[1] |
THOMFORD N, SENTHEBANE D, ROWE A, MUNRO D, SEELE P, MAROYI A, DZOBO K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. International Journal of Molecular Sciences, 2018, 19(6): 1-29.
|
|
[2] |
NEWMAN DJ, CRAGG GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 2020, 83(3): 770-803. DOI:10.1021/acs.jnatprod.9b01285
|
|
[3] |
ATANASOV AG, ZOTCHEV SB, DIRSCH VM, SUPURAN CT. Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 2021, 20(3): 200-216. DOI:10.1038/s41573-020-00114-z
|
|
[4] |
MEDEMA MH, de ROND T, MOORE BS. Mining genomes to illuminate the specialized chemistry of life. Nature Reviews Genetics, 2021, 22(9): 553-571. DOI:10.1038/s41576-021-00363-7
|
|
[5] |
WRIGHT GD. Opportunities for natural products in 21 st century antibiotic discovery. Natural Product Reports, 2017, 34(7): 694-701. DOI:10.1039/C7NP00019G
|
|
[6] |
NEWMAN DJ, CRAGG GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 2012, 75(3): 311-335. DOI:10.1021/np200906s
|
|
[7] |
EKAS H, DEANER M, ALPER HS. Recent advancements in fungal-derived fuel and chemical production and commercialization. Current Opinion in Biotechnology, 2019, 57: 1-9. DOI:10.1016/j.copbio.2018.08.014
|
|
[8] |
KIM E, MOORE BS, YOON YJ. Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nature Chemical Biology, 2015, 11(9): 649-659. DOI:10.1038/nchembio.1893
|
|
[9] |
CRAVENS A, PAYNE J, SMOLKE CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nature Communications, 2019, 10: 1-12. DOI:10.1038/s41467-018-07882-8
|
|
[10] |
SMANSKI MJ, ZHOU H, CLAESEN J, SHEN B, FISCHBACH MA, VOIGT CA. Synthetic biology to access and expand nature's chemical diversity. Nature Reviews Microbiology, 2016, 14(3): 135-149. DOI:10.1038/nrmicro.2015.24
|
|
[11] |
ROMERO-SUAREZ D, KEASLING JD, JENSEN MK. Supplying plant natural products by yeast cell factories. Current Opinion in Green and Sustainable Chemistry, 2022, 33: 1-10.
|
|
[12] |
LACERDA MP, OH EJ, ECKERT C. The model system Saccharomyces cerevisiae versus emerging non-model yeasts for the production of biofuels. Life, 2020, 10(11): 1-20.
|
|
[13] |
YI XN, ALPER HS. Considering strain variation and non-type strains for yeast metabolic engineering applications. Life, 2022, 12(4): 1-11.
|
|
[14] |
ZHAO Y, SONG BC, LI J, ZHANG JF. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World Journal of Microbiology and Biotechnology, 2021, 38(1): 1-19.
|
|
[15] |
WAGNER JM, ALPER HS. Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genetics and Biology, 2016, 89: 126-136. DOI:10.1016/j.fgb.2015.12.001
|
|
[16] |
GODINHO CP, PALMA M, OLIVEIRA J, MOTA MN, ANTUNES M, TEIXEIRA MC, MONTEIRO PT, SÁ-CORREIA I. The N.C. Yeastract and CommunityYeastract databases to study gene and genomic transcription regulation in non-conventional yeasts. FEMS Yeast Research, 2021, 21(6): 1-10.
|
|
[17] |
PATRA P, DAS M, KUNDU P, GHOSH A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnology Advances, 2021, 47: 1-29.
|
|
[18] |
SHAN L, DAI ZJ, WANG QH. Advances and opportunities of CRISPR/Cas technology in bioengineering non-conventional yeasts. Frontiers in Bioengineering and Biotechnology, 2021, 9: 1-10. DOI:10.12970/2311-1755.2021.09.01
|
|
[19] |
LI J, RONG LX, ZHAO Y, LI SL, ZHANG CY, XIAO DG, FOO JL, YU AQ. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnology Advances, 2020, 43: 1-23.
|
|
[20] |
SUN LC, ALPER HS. Non-conventional hosts for the production of fuels and chemicals. Current Opinion in Chemical Biology, 2020, 59: 15-22. DOI:10.1016/j.cbpa.2020.03.004
|
|
[21] |
CHATTOPADHYAY A, MITRA M, MAITI MK. Recent advances in lipid metabolic engineering of oleaginous yeasts. Biotechnology Advances, 2021, 53: 1-20.
|
|
[22] |
GEIJER C, LEDESMA-AMARO R, TOMÁS-PEJÓ E. Unraveling the potential of non-conventional yeasts in biotechnology. FEMS Yeast Research, 2022, 22(1): 1-6.
|
|
[23] |
GROENEWALD M, BOEKHOUT T, NEUVÉGLISE C, GAILLARDIN C, van DIJCK PWM, WYSS M. Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Critical Reviews in Microbiology, 2014, 40(3): 187-206. DOI:10.3109/1040841X.2013.770386
|
|
[24] |
FRÖHLICH-WYDER MT, ARIAS-ROTH E, JAKOB E. Cheese yeasts. Yeast, 2019, 36(3): 129-141. DOI:10.1002/yea.3368
|
|
[25] | |
|
[26] |
SEKOVA VY, DERGACHEVA DI, ISAKOVA EP, GESSLER NN, TERESHINA VM, DERYABINA YI. Soluble sugar and lipid readjustments in the Yarrowia lipolytica yeast at various temperatures and pH. Metabolites, 2019, 9(12): 307. DOI:10.3390/metabo9120307
|
|
[27] | |
|
[28] |
SUN T, YU YZ, WANG KF, LEDESMA-AMARO R, JI XJ. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: a review. Bioresource Technology, 2021, 337: 1-8.
|
|
[29] |
LEDESMA-AMARO R, NICAUD JM. Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends in Biotechnology, 2016, 34(10): 798-809. DOI:10.1016/j.tibtech.2016.04.010
|
|
[30] |
XIONG XC, CHEN SL. Expanding toolbox for genes expression of Yarrowia lipolytica to include novel inducible, repressible, and hybrid promoters. ACS Synthetic Biology, 2020, 9(8): 2208-2213. DOI:10.1021/acssynbio.0c00243
|
|
[31] |
BLAZECK J, REED B, GARG R, GERSTNER R, PAN AN, AGARWALA V, ALPER HS. Generalizing a hybrid synthetic promoter approach in Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2013, 97(7): 3037-3052. DOI:10.1007/s00253-012-4421-5
|
|
[32] |
ZHAO Y, LIU SQ, LU ZH, ZHAO BX, WANG SH, ZHANG CY, XIAO DG, FOO JL, YU AQ. Hybrid promoter engineering strategies in Yarrowia lipolytica: isoamyl alcohol production as a test study. Biotechnology for Biofuels, 2021, 14(1): 1-13. DOI:10.1186/s13068-020-01854-1
|
|
[33] |
TRASSAERT M, VANDERMIES M, CARLY F, DENIES O, THOMAS S, FICKERS P, NICAUD JM. New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica. Microbial Cell Factories, 2017, 16(1): 1-17. DOI:10.1186/s12934-016-0616-2
|
|
[34] |
GAO SL, TONG YY, WEN ZQ, ZHU L, GE M, CHEN DJ, JIANG Y, YANG S. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. Journal of Industrial Microbiology and Biotechnology, 2016, 43(8): 1085-1093. DOI:10.1007/s10295-016-1789-8
|
|
[35] |
SCHWARTZ CM, HUSSAIN MS, BLENNER M, WHEELDON I. Synthetic RNA polymerase Ⅲ promoters facilitate high-efficiency CRISPR-Cas9- mediated genome editing in Yarrowia lipolytica. ACS Synthetic Biology, 2016, 5(4): 356-359. DOI:10.1021/acssynbio.5b00162
|
|
[36] |
GAO DF, SMITH S, SPAGNUOLO M, RODRIGUEZ G, BLENNER M. Dual CRISPR-Cas9 cleavage mediated gene excision and targeted integration in Yarrowia lipolytica. Biotechnology Journal, 2018, 13(9): 1-8.
|
|
[37] |
RAMESH A, ONG T, GARCIA JA, ADAMS J, WHEELDON I. Guide RNA engineering enables dual purpose CRISPR-Cpf1 for simultaneous gene editing and gene regulation in Yarrowia lipolytica. ACS Synthetic Biology, 2020, 9(4): 967-971. DOI:10.1021/acssynbio.9b00498
|
|
[38] |
YANG ZL, EDWARDS H, XU P. CRISPR-Cas12a/ Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metabolic Engineering Communications, 2020, 10: 1-8.
