勇, 李林, 胡登辉, 康建南, 刘自逵. 纳米氧化锌抑菌机理及影响因素研究进展. 饲料研究, 2021, 44(6): 147-150. LI MC, HUANG Y, LI L, HU DH, KANG JN, LIU ZK. Research progress on mechanisms bacteriostasis and affecting factors of nano-zinc oxide. Feed Research, 2021, 44(6): 147-150 (in Chinese). DOI:10.13557/j.cnki.issn1002-2813.2021.06.036
|
|
[25] |
姬丽丽, 秦国强, 刘彧, 常智敏, 周媛. 纳米TiO2抑菌抗癌性能研究进展. 四川冶金, 2020, 42(5): 2-4, 31. JI LL, QIN GQ, LIU Y, CHANG ZM, ZHOU Y. The study on antibacterial and anticancer properties of nano-TiO2. Sichuan Metallurgy, 2020, 42(5): 2-4, 31 (in Chinese). DOI:10.3969/j.issn.1001-5108.2020.05.002
|
|
[26] |
LIPOVSKY A, NITZAN Y, GEDANKEN A, LUBART R. Antifungal activity of ZnO nanoparticles: the role of ROS mediated cell injury. Nanotechnology, 2011, 22(10): 105101. DOI:10.1088/0957-4484/22/10/105101
|
|
[27] |
RAGHUNATH A, PERUMAL E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 2017, 49(2): 137-152. DOI:10.1016/j.ijantimicag.2016.11.011
|
|
[28] |
KAR D, BANDYOPADHYAY S, DIMRI U, MONDAL DB, NANDA PK, DAS AK, BATABYAL S, DANDAPAT P, BANDYOPADHYAY S. Antibacterial effect of silver nanoparticles and capsaicin against MDR-ESBL producing Escherichia coli: an in vitro study. Asian Pacific Journal of Tropical Disease, 2016, 6(10): 807-810. DOI:10.1016/S2222-1808(16)61135-0
|
|
[29] |
WAN GQ, RUAN LG, YIN Y, YANG T, GE M, CHENG XD. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. International Journal of Nanomedicine, 2016, 11: 3789-3800. DOI:10.2147/IJN.S104166
|
|
[30] |
MORONES JR, ELECHIGUERRA JL, CAMACHO A, HOLT K, KOURI JB, RAMÍREZ JT, YACAMAN MJ. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10): 2346-2353. DOI:10.1088/0957-4484/16/10/059
|
|
[31] |
TANG SH, ZHENG J. Antibacterial activity of silver nanoparticles: structural effects. Advanced Healthcare Materials, 2018, 7(13): e1701503. DOI:10.1002/adhm.201701503
|
|
[32] |
CHEN JN, MAO SY, XU ZF, DING W. Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Advances, 2019, 9(7): 3788-3799. DOI:10.1039/C8RA09186B
|
|
[33] |
BAKER C, PRADHAN A, PAKSTIS L, POCHAN DJ, SHAH SI. Synthesis and antibacterial properties of silver nanoparticles[J]. J Nanosci Nanotechnol. 2005 Feb; 5(2): 244-9.
|
|
[34] |
CRISAN CM, MOCAN T, MANOLEA M, LASCA LI, TĂBĂRAN FA, MOCAN L. Review on silver nanoparticles as a novel class of antibacterial solutions. Applied Sciences, 2021, 11(3): 1120. DOI:10.3390/app11031120
|
|
[35] |
熊玲, 蒋学华, 陈亮, 汤京龙, 奚廷斐. 不同粒径银粒子的体外细胞毒性比较. 中国生物医学工程学报, 2007, 26(4): 600-604. XIONG L, JIANG XH, CHEN L, TANG JL, XI TF. Comparison of in vitro cytotoxicity of silver particles with different sizes. Chinese Journal of Biomedical Engineering, 2007, 26(4): 600-604 (in Chinese). DOI:10.3969/j.issn.0258-8021.2007.04.023
|
|
[36] |
YAQOOB AA, UMAR K, IBRAHIM MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications-a review. Applied Nanoscience, 2020, 10(5): 1369-1378. DOI:10.1007/s13204-020-01318-w
|
|
[37] |
HELMLINGER J, SENGSTOCK C, GROß-HEITFELD C, MAYER C, SCHILDHAUER TA, KÖLLER M, EPPLE M. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Advances, 2016, 6(22): 18490-18501. DOI:10.1039/C5RA27836H
|
|
[38] |
薛文强, 于世平. 纳米银的抗菌机制及临床应用研究. 中国微生态学杂志, 2022, 34(1): 117-120. XUE WQ, YU SP. Antibacterial mechanism and clinical application of silver nanoparticles. Chinese Journal of Microecology, 2022, 34(1): 117-120 (in Chinese). DOI:10.13381/j.cnki.cjm.202201023
|
|
[39] |
el BADAWY AM, SILVA RG, MORRIS B, SCHECKEL KG, SUIDAN MT, TOLAYMAT TM. Surface charge-dependent toxicity of silver nanoparticles. Environmental Science & Technology, 2011, 45(1): 283-287.
|
|
[40] | |
|
[41] |
DANIELSEN PH, CAO Y, ROURSGAARD M, MØLLER P, LOFT S. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials. Nanotoxicology, 2015, 9(7): 813-824. DOI:10.3109/17435390.2014.980449
|
|
[42] |
LIU Y, SUN L, YANG GL, YANG Z. Nephrotoxicity and genotoxicity of silver nanoparticles in juvenile rats and possible mechanisms of action. Arhiv Za Higijenu Rada i Toksikologiju, 2020, 71(2): 121-129.