|
|
[39] |
FICKERS P, Le DALL MT, GAILLARDIN C, THONART P, NICAUD JM. New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. Journal of Microbiological Methods, 2003, 55(3): 727-737. DOI:10.1016/j.mimet.2003.07.003
|
|
[40] |
LV YK, EDWARDS H, ZHOU JW, XU P. Combining 26s rDNA and the Cre- loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica. ACS Synthetic Biology, 2019, 8(3): 568-576. DOI:10.1021/acssynbio.8b00535
|
|
[41] |
张金宏, 崔志勇, 祁庆生, 侯进. 解脂耶氏酵母表达调控工具的开发及天然产物合成的研究进展. 生物工程学报, 2022, 38(2): 478-505. ZHANG JH, CUI ZY, QI QS, HOU J. The recent advances in developing gene editing and expression tools and the synthesis of natural products in Yarrowia lipolytica. Chinese Journal of Biotechnology, 2022, 38(2): 478-505 (in Chinese). DOI:10.13345/j.cjb.210327
|
|
[42] |
SCHWARTZ C, CURTIS N, LÖBS AK, WHEELDON I. Multiplexed CRISPR activation of cryptic sugar metabolism enables Yarrowia lipolytica growth on cellobiose. Biotechnology Journal, 2018, 13(9): 1-7.
|
|
[43] |
ZHANG JL, PENG YZ, LIU D, LIU H, CAO YX, LI BZ, LI C, YUAN YJ. Gene repression via multiplex gRNA strategy in Y. lipolytica. Microbial Cell Factories, 2018, 17(1): 1-13. DOI:10.1186/s12934-017-0850-2
|
|
[44] |
赵禹, 刘士琦, 李建, 李圣龙, 赵雅坤, 肖冬光, 于爱群. 解脂耶氏酵母作为微生物细胞工厂的应用研究进展. 食品科学, 2021, 42(19): 388-400. ZHAO Y, LIU SQ, LI J, LI SL, ZHAO YK, XIAO DG, YU AQ. Advances in the application of Yarrowia lipolytica as a microbial cell factory. Food Science, 2021, 42(19): 388-400 (in Chinese).
|
|
[45] |
MILLER KK, ALPER HS. Yarrowia lipolytica: more than an oleaginous workhorse. Applied Microbiology and Biotechnology, 2019, 103(23/24): 9251-9262.
|
|
[46] |
CHRISTEN S, SAUER U. Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Research, 2011, 11(3): 263-272. DOI:10.1111/j.1567-1364.2010.00713.x
|
|
[47] |
NG TK, YU AQ, LING H, PRATOMO JUWONO NK, CHOI WJ, LEONG SSJ, CHANG MW. Engineering Yarrowia lipolytica towards food waste bioremediation: production of fatty acid ethyl esters from vegetable cooking oil. Journal of Bioscience and Bioengineering, 2020, 129(1): 31-40. DOI:10.1016/j.jbiosc.2019.06.009
|
|
[48] |
GUO YF, SU LQ, LIU Q, ZHU Y, DAI ZJ, WANG QH. Dissecting carbon metabolism of Yarrowia lipolytica type strain W29 using genome-scale metabolic modelling. Computational and Structural Biotechnology Journal, 2022, 20: 2503-2511. DOI:10.1016/j.csbj.2022.05.018
|
|
[49] |
PARK BG, KIM M, KIM J, YOO H, KIM BG. Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms. Biotechnology Journal, 2017, 12(1): 1-9.
|
|
[50] |
WANG JP, LEDESMA-AMARO R, WEI YJ, JI BY, JI XJ. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica-a review. Bioresource Technology, 2020, 313: 1-11.
|
|
[51] |
MUHAMMAD A, FENG XD, RASOOL A, SUN WT, LI C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnology Advances, 2020, 43: 1-14.
|
|
[52] |
LIU HH, WANG C, LU XY, HUANG H, TIAN Y, JI XJ. Improved production of arachidonic acid by combined pathway engineering and synthetic enzyme fusion in Yarrowia lipolytica. Journal of Agricultural and Food Chemistry, 2019, 67(35): 9851-9857. DOI:10.1021/acs.jafc.9b03727
|
|
[53] |
ZHANG BX, NI LJ, TANG XS, CHEN XM, HU B. Engineering the β-oxidation pathway in Yarrowia lipolytica for the production of trans-10, cis-12-conjugated linoleic acid. Journal of Agricultural and Food Chemistry, 2022, 70(27): 8377-8384. DOI:10.1021/acs.jafc.2c02242
|
|
[54] |
GEMPERLEIN K, DIETRICH D, KOHLSTEDT M, ZIPF G, BERNAUER HS, WITTMANN C, WENZEL SC, MÜLLER R. Polyunsaturated fatty acid production by Yarrowia lipolytica employing designed myxobacterial PUFA synthases. Nature Communications, 2019, 10: 1-12. DOI:10.1038/s41467-018-07882-8
|
|
[55] |
GATTER M, FÖRSTER A, BÄR K, WINTER M, OTTO C, PETZSCH P, JEŽKOVÁ M, BAHR K, PFEIFFER M, MATTHÄUS F, BARTH G. A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica. FEMS Yeast Research, 2014, 14(6): 858-872. DOI:10.1111/1567-1364.12176
|
|
[56] |
NAVEIRA-PAZOS C, VEIGA MC, KENNES C. Accumulation of lipids by the oleaginous yeast Yarrowia lipolytica grown on carboxylic acids simulating syngas and carbon dioxide fermentation. Bioresource Technology, 2022, 360: 1-9.
|
|
[57] |
GAO Q, CAO X, HUANG YY, YANG JL, CHEN J, WEI LJ, HUA Q. Overproduction of fatty acid ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimization. ACS Synthetic Biology, 2018, 7(5): 1371-1380. DOI:10.1021/acssynbio.7b00453
|
|
[58] |
QIAO KJ, WASYLENKO TM, ZHOU K, XU P, STEPHANOPOULOS G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature Biotechnology, 2017, 35(2): 173-177. DOI:10.1038/nbt.3763
|
|
[59] |
CORDOVA LT, BUTLER J, ALPER HS. Direct production of fatty alcohols from glucose using engineered strains of Yarrowia lipolytica. Metabolic Engineering Communications, 2020, 10: 1-8.
|
|
[60] |
XU P, QIAO KJ, AHN WS, STEPHANOPOULOS G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 10848-10853. DOI:10.1073/pnas.1607295113
|
|
[61] |
XU JY, LIU N, QIAO KJ, VOGG S, STEPHANOPOULOS G. Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): E5308-E5316.
|
|
[62] |
RIGOUIN C, CROUX C, BORSENBERGER V, BEN KHALED M, CHARDOT T, MARTY A, BORDES F. Increasing medium chain fatty acids production in Yarrowia lipolytica by metabolic engineering. Microbial Cell Factories, 2018, 17(1): 1-12. DOI:10.1186/s12934-017-0850-2
|
|
[63] |
AL SAHYOUNI W, EL KANTAR S, KHELFA A, PARK YK, NICAUD JM, LOUKA N, KOUBAA M. Optimization of cis-9-heptadecenoic acid production from the oleaginous yeast Yarrowia lipolytica. Fermentation, 2022, 8(6): 1-14.
|
|
[64] |
WANG KF, SHI TQ, WANG JP, WEI P, LEDESMA-AMARO R, JI XJ. Engineering the lipid and fatty acid metabolism in Yarrowia lipolytica for sustainable production of high oleic oils. ACS Synthetic Biology, 2022, 11(4): 1542-1554. DOI:10.1021/acssynbio.1c00613
|
|
[65] |
LI ZJ, QIAO KJ, LIU N, STEPHANOPOULOS G. Engineering Yarrowia lipolytica for poly-3- hydroxybutyrate production. Journal of Industrial Microbiology and Biotechnology, 2017, 44(4/5): 605-612.
|
|
[66] |
RIGOUIN C, LAJUS S, OCANDO C, BORSENBERGER V, NICAUD JM, MARTY A, AVÉROUS L, BORDES F. Production and characterization of two medium-chain-length polydroxyalkanoates by engineered strains of Yarrowia lipolytica. Microbial Cell Factories, 2019, 18(1): 1-9. DOI:10.1186/s12934-018-1049-x
|
|
[67] |
BEOPOULOS A, VERBEKE J, BORDES F, GUICHERD M, BRESSY M, MARTY A, NICAUD JM. Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2014, 98(1): 251-262. DOI:10.1007/s00253-013-5295-x
|
|
[68] |
CORDOVA LT, ALPER HS. Production of α-linolenic acid in Yarrowia lipolytica using low-temperature fermentation. Applied Microbiology and Biotechnology, 2018, 102(20): 8809-8816. DOI:10.1007/s00253-018-9349-y
|
|
[69] |
SUN ML, MADZAK C, LIU HH, SONG P, REN LJ, HUANG H, JI XJ. Engineering Yarrowia lipolytica for efficient γ-linolenic acid production. Biochemical Engineering Journal, 2017, 117: 172-180. DOI:10.1016/j.bej.2016.10.014
|
|
[70] |
LI YW, YANG CL, SHEN Q, PENG QQ, GUO Q, NIE ZK, SUN XM, SHI TQ, JI XJ, HUANG H. YALIcloneNHEJ: an efficient modular cloning toolkit for NHEJ integration of multigene pathway and terpenoid production in Yarrowia lipolytica. Frontiers in Bioengineering and Biotechnology, 2022, 9: 1-11.