|
|
[43] |
SINGH S. Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicology Mechanisms and Methods, 2019, 29(4): 300-311. DOI:10.1080/15376516.2018.1553221
|
|
[44] |
LIU ZW, LIU SC, REN GG, ZHANG T, YANG Z. Nano-CuO inhibited voltage-gated sodium current of hippocampal CA1 neurons via reactive oxygen species but independent from G-proteins pathway. Journal of Applied Toxicology, 2011, 31(5): 439-445. DOI:10.1002/jat.1611
|
|
[45] |
SHAKEEL M, JABEEN F, SHABBIR S, ASGHAR MS, KHAN MS, CHAUDHRY AS. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biological Trace Element Research, 2016, 172(1): 1-36. DOI:10.1007/s12011-015-0550-x
|
|
[46] |
ZIEMIŃSKA E, STAFIEJ A, STRUŻYŃSKA L. The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. Toxicology, 2014, 315: 38-48. DOI:10.1016/j.tox.2013.11.008
|
|
[47] |
张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应. 化学进展, 2018, 30(9): 1392-1402. ZHANG BJ, LIU Q, ZHOU QF, et al. Neurotoxicological effects of nanosilver. Progress in Chemistry, 2018, 30(9): 1392-1402 (in Chinese).
|
|
[48] |
XU FL, PIETT C, FARKAS S, QAZZAZ M, SYED NI. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Molecular Brain, 2013, 6: 29. DOI:10.1186/1756-6606-6-29
|
|
[49] |
AN L, LIU SC, YANG Z, ZHANG T. Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicology Letters, 2012, 213(2): 220-227. DOI:10.1016/j.toxlet.2012.07.007
|
|
[50] |
STANKIC S, SUMAN S, HAQUE F, VIDIC J. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Journal of Nanobiotechnology, 2016, 14(1): 73.
|
|
[51] |
FAYAZ AM, BALAJI K, GIRILAL M, YADAV R, KALAICHELVAN PT, VENKETESAN R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 2010, 6(1): 103-109.
|
|
[52] |
IRAM S, KHAN JA, AMAN N, NADHMAN A, ZULFIQAR Z, ARFAT YAMEEN M. Enhancing the anti-enterococci activity of different antibiotics by combining with metal oxide nanoparticles. Jundishapur Journal of Microbiology, 2016, 9(3): e31302.
|
|
[53] |
VALIEV RZ, PARFENOV EV, PARFENOVA LV. Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality. Materials Transactions, 2019, 60(7): 1356-1366.
|
|
[54] |
HAO ZM, YANG H, MENG YB. Dermlin and silver nanoparticles combined antibacterial dressing for skin wound repair. Science of Advanced Materials, 2021, 13(10): 1945-1950.
|
|
[55] |
RAUT HK, DAS R, LIU ZQ, LIU XL, RAMAKRISHNA S. Biocompatibility of biomaterials for tissue regeneration or replacement. Biotechnology Journal, 2020, 15(12): e2000160.
|
|
[56] |
WEKWEJT M, MICHNO A, TRUCHAN K, PAŁUBICKA A, ŚWIECZKO-ŻUREK B, OSYCZKA AM, ZIELIŃSKI A. Antibacterial activity and cytocompatibility of bone cement enriched with antibiotic, nanosilver, and nanocopper for bone regeneration. Nanomaterials, 2019, 9(8): 1114.
|
|
[57] |
SARATALE RG, BENELLI G, KUMAR G, KIM DS, SARATALE GD. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environmental Science and Pollution Research, 2018, 25(11): 10392-10406.
|
|
[58] |
KUPPUSAMY P, ICHWAN SJA, AL-ZIKRI PNH, SURIYAH WH, SOUNDHARRAJAN I, GOVINDAN N, MANIAM GP, YUSOFF MM. In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells. Biological Trace Element Research, 2016, 173(2): 297-305.
|
|
[59] |
RAGHUNANDAN D, RAVISHANKAR B, SHARANBASAVA G, MAHESH DB, HARSOOR V, YALAGATTI MS, BHAGAWANRAJU M, VENKATARAMAN A. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnology, 2011, 2(1/2/3/4/5/6): 57-65.
|
|
[60] |
徐丽霜, 隋丽丽, 葛欣, 张俊. 纳米二氧化钛抗癌光敏剂灭杀肿瘤细胞的研究进展. 沈阳医学院学报, 2019, 21(1): 87-89. XU LS, SUI LL, GE X, ZHANG J. Research progress of photocatalytic killing effect of TiO2 nanoparticles. Journal of Shenyang Medical College, 2019, 21(1): 87-89 (in Chinese).
|
|
[61] |
REN E, ZHANG C, LI DF, PANG X, LIU G. Leveraging metal oxide nanoparticles for bacteria tracing and eradicating. View, 2020, 1(3): 20200052.
|
|
[62] |
BHARATHI D, RANJITHKUMAR R, VASANTHARAJ S, CHANDARSHEKAR B, BHUVANESHWARI V. Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. International Journal of Biological Macromolecules, 2019, 132: 880-887.
|
|
[63] |
ZHAO YB, SHI LQ, JI XJ, LI JC, HAN ZZ, LI SQ, ZENG RC, ZHANG F, WANG ZL. Corrosion resistance and antibacterial properties of polysiloxane modified layer-by-layer assembled self-healing coating on magnesium alloy. Journal of Colloid and Interface Science, 2018, 526: 43-50.
|
|
[64] |
LI J, TAN L, LIU XM, CUI ZD, YANG XJ, YEUNG KWK, CHU PK, WU SL. Balancing bacteria- osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano, 2017, 11(11): 11250-11263.
|
|