|
|
[71] |
GUO XY, SUN J, LI DS, LU WY. Heterologous biosynthesis of (+)-nootkatone in unconventional yeast Yarrowia lipolytica. Biochemical Engineering Journal, 2018, 137: 125-131. DOI:10.1016/j.bej.2018.05.023
|
|
[72] |
ZHU HZ, JIANG S, WU JJ, ZHOU XR, LIU PY, HUANG FH, WAN X. Production of high levels of 3 S, 3′ S-astaxanthin in Yarrowia lipolytica via iterative metabolic engineering. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2673-2683. DOI:10.1021/acs.jafc.1c08072
|
|
[73] |
ARNESEN JA, JACOBSEN IH, DANNOW DYEKJÆR J, RAGO D, KRISTENSEN M, KLITGAARD AK, RANDELOVIC M, MARTINEZ JL, BORODINA I. Production of abscisic acid in the oleaginous yeast Yarrowia lipolytica. FEMS Yeast Research, 2022, 22(1): 1-10.
|
|
[74] |
MARSAFARI M, XU P. Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica. Metabolic Engineering Communications, 2020, 10: 1-7.
|
|
[75] |
JIN CC, ZHANG JL, SONG H, CAO YX. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Microbial Cell Factories, 2019, 18(1): 1-18. DOI:10.1186/s12934-018-1049-x
|
|
[76] |
CHENG BQ, WEI LJ, LV YB, CHEN J, HUA Q. Elevating limonene production in oleaginous yeast Yarrowia lipolytica via genetic engineering of limonene biosynthesis pathway and optimization of medium composition. Biotechnology and Bioprocess Engineering, 2019, 24(3): 500-506. DOI:10.1007/s12257-018-0497-9
|
|
[77] |
CAO X, WEI LJ, LIN JY, HUA Q. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica. Bioresource Technology, 2017, 245: 1641-1644. DOI:10.1016/j.biortech.2017.06.105
|
|
[78] |
ZHANG JL, BAI QY, PENG YZ, FAN J, JIN CC, CAO YX, YUAN YJ. High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components. Biotechnology for Biofuels, 2020, 13(1): 1-13. DOI:10.1186/s13068-019-1642-1
|
|
[79] |
MA YS, LIU N, GREISEN P, LI JB, QIAO KJ, HUANG SW, STEPHANOPOULOS G. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nature Communications, 2022, 13: 1-11. DOI:10.1038/s41467-021-27699-2
|
|
[80] |
TANG WY, WANG DP, TIAN Y, FAN X, WANG C, LU XY, LI PW, JI XJ, LIU HH. Metabolic engineering of Yarrowia lipolytica for improving squalene production. Bioresource Technology, 2021, 323: 1-6.
|
|
[81] |
ARNESEN JA, KILDEGAARD KR, CERNUDA PASTOR M, JAYACHANDRAN S, KRISTENSEN M, BORODINA I. Yarrowia lipolytica strains engineered for the production of terpenoids. Frontiers in Bioengineering and Biotechnology, 2020, 8: 1-14. DOI:10.3389/fbioe.2020.00001
|
|
[82] |
LIU YH, JIANG X, CUI ZY, WANG ZX, QI QS, HOU J. Engineering the oleaginous yeast Yarrowia lipolytica for production of α-farnesene. Biotechnology for Biofuels, 2019, 12(1): 1-11. DOI:10.1186/s13068-018-1346-y
|
|
[83] |
WEI LJ, ZHONG YT, NIE MY, LIU SC, HUA Q. Biosynthesis of α-pinene by genetically engineered Yarrowia lipolytica from low-cost renewable feedstocks. Journal of Agricultural and Food Chemistry, 2021, 69(1): 275-285. DOI:10.1021/acs.jafc.0c06504
|
|
[84] |
SHI TQ, LI YW, ZHU L, TONG YY, YANG JJ, FANG YM, WANG M, ZHANG JZ, JIANG Y, YANG S. Engineering the oleaginous yeast Yarrowia lipolytica for β-farnesene overproduction. Biotechnology Journal, 2021, 16(7): 1-8.
|
|
[85] |
CHEN SY, LU YP, WANG W, HU YZ, WANG JF, TANG SX, LIN CSK, YANG XF. Efficient production of the β-ionone aroma compound from organic waste hydrolysates using an engineered Yarrowia lipolytica strain. Frontiers in Microbiology, 2022, 13: 1-11.
|
|
[86] |
LV YK, MARSAFARI M, KOFFAS M, ZHOU JW, XU P. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synthetic Biology, 2019, 8(11): 2514-2523. DOI:10.1021/acssynbio.9b00193
|
|
[87] |
PALMER CM, MILLER KK, NGUYEN A, ALPER HS. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metabolic Engineering, 2020, 57: 174-181. DOI:10.1016/j.ymben.2019.11.006
|
|
[88] |
LIU MS, WANG C, REN XF, GAO S, YU SQ, ZHOU JW. Remodelling metabolism for high-level resveratrol production in Yarrowia lipolytica. Bioresource Technology, 2022, 365: 1-9.
|
|
[89] |
GU Y, MA JB, ZHU YL, DING XY, XU P. Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals. ACS Synthetic Biology, 2020, 9(8): 2096-2106. DOI:10.1021/acssynbio.0c00185
|
|
[90] |
WANG YN, LIU XN, CHEN BH, LIU W, GUO ZK, LIU XY, ZHU XX, LIU JY, ZHANG J, LI J, ZHANG L, GAO YD, ZHANG GH, WANG Y, CHOUDHARY MI, YANG SC, JIANG HF. Metabolic engineering of Yarrowia lipolytica for scutellarin production. Synthetic and Systems Biotechnology, 2022, 7(3): 958-964. DOI:10.1016/j.synbio.2022.05.009
|
|
[91] |
PETKEVICIUS K, WENNING L, KILDEGAARD KR, SINKWITZ C, SMEDEGAARD R, HOLKENBRINK C, BORODINA I. Biosynthesis of insect sex pheromone precursors via engineered β-oxidation in yeast. FEMS Yeast Research, 2022, 22(1): 1-9.
|
|
[92] |
GU Y, MA JB, ZHU YL, XU P. Refactoring Ehrlich pathway for high-yield 2-phenylethanol production in Yarrowia lipolytica. ACS Synthetic Biology, 2020, 9(3): 623-633. DOI:10.1021/acssynbio.9b00468
|
|
[93] |
QIAN YD, TAN SY, DONG GR, NIU YJ, HU CY, MENG YH. Increased campesterol synthesis by improving lipid content in engineered Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2020, 104(16): 7165-7175. DOI:10.1007/s00253-020-10743-4
|
|
[94] |
PARK H, LEE D, KIM JE, PARK S, PARK JH, HA CW, BAEK M, YOON SH, PARK KH, LEE P, HAHN JS. Efficient production of retinol in Yarrowia lipolytica by increasing stability using antioxidant and detergent extraction. Metabolic Engineering, 2022, 73: 26-37. DOI:10.1016/j.ymben.2022.06.001
|
|
[95] |
SHANG YZ, WEI WP, ZHANG P, YE BC. Engineering Yarrowia lipolytica for enhanced production of arbutin. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1364-1372. DOI:10.1021/acs.jafc.9b07151
|
|
[96] |
DUAN XY, TIAN Y, SONG ZQ, SONG LP, LIN WB, WANG C, YANG H, LU XY, JI XJ, LIU HH. High-level de novo biosynthesis of cordycepin by systems metabolic engineering in Yarrowia lipolytica. Bioresource Technology, 2022, 363: 1-9.
|
|
[97] |
HOEK SA, RUSNÁK M, JACOBSEN IH, MARTÍNEZ JL, KELL DB, BORODINA I. Engineering ergothioneine production in Yarrowia lipolytica. FEBS Letters, 2022, 596(10): 1356-1364. DOI:10.1002/1873-3468.14239
|
|
[98] |
HANKO EKR, DENBY CM, SÀNCHEZ I NOGUÉ V, LIN WY, RAMIREZ KJ, SINGER CA, BECKHAM GT, KEASLING JD. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production. Metabolic Engineering, 2018, 48: 52-62. DOI:10.1016/j.ymben.2018.05.018
|
|
[99] |
BLAZECK J, LIU LQ, KNIGHT R, ALPER HS. Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. Journal of Biotechnology, 2013, 165(3/4): 184-194.
|
|
[100] |
MARKHAM KA, PALMER CM, CHWATKO M, WAGNER JM, MURRAY C, VAZQUEZ S, SWAMINATHAN A, CHAKRAVARTY I, LYND NA, ALPER HS. Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2096-2101. DOI:10.1073/pnas.1721203115
|
|
[101] |
SOARES GPA, SOUZA KST, VILELA LF, SCHWAN RF, DIAS DR. γ-decalactone production by Yarrowia lipolytica and Lindnera saturnus in crude glycerol. Preparative Biochemistry & Biotechnology, 2017, 47(6): 633-637.
|
|
[102] |
张丽华, 张子洋, 王子睿, 姜彦君, 苏静, 李丕武, 范翰, 王瑞明, 汪俊卿. 基于重组毕赤酵母的2-癸烯酸生物合成研究. 齐鲁工业大学学报, 2021, 35(3): 1-6. ZHANG LH, ZHANG ZY, WANG ZR, JIANG YJ, SU J, LI PW, FAN H, WANG RM, WANG JQ. Expression of thiesterase in Pichia pastoris cells. Journal of Qilu University of Technology, 2021, 35(3): 1-6 (in Chinese). DOI:10.16442/j.cnki.qlgydxxb.2021.03.001
|
|
[103] |
CAI P, WU XY, DENG J, GAO LH, SHEN YW, YAO L, ZHOU YJ. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(29): 1-9.
|
|
[104] |
CAI P, LI YX, ZHAI XX, YAO L, MA XJ, JIA LY, ZHOU YJ. Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris. Bioresources and Bioprocessing, 2022, 9(1): 1-8. DOI:10.1186/s40643-021-00489-w
|
|
[105] |
MEESAPYODSUK D, CHEN Y, NG SH, CHEN JN, QIU X. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance. Journal of Lipid Research, 2015, 56(11): 2102-2109. DOI:10.1194/jlr.M060954
|
|
[106] |
MOSER S, STROHMEIER GA, LEITNER E, PLOCEK TJ, VANHESSCHE K, PICHLER H. Whole-cell (+)-ambrein production in the yeast Pichia pastoris. Metabolic Engineering Communications, 2018, 7: 1-9.
|
|
[107] |
WRIESSNEGGER T, AUGUSTIN P, ENGLEDER M, LEITNER E, MÜLLER M, KALUZNA I, SCHÜRMANN M, MINK D, ZELLNIG G, SCHWAB H, PICHLER H. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metabolic Engineering, 2014, 24: 18-29. DOI:10.1016/j.ymben.2014.04.001
|
|
[108] |
ARAYA-GARAY JM, AGEITOS JM, VALLEJO JA, VEIGA-CRESPO P, SÁNCHEZ-PÉREZ A, VILLA TG. Construction of a novel Pichia pastoris strain for production of xanthophylls. AMB Express, 2012, 2(1): 1-8. DOI:10.1186/2191-0855-2-1
|
|
[109] |
LIU XB, LIU M, TAO XY, ZHANG ZX, WANG FQ, WEI DZ. Metabolic engineering of Pichia pastoris for the production of dammarenediol-II. Journal of Biotechnology, 2015, 216: 47-55. DOI:10.1016/j.jbiotec.2015.10.005
|
|
[110] |
ZHANG XY, WANG DG, DUAN YH, ZHENG XY, LIN Y, LIANG SL. Production of lycopene by metabolically engineered Pichia pastoris. Bioscience, Biotechnology, and Biochemistry, 2020, 84(3): 463-470. DOI:10.1080/09168451.2019.1693250
|
|
[111] |
SUN XW, LIU H, WANG P, WANG L, NI WF, YANG Q, WANG H, TANG HF, ZHAO GH, ZHENG ZM. Construction of a novel MK-4 biosynthetic pathway in Pichia pastoris through heterologous expression of HsUBIAD1. Microbial Cell Factories, 2019, 18(1): 1-16. DOI:10.1186/s12934-018-1049-x
|
|
[112] |
WRIESSNEGGER T, MOSER S, EMMERSTORFER- AUGUSTIN A, LEITNER E, MÜLLER M, KALUZNA I, SCHÜRMANN M, MINK D, PICHLER H. Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions. Fungal Genetics and Biology, 2016, 89: 114-125. DOI:10.1016/j.fgb.2016.02.004
|
|
[113] |
LIU H, CHEN SL, XU JZ, ZHANG WG. Dual regulation of cytoplasm and peroxisomes for improved α-farnesene production in recombinant Pichia pastoris. ACS Synthetic Biology, 2021, 10(6): 1563-1573. DOI:10.1021/acssynbio.1c00186
|
|
[114] |
VOGL T, STURMBERGER L, KICKENWEIZ T, WASMAYER R, SCHMID C, HATZL AM, GERSTMANN MA, PITZER J, WAGNER M, THALLINGER GG, GEIER M, GLIEDER A. A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synthetic Biology, 2016, 5(2): 172-186. DOI:10.1021/acssynbio.5b00199
|
|
[115] |
WANG TY, TSAI YH, YU IZ, CHANG TS. Improving 3′-hydroxygenistein production in recombinant Pichia pastoris using periodic hydrogen peroxide-shocking strategy. Journal of Microbiology and Biotechnology, 2016, 26(3): 498-502. DOI:10.4014/jmb.1509.09013
|
|
[116] |
QIAN ZL, YU JH, CHEN XJ, KANG YJ, REN YN, LIU Q, LU J, ZHAO Q, CAI MH. De novo production of plant 4′-deoxyflavones baicalein and oroxylin A from ethanol in crabtree-negative yeast. ACS Synthetic Biology, 2022, 11(4): 1600-1612. DOI:10.1021/acssynbio.2c00026
|
|
[117] |
陈鑫洁, 钱芷兰, 刘启, 赵清, 张元兴, 蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸. 中国生物工程杂志, 2021, 41(10): 52-61. CHEN XJ, QIAN ZL, LIU Q, ZHAO Q, ZHANG YX, CAI MH. Modification of aromatic amino acid synthetic pathway in Pichia pastoris to produce cinnamic acid and ρ-coumaric acid. China Biotechnology, 2021, 41(10): 52-61 (in Chinese). DOI:10.13523/j.cb.2106019
|
|
[118] |
KUMOKITA R, BAMBA T, INOKUMA K, YOSHIDA T, ITO Y, KONDO A, HASUNUMA T. Construction of an l-tyrosine chassis in Pichia pastoris enhances aromatic secondary metabolite production from glycerol. ACS Synthetic Biology, 2022, 11(6): 2098-2107. DOI:10.1021/acssynbio.2c00047
|
|
[119] |
GAO LM, CAI MH, SHEN W, XIAO SW, ZHOU XS, ZHANG YX. Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production. Microbial Cell Factories, 2013, 12(1): 1-14. DOI:10.1186/1475-2859-12-1
|
|
[120] |
XUE Y, KONG CX, SHEN W, BAI CX, REN YN, ZHOU XS, ZHANG YX, CAI MH. Methylotrophic yeast Pichia pastoris as a chassis organism for polyketide synthesis via the full citrinin biosynthetic pathway. Journal of Biotechnology, 2017, 242: 64-72. DOI:10.1016/j.jbiotec.2016.11.031
|
|
[121] |
LIU YQ, BAI CX, XU Q, YU JH, ZHOU XS, ZHANG YX, CAI MH. Improved methanol-derived lovastatin production through enhancement of the biosynthetic pathway and intracellular lovastatin efflux in methylotrophic yeast. Bioresources and Bioprocessing, 2018, 5(1): 1-11. DOI:10.1186/s40643-017-0187-z
|
|
[122] |
LIU YQ, BAI CX, LIU Q, XU Q, QIAN ZL, PENG QQ, YU JH, XU MQ, ZHOU XS, ZHANG YX, CAI MH. Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast. Metabolic Engineering, 2019, 54: 275-284. DOI:10.1016/j.ymben.2019.05.001
|
|
[123] |
ZHANG X, ZHANG CY, ZHOU M, XIA QM, FAN LQ, ZHAO LM. Enhanced bioproduction of chitin in engineered Pichia pastoris. Food Bioscience, 2022, 47: 1-9.
|
|
[124] |
盛靖雨, 金学荣, 胥睿睿, 王阳, 康振. 基于工程化毕赤酵母一锅法合成硫酸软骨素A. 生物工程学报, 2022, 38(7): 2594-2605. SHENG JY, JIN XR, XU RR, WANG Y, KANG Z. One-pot synthesis of chondroitin sulfate A by engineered Pichia pastoris. Chinese Journal of Biotechnology, 2022, 38(7): 2594-2605 (in Chinese). DOI:10.13345/j.cjb.220147
|
|
[125] |
ZHANG YL, WANG Y, ZHOU ZX, WANG PL, XI XT, HU S, XU RR, DU GC, LI JH, CHEN J, KANG Z. Synthesis of bioengineered heparin by recombinant yeast Pichia pastoris. Green Chemistry, 2022, 24(8): 3180-3192. DOI:10.1039/D1GC04672A
|
|
[126] |
JEONG E, SHIM WY, KIM JH. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. Journal of Biotechnology, 2014, 185: 28-36. DOI:10.1016/j.jbiotec.2014.05.018
|
|
[127] |
REN YN, LIU Q, LIU HF, ZHOU XS, ZHANG YX, CAI MH. High-level living cell production of cytidine-5′-diphosphocholine in metabolically engineered yeast. Journal of Biotechnology, 2021, 341: 129-136. DOI:10.1016/j.jbiotec.2021.08.013
|
|
[128] |
MARX H, MATTANOVICH D, SAUER M. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microbial Cell Factories, 2008, 7(1): 1-11. DOI:10.1186/1475-2859-7-1
|
|
[129] |
HE JY, DENG JJ, ZHENG YH, GU J. A synergistic effect on the production of S-adenosyl-L-methionine in Pichia pastoris by knocking in of S-adenosyl- l-methionine synthase and knocking out of cystathionine-β synthase. Journal of Biotechnology, 2006, 126(4): 519-527. DOI:10.1016/j.jbiotec.2006.05.009
|
|
[130] |
LIN YJ, CHANG JJ, LIN HY, THIA C, KAO YY, HUANG CC, LI WH. Metabolic engineering a yeast to produce astaxanthin. Bioresource Technology, 2017, 245: 899-905. DOI:10.1016/j.biortech.2017.07.116
|
|
[131] |
McTAGGART TL, BEVER D, BASSETT S, Da SILVA NA. Synthesis of polyketides from low cost substrates by the thermotolerant yeast Kluyveromyces marxianus. Biotechnology and Bioengineering, 2019, 116(7): 1721-1730. DOI:10.1002/bit.26976
|
|
[132] |
ETSCHMANN MMW, SCHRADER J. An aqueous-organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast. Applied Microbiology and Biotechnology, 2006, 71(4): 440-443. DOI:10.1007/s00253-005-0281-6
|
|
[133] |
ZHANG GR, LU M, WANG JC, WANG DM, GAO XL, HONG J. Identification of hexose kinase genes in Kluyveromyces marxianus and thermo-tolerant one step producing glucose-free fructose strain construction. Scientific Reports, 2017, 7: 1-11. DOI:10.1038/s41598-016-0028-x
|
|
[134] |
ZHANG SY, ITO M, SKERKER JM, ARKIN AP, RAO CV. Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Applied Microbiology and Biotechnology, 2016, 100(21): 9393-9405. DOI:10.1007/s00253-016-7815-y
|
|
[135] |
WANG YN, ZHANG SF, PÖTTER M, SUN WY, LI L, YANG XB, JIAO X, ZHAO ZK. Overexpression of Δ12-fatty acid desaturase in the oleaginous yeast Rhodosporidium toruloides for production of linoleic acid-rich lipids. Applied Biochemistry and Biotechnology, 2016, 180(8): 1497-1507. DOI:10.1007/s12010-016-2182-9
|
|
[136] |
ZHANG Y, PENG J, ZHAO HM, SHI SB. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. Biotechnology for Biofuels, 2021, 14(1): 1-11. DOI:10.1186/s13068-020-01854-1
|
|
[137] |
FILLET S, GIBERT J, SUÁREZ B, LARA A, RONCHEL C, ADRIO JL. Fatty alcohols production by oleaginous yeast. Journal of Industrial Microbiology and Biotechnology, 2015, 42(11): 1463-1472. DOI:10.1007/s10295-015-1674-x
|
|
[138] |
LIN XP, GAO N, LIU SS, ZHANG SF, SONG S, JI CF, DONG XP, SU YC, ZHAO ZK, ZHU BW. Characterization the carotenoid productions and profiles of three Rhodosporidium toruloides mutants from Agrobacterium tumefaciens-mediated transformation. Yeast, 2017, 34(8): 335-342. DOI:10.1002/yea.3236
|
|
[139] |
LIU SS, ZHANG MY, REN YY, JIN GJ, TAO YS, LYU LT, ZHAO ZK, YANG XB. Engineering Rhodosporidium toruloides for limonene production. Biotechnology for Biofuels, 2021, 14(1): 1-11. DOI:10.1186/s13068-020-01854-1
|
|
[140] |
GEISELMAN GM, KIRBY J, LANDERA A, OTOUPAL P, PAPA G, BARCELOS C, SUNDSTROM ER, DAS L, MAGURUDENIYA HD, WEHRS M, RODRIGUEZ A, SIMMONS BA, MAGNUSON JK, MUKHOPADHYAY A, LEE TS, GEORGE A, GLADDEN JM. Conversion of poplar biomass into high-energy density tricyclic sesquiterpene jet fuel blendstocks. Microbial Cell Factories, 2020, 19(1): 1-16. DOI:10.1186/s12934-019-1269-8
|
|
[141] |
WALLS LE, OTOUPAL P, LEDESMA-AMARO R, VELASQUEZ-ORTA SB, GLADDEN JM, RIOS- SOLIS L. Bioconversion of cellulose into bisabolene using Ruminococcus flavefaciens and Rhodosporidium toruloides. Bioresource Technology, 2023, 368: 1-10.
|
|
[142] |
GEISELMAN GM, ZHUANG X, KIRBY J, TRAN-GYAMFI MB, PRAHL JP, SUNDSTROM ER, GAO YQ, MUNOZ MUNOZ N, NICORA CD, CLAY DM, PAPA G, BURNUM-JOHNSON KE, MAGNUSON JK, TANJORE D, SKERKER JM, GLADDEN JM. Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides. Microbial Cell Factories, 2020, 19(1): 1-12. DOI:10.1186/s12934-019-1269-8
|
|
[143] |
CAO MF, TRAN VG, QIN JS, OLSON A, MISHRA S, SCHULTZ JC, HUANG CS, XIE DM, ZHAO HM. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone. Biotechnology and Bioengineering, 2022, 119(9): 2529-2540. DOI:10.1002/bit.28159
|
|
[144] |
GAO JQ, LI YX, YU W, ZHOU YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nature Metabolism, 2022, 4(7): 932-943. DOI:10.1038/s42255-022-00601-0
|
|
[145] |
GAO JQ, GAO N, ZHAI XX, ZHOU YJ. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha. iScience, 2021, 24(3): 1-15.
|
|
[146] |
赵德志. 利用基因组工程技术改造汉逊酵母生产甘油和紫杉醇[D]. 西安: 陕西科技大学硕士学位论文, 2015. ZHAO DZ. Genome engineering of Hansenula polymorpha for production of glycerol and paclitaxel[D]. Xi'an: Master's Thesis of Shaanxi University of Science & Technology, 2015 (in Chinese).
|
|
[147] |
钱卫东, 赵德志, 付云芳, 陈雪峰, 毛培宏, 周颖欣, 常凯, 谢海艳. 一步重组法构建产龙胆苦苷酵母重组菌的研究. 陕西科技大学学报(自然科学版), 2014, 32(5): 123-128. QIAN WD, ZHAO DZ, FU YF, CHEN XF, MAO PH, ZHOU YX, CHANG K, XIE HY. The construction of gentiopicroside-producing recombinant yeast using one-step recombinant method. Journal of Shaanxi University of Science & Technology (Natural Science Edition), 2014, 32(5): 123-128 (in Chinese).
|
|
[148] |
刘启, 钱芷兰, 宋丽丽, 要超颖, 徐名强, 任燕娜, 蔡孟浩. 巴斯德毕赤酵母底盘细胞的工程化改造及应用. 合成生物学, 2022, 3(6): 1150-1173. LIU Q, QIAN ZL, SONG LL, YAO CY, XU MQ, REN YN, CAI MH. Rewiring and application of Pichia pastoris chassis cell. Synthetic Biology Journal, 2022, 3(6): 1150-1173 (in Chinese).
|
|
[149] |
YAMADA Y, MATSUDA M, MAEDA K, MIKATA K. The phylogenetic relationships of methanol- assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Komagataella gen. nov. ( Saccharomycetaceae). Bioscience, Biotechnology, and Biochemistry, 1995, 59(3): 439-444. DOI:10.1271/bbb.59.439
|
|
[150] |
KURTZMAN CP. Description of Komagataella phaffii sp. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(2): 973-976. DOI:10.1099/ijs.0.63491-0
|
|
[151] |
LOVE KR, SHAH KA, WHITTAKER CA, WU J, BARTLETT MC, MA DD, LEESON RL, PRIEST M, BOROWSKY J, YOUNG SK, LOVE JC. Comparative genomics and transcriptomics of Pichia pastoris. BMC Genomics, 2016, 17(1): 1-17.
|
|
[152] |
de SCHUTTER K, LIN YC, TIELS P, van HECKE A, GLINKA S, WEBER-LEHMANN J, ROUZÉ P, van de PEER Y, CALLEWAERT N. Genome sequence of the recombinant protein production host Pichia pastoris. Nature Biotechnology, 2009, 27(6): 561-566. DOI:10.1038/nbt.1544
|
|
[153] |
KÜBERL A, SCHNEIDER J, THALLINGER GG, ANDERL I, WIBBERG D, HAJEK T, JAENICKE S, BRINKROLF K, GOESMANN A, SZCZEPANOWSKI R, PÜHLER A, SCHWAB H, GLIEDER A, PICHLER H. High-quality genome sequence of Pichia pastoris CBS7435. Journal of Biotechnology, 2011, 154(4): 312-320. DOI:10.1016/j.jbiotec.2011.04.014
|
|
[154] |
YANG ZL, ZHANG ZS. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnology Advances, 2018, 36(1): 182-195. DOI:10.1016/j.biotechadv.2017.11.002
|
|
[155] |
ZAHRL RJ, PEÑA DA, MATTANOVICH D, GASSER B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Research, 2017, 17(7): 1-15.
|
|
[156] |
CAI P, DUAN XP, WU XY, GAO LH, YE M, ZHOU YJ. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris. Nucleic Acids Research, 2021, 49(13): 7791-7805. DOI:10.1093/nar/gkab535
|
|
[157] |
GAO JC, XU JH, ZUO YM, YE CF, JIANG LJ, FENG LJ, HUANG L, XU ZN, LIAN JZ. Synthetic biology toolkit for marker-less integration of multigene pathways into Pichia pastoris via CRISPR/Cas9. ACS Synthetic Biology, 2022, 11(2): 623-633. DOI:10.1021/acssynbio.1c00307
|
|
[158] |
TÜRKANOĞLU ÖZÇELIK A, YıLMAZ S, INAN M. Pichia pastoris promoters//Methods in Molecular Biology. New York, NY: Springer New York, 2019, 97-112.
|
|
[159] |
VOGL T, KICKENWEIZ T, PITZER J, STURMBERGER L, WENINGER A, BIGGS BW, KÖHLER EM, BAUMSCHLAGER A, ELGIN FISCHER J, HYDEN P, WAGNER M, BAUMANN M, BORTH N, GEIER M, AJIKUMAR PK, GLIEDER A. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nature Communications, 2018, 9: 1-13. DOI:10.1038/s41467-017-02088-w
|
|
[160] |
ZHU QY, LIU Q, YAO CY, ZHANG YX, CAI MH. Yeast transcriptional device libraries enable precise synthesis of value-added chemicals from methanol. Nucleic Acids Research, 2022, 50(17): 10187-10199. DOI:10.1093/nar/gkac765
|
|
[161] |
RAMAKRISHNAN K, PRATTIPATI M, SAMUEL P, SANKARANARAYANAN M. Transcriptional control of gene expression in Pichia pastoris by manipulation of terminators. Applied Microbiology and Biotechnology, 2020, 104(18): 7841-7851. DOI:10.1007/s00253-020-10785-8
|
|
[162] |
LIU Q, SONG LL, PENG QQ, ZHU QY, SHI XN, XU MQ, WANG QY, ZHANG YX, CAI MH. A programmable high-expression yeast platform responsive to user-defined signals. Science Advances, 2022, 8(6): 1-14.
|
|
[163] |
PRIELHOFER R, BARRERO JJ, STEUER S, GASSLER T, ZAHRL R, BAUMANN K, SAUER M, MATTANOVICH D, GASSER B, MARX H. GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Systems Biology, 2017, 11(1): 1-14. DOI:10.1186/s12918-016-0376-y
|
|
[164] |
LIU Q, SHI XN, SONG LL, LIU HF, ZHOU XS, WANG QY, ZHANG YX, CAI MH. CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris. Microbial Cell Factories, 2019, 18(1): 1-11. DOI:10.1186/s12934-018-1049-x
|
|
[165] |
HAN MH, WANG WX, GONG X, ZHU GF, LIU XH, YU ZH, ZHOU JL, MA C, MA XY. A modified method of gene disruption in Komagataella phaffii with Cre/ loxP system. Journal of Biotechnology, 2022, 347: 40-48. DOI:10.1016/j.jbiotec.2022.02.007
|
|
[166] |
PEÑA DA, GASSER B, ZANGHELLINI J, STEIGER MG, MATTANOVICH D. Metabolic engineering of Pichia pastoris. Metabolic Engineering, 2018, 50: 2-15. DOI:10.1016/j.ymben.2018.04.017
|
|
[167] |
LIU YQ, TU XH, XU Q, BAI CX, KONG CX, LIU Q, YU JH, PENG QQ, ZHOU XS, ZHANG YX, CAI MH. Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol. Metabolic Engineering, 2018, 45: 189-199. DOI:10.1016/j.ymben.2017.12.009
|
|
[168] | |
|
[169] |
YUAN WJ, CHANG BL, REN JG, LIU JP, BAI FW, LI YY. Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. Journal of Applied Microbiology, 2012, 112(1): 38-44. DOI:10.1111/j.1365-2672.2011.05171.x
|
|
[170] |
LÖSER C, URIT T, STUKERT A, BLEY T. Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale. Journal of Biotechnology, 2013, 163(1): 17-23. DOI:10.1016/j.jbiotec.2012.10.009
|
|
[171] | |
|
[172] |
BILAL M, JI LY, XU YR, XU S, LIN YP, IQBAL HMN, CHENG HR. Bioprospecting Kluyveromyces marxianus as a robust host for industrial biotechnology. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1-18.
|
|
[173] |
LEE KS, KIM JS, HEO P, YANG TJ, SUNG YJ, CHEON Y, KOO HM, YU BJ, SEO JH, JIN YS, PARK JC, KWEON DH. Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 2013, 97(5): 2029-2041. DOI:10.1007/s00253-012-4306-7
|
|
[174] |
BERGKAMP RJM, BOOTSMAN TC, TOSCHKA HY, MOOREN ATA, KOX L, VERBAKEL JMA, GEERSE RH, PLANTA RJ. Expression of an α-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 1993, 40(2/3): 309-317.
|
|
[175] |
YANG C, HU SL, ZHU SL, WANG DM, GAO XL, HONG J. Characterizing yeast promoters used in Kluyveromyces marxianus. World Journal of Microbiology and Biotechnology, 2015, 31(10): 1641-1646. DOI:10.1007/s11274-015-1899-x
|
|
[176] |
RAJKUMAR AS, VARELA JA, JUERGENS H, DARAN JM G, MORRISSEY JP. Biological parts for Kluyveromyces marxianus synthetic biology. Frontiers in Bioengineering and Biotechnology, 2019, 7: 1-15. DOI:10.3389/fbioe.2019.00001
|
|
[177] |
HOSHIDA H, MURAKAMI N, SUZUKI A, TAMURA R, ASAKAWA J, ABDEL-BANAT BMA, NONKLANG S, NAKAMURA M, AKADA R. Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast, 2014, 31(1): 29-46. DOI:10.1002/yea.2993
|
|
[178] |
RIBEIRO O, GOMBERT AK, TEIXEIRA JA, DOMINGUES L. Application of the Cre- loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus. Journal of Biotechnology, 2007, 131(1): 20-26. DOI:10.1016/j.jbiotec.2007.05.027
|
|
[179] |
LÖBS AK, ENGEL R, SCHWARTZ C, FLORES A, WHEELDON I. CRISPR-Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus. Biotechnology for Biofuels, 2017, 10(1): 1-14. DOI:10.1186/s13068-016-0693-9
|
|
[180] |
LEE MH, LIN JJ, LIN YJ, CHANG JJ, KE HM, FAN WL, WANG TY, LI WH. Genome-wide prediction of CRISPR/Cas9 targets in Kluyveromyces marxianus and its application to obtain a stable haploid strain. Scientific Reports, 2018, 8(1): 1-10.
|
|
[181] |
ZHANG J, ZHANG B, WANG DM, GAO XL, HONG J. Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresource Technology, 2014, 152: 192-201. DOI:10.1016/j.biortech.2013.10.109
|
|
[182] |
ZHANG J, ZHANG B, WANG DM, GAO XL, HONG J. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresource Technology, 2015, 175: 642-645. DOI:10.1016/j.biortech.2014.10.150
|
|
[183] |
ZHANG B, ZHU YL, ZHANG J, WANG DM, SUN LH, HONG J. Engineered Kluyveromyces marxianus for pyruvate production at elevated temperature with simultaneous consumption of xylose and glucose. Bioresource Technology, 2017, 224: 553-562. DOI:10.1016/j.biortech.2016.11.110
|
|
[184] |
WANG QM, YURKOV AM, GÖKER M, LUMBSCH HT, LEAVITT SD, GROENEWALD M, THEELEN B, LIU XZ, BOEKHOUT T, BAI FY. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Studies in Mycology, 2015, 81(1): 149-189. DOI:10.1016/j.simyco.2015.12.002
|
|
[185] |
WEN ZQ, ZHANG SF, ODOH CK, JIN MJ, ZHAO ZK. Rhodosporidium toruloides-a potential red yeast chassis for lipids and beyond. FEMS Yeast Research, 2020, 20(5): 1-12.
|
|
[186] |
TANG W, WANG Y, ZHANG J, CAI YL, HE ZG. Biosynthetic pathway of carotenoids in Rhodotorula and strategies for enhanced their production. Journal of Microbiology and Biotechnology, 2019, 29(4): 507-517. DOI:10.4014/jmb.1801.01022
|
|
[187] |
ZHU ZW, ZHANG SF, LIU HW, SHEN HW, LIN XP, YANG F, ZHOU YJ, JIN GJ, YE ML, ZOU HF, ZHAO ZK. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nature Communications, 2012, 3: 1-11.
|
|
[188] |
BOMMAREDDY RR, SABRA W, MAHESHWARI G, ZENG AP. Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microbial Cell Factories, 2015, 14(1): 1-13. DOI:10.1186/s12934-014-0183-3
|
|
[189] |
TERESITA CASTAÑEDA M, NUÑEZ S, GARELLI F, VOGET C, de BATTISTA H. Comprehensive analysis of a metabolic model for lipid production in Rhodosporidium toruloides. Journal of Biotechnology, 2018, 280: 11-18. DOI:10.1016/j.jbiotec.2018.05.010
|
|
[190] |
TIUKOVA IA, PRIGENT S, NIELSEN J, SANDGREN M, KERKHOVEN EJ. Genome-scale model of Rhodotorula toruloides metabolism. Biotechnology and Bioengineering, 2019, 116(12): 3396-3408. DOI:10.1002/bit.27162
|
|
[191] |
LIN XP, WANG YN, ZHANG SF, ZHU ZW, ZHOU YJ, YANG F, SUN WY, WANG XY, ZHAO ZK. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 2014, 14(4): 547-555. DOI:10.1111/1567-1364.12140
|
|
[192] |
PARK YK, NICAUD JM, LEDESMA-AMARO R. The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications. Trends in Biotechnology, 2018, 36(3): 304-317. DOI:10.1016/j.tibtech.2017.10.013
|
|
[193] |
QI F, KITAHARA Y, WANG ZT, ZHAO XB, DU W, LIU DH. Novel mutant strains of Rhodosporidium toruloides by plasma mutagenesis approach and their tolerance for inhibitors in lignocellulosic hydrolyzate. Journal of Chemical Technology & Biotechnology, 2014, 89(5): 735-742.
|
|
[194] |
SCHULTZ JC, CAO MF, ZHAO HM. Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides. Biotechnology and Bioengineering, 2019, 116(8): 2103-2109. DOI:10.1002/bit.27001
|
|
[195] |
OTOUPAL PB, ITO M, ARKIN AP, MAGNUSON JK, GLADDEN JM, SKERKER JM. Multiplexed CRISPR- Cas9-based genome editing of Rhodosporidium toruloides. mSphere, 2019, 4(2): 1-13.
|
|
[196] |
JIAO X, ZHANG Y, LIU XJ, ZHANG Q, ZHANG SF, ZHAO ZK. Developing a CRISPR/Cas9 system for genome editing in the basidiomycetous yeast Rhodosporidium toruloides. Biotechnology Journal, 2019, 14(7): 1-7. DOI:10.1002/biot.201970055
|
|
[197] |
KOH CMJ, LIU YB, Moehninsi, DU MG, JI LH. Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides. BMC Microbiology, 2014, 14(1): 1-10. DOI:10.1186/1471-2180-14-1
|
|
[198] |
LIU XJ, ZHANG Y, LIU HD, JIAO X, ZHANG Q, ZHANG SF, ZHAO ZK. RNA interference in the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 2019, 19(3): 1-10.
|
|
[199] | |
|
[200] | |
|
[201] | |
|
[202] |
ZHAI XX, JI LL, GAO JQ, ZHOU YJ. Characterizing methanol metabolism-related promoters for metabolic engineering of Ogataea polymorpha. Applied Microbiology and Biotechnology, 2021, 105(23): 8761-8769. DOI:10.1007/s00253-021-11665-5
|
|
[203] |
纪璐璐, 马小军, 高教琪, 周雍进. 多形汉逊酵母启动子的挖掘. 生物加工过程, 2022, 20(1): 20-28. JI LL, MA XJ, GAO JQ, ZHOU YJ. Evaluation of promoters from Ogataea polymorpha. Chinese Journal of Bioprocess Engineering, 2022, 20(1): 20-28 (in Chinese).
|
|
[204] |
YAN CX, YU W, ZHAI XX, YAO L, GUO XY, GAO JQ, ZHOU YJ. Characterizing and engineering promoters for metabolic engineering of Ogataea polymorpha. Synthetic and Systems Biotechnology, 2022, 7(1): 498-505. DOI:10.1016/j.synbio.2021.12.005
|
|
[205] |
YU W, GAO JQ, ZHAI XX, ZHOU YJ. Screening neutral sites for metabolic engineering of methylotrophic yeast Ogataea polymorpha. Synthetic and Systems Biotechnology, 2021, 6(2): 63-68. DOI:10.1016/j.synbio.2021.03.001
|
|
[206] |
冯叨, 高教琪, 龚志伟, 周雍进. 多形汉逊酵母代谢改造生产脂肪酸及发酵条件优化. 生物工程学报, 2022, 38(2): 760-771. FENG D, GAO JQ, GONG ZW, ZHOU YJ. Production of fatty acids by engineered Ogataea polymorpha. Chinese Journal of Biotechnology, 2022, 38(2): 760-771 (in Chinese). DOI:10.13345/j.cjb.210102
|
|
[207] |
DUAN XP, GAO JQ, ZHOU YJ. Advances in engineering methylotrophic yeast for biosynthesis of valuable chemicals from methanol. Chinese Chemical Letters, 2018, 29(5): 681-686. DOI:10.1016/j.cclet.2017.11.015
|
|
[208] |
GAO JC, JIANG LH, LIAN JZ. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synthetic and Systems Biotechnology, 2021, 6(2): 110-119. DOI:10.1016/j.synbio.2021.04.005
|
|
[209] | |
|
[210] |
LIU H, MARSAFARI M, WANG F, DENG L, XU P. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metabolic Engineering, 2019, 56: 60-68. DOI:10.1016/j.ymben.2019.08.017
|
|
[211] |
TACCARI M, CANONICO L, COMITINI F, MANNAZZU I, CIANI M. Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresource Technology, 2012, 110: 488-495. DOI:10.1016/j.biortech.2012.01.109
|
|
[212] |
DOBROWOLSKI A, MITUŁA P, RYMOWICZ W, MIROŃCZUK AM. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresource Technology, 2016, 207: 237-243. DOI:10.1016/j.biortech.2016.02.039
|
|
[213] |
DOBROWOLSKI A, DRZYMAŁA K, MITUŁA P, MIROŃCZUK AM. Production of tailor-made fatty acids from crude glycerol at low pH by Yarrowia lipolytica. Bioresource Technology, 2020, 314: 1-8.
|
|
[214] |
SINGH G, SINHA S, KUMAR KK, GAUR NA, BANDYOPADHYAY KK, PAUL D. High density cultivation of oleaginous yeast isolates in 'mandi' waste for enhanced lipid production using sugarcane molasses as feed. Fuel, 2020, 276: 1-11.
|
|
[215] |
YAEGASHI J, KIRBY J, ITO M, SUN J, DUTTA T, MIRSIAGHI M, SUNDSTROM ER, RODRIGUEZ A, BAIDOO E, TANJORE D, PRAY T, SALE K, SINGH S, KEASLING JD, SIMMONS BA, SINGER SW, MAGNUSON JK, ARKIN AP, SKERKER JM, GLADDEN JM. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnology for Biofuels, 2017, 10(1): 1-13. DOI:10.1186/s13068-016-0693-9
|
|
[216] |
JIN XR, ZHANG WJ, WANG Y, SHENG JY, XU RR, LI JH, DU GC, KANG Z. Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered Pichia pastoris. Green Chemistry, 2021, 23(12): 4365-4374. DOI:10.1039/D1GC00260K
|
|
[217] |
SONG XP, SHAO CS, GUO YG, WANG YJ, CAI JJ. Improved the expression level of active transglutaminase by directional increasing copy of mtg gene in Pichia pastoris. BMC Biotechnology, 2019, 19(1): 1-9. DOI:10.1186/s12896-018-0491-5
|
|
[218] |
GAO SL, TONG YY, ZHU L, GE M, ZHANG YA, CHEN DJ, JIANG Y, YANG S. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 2017, 41: 192-201. DOI:10.1016/j.ymben.2017.04.004
|
|
[219] |
YAN FX, DONG GR, QIANG S, NIU YJ, HU CY, MENG YH. Overexpression of Δ12, Δ15-desaturases for enhanced lipids synthesis in Yarrowia lipolytica. Frontiers in Microbiology, 2020, 11: 1-11. DOI:10.3389/fmicb.2020.00001
|
|
[220] |
SAGNAK R, COCHOT S, MOLINA-JOUVE C, NICAUD JM, GUILLOUET SE. Modulation of the glycerol phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica. Journal of Biotechnology, 2018, 265: 40-45. DOI:10.1016/j.jbiotec.2017.11.001
|
|
[221] |
PANG YR, ZHAO YK, LI SL, ZHAO Y, LI J, HU ZH, ZHANG CY, XIAO DG, YU AQ. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil. Biotechnology for Biofuels, 2019, 12(1): 1-18. DOI:10.1186/s13068-018-1346-y
|
|
[222] |
YANG X, NAMBOU K, WEI LJ, HUA Q. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica. Bioresource Technology, 2016, 216: 1040-1048. DOI:10.1016/j.biortech.2016.06.028
|
|
[223] |
KILDEGAARD KR, ADIEGO-PÉREZ B, DOMÉNECH BELDA D, KHANGURA JK, HOLKENBRINK C, BORODINA I. Engineering of Yarrowia lipolytica for production of astaxanthin. Synthetic and Systems Biotechnology, 2017, 2(4): 287-294. DOI:10.1016/j.synbio.2017.10.002
|
|
[224] |
KOCH M, PANDI A, BORKOWSKI O, BATISTA AC, FAULON JL. Custom-made transcriptional biosensors for metabolic engineering. Current Opinion in Biotechnology, 2019, 59: 78-84. DOI:10.1016/j.copbio.2019.02.016
|
|
[225] |
WEN J, TIAN L, LIU Q, ZHANG YX, CAI MH. Engineered dynamic distribution of malonyl-CoA flux for improving polyketide biosynthesis in Komagataella phaffii. Journal of Biotechnology, 2020, 320: 80-85. DOI:10.1016/j.jbiotec.2020.06.012
|
|
[226] |
WEN J, TIAN L, XU MQ, ZHOU XS, ZHANG YX, CAI MH. A synthetic malonyl-CoA metabolic oscillator in Komagataella phaffii. ACS Synthetic Biology, 2020, 9(5): 1059-1068. DOI:10.1021/acssynbio.9b00378
|
|
[227] |
LV YK, GU Y, XU JL, ZHOU JW, XU P. Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield. Metabolic Engineering, 2020, 61: 79-88. DOI:10.1016/j.ymben.2020.05.005
|
|
[228] |
PARK BG, KIM J, KIM EJ, KIM Y, KIM J, KIM JY, KIM BG. Application of random mutagenesis and synthetic FadR promoter for de novo production of ω-hydroxy fatty acid in Yarrowia lipolytica. Frontiers in Bioengineering and Biotechnology, 2021, 9: 1-14. DOI:10.12970/2311-1755.2021.09.01
|
|
[229] |
YOCUM HC, PHAM A, Da SILVA NA. Successful enzyme colocalization strategies in yeast for increased synthesis of non-native products. Frontiers in Bioengineering and Biotechnology, 2021, 9: 1-8. DOI:10.12970/2311-1755.2021.09.01
|
|
[230] |
ZHAO CC, GAO X, LIU XB, WANG Y, YANG SL, WANG FQ, REN YH. Enhancing biosynthesis of a ginsenoside precursor by self-assembly of two key enzymes in Pichia pastoris. Journal of Agricultural and Food Chemistry, 2016, 64(17): 3380-3385. DOI:10.1021/acs.jafc.6b00650
|
|
[231] |
TAN YQ, XUE B, YEW WS. Genetically encodable scaffolds for optimizing enzyme function. Molecules, 2021, 26(5): 1-33.
|
|
[232] |
MALINA C, LARSSON C, NIELSEN J. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Research, 2018, 18(5): 1-17.
|
|
[233] |
ZHU K, ZHAO BX, ZHANG YH, KONG J, RONG LX, LIU SQ, WANG YP, ZHANG CY, XIAO DG, FOO JL, YU AQ. Mitochondrial engineering of Yarrowia lipolytica for sustainable production of α-bisabolene from waste cooking oil. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9644-9653.
|
|
[234] |
LIU GS, LI T, ZHOU W, JIANG M, TAO XY, LIU M, ZHAO M, REN YH, GAO B, WANG FQ, WEI DZ. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction. Metabolic Engineering, 2020, 57: 151-161. DOI:10.1016/j.ymben.2019.11.001
|
|
[235] |
BHATAYA A, SCHMIDT-DANNERT C, LEE PC. Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochemistry, 2009, 44(10): 1095-1102. DOI:10.1016/j.procbio.2009.05.012
|
|
[236] |
MA YS, LI JB, HUANG SW, STEPHANOPOULOS G. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metabolic Engineering, 2021, 68: 152-161. DOI:10.1016/j.ymben.2021.10.004
|
|
[237] |
HUANG YY, JIAN XX, LV YB, NIAN KQ, GAO Q, CHEN J, WEI LJ, HUA Q. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism. Journal of Biotechnology, 2018, 281: 106-114. DOI:10.1016/j.jbiotec.2018.07.001
|
|
[238] |
LIU H, WANG F, DENG L, XU P. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica. Bioresource Technology, 2020, 317: 1-8.
|
|
[239] |
ZHANG G, WANG H, ZHANG Z, VERSTREPEN KJ, WANG QH, DAI ZJ. Metabolic engineering of Yarrowia lipolytica for terpenoids production: advances and perspectives. Critical Reviews in Biotechnology, 2022, 42(4): 618-633.
|
|
[240] |
LIU H, MARSAFARI M, DENG L, XU P. Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2019, 103(7): 3167-3179. DOI:10.1007/s00253-019-09664-8
|
|
[241] |
URLACHER VB, GIRHARD M. Cytochrome P450 monooxygenases in biotechnology and synthetic biology. Trends in Biotechnology, 2019, 37(8): 882-897. DOI:10.1016/j.tibtech.2019.01.001
|
|
[242] |
LI TG, YAN Y, HE JZ. Enhanced direct fermentation of cassava to butanol by Clostridium species strain BOH3 in cofactor-mediated medium. Biotechnology for Biofuels, 2015, 8(1): 1-12. DOI:10.1186/s13068-014-0179-6
|
|
[243] |
DENG C, LV XQ, LI JH, ZHANG HZ, LIU YF, DU GC, LEDESMA AMARO R, LIU L. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metabolic Engineering, 2021, 67: 330-346. DOI:10.1016/j.ymben.2021.07.012
|
|
[244] |
CHEN RB, GAO JQ, YU W, CHEN XH, ZHAI XX, CHEN Y, ZHANG L, ZHOU YJ. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nature Chemical Biology, 2022, 18(5): 520-529. DOI:10.1038/s41589-022-01014-6
|
|
[245] |
LI MX, ZHANG JL, BAI QY, FANG LX, SONG H, CAO YX. Non-homologous end joining-mediated insertional mutagenesis reveals a novel target for enhancing fatty alcohols production in Yarrowia lipolytica. Frontiers in Microbiology, 2022, 13: 1-14.
|
|
[246] |
GASSLER T, SAUER M, GASSER B, EGERMEIER M, TROYER C, CAUSON T, HANN S, MATTANOVICH D, STEIGER MG. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO 2. Nature Biotechnology, 2020, 38(2): 210-216. DOI:10.1038/s41587-019-0363-0
|
|
[247] |
DÍAZ T, FILLET S, CAMPOY S, VÁZQUEZ R, VIÑA J, MURILLO J, ADRIO JL. Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates. Applied Microbiology and Biotechnology, 2018, 102(7): 3287-3300. DOI:10.1007/s00253-018-8810-2
|
|
[248] |
赵禹, 赵雅坤, 刘士琦, 李建, 李圣龙, 肖冬光, 于爱群. 非常规酵母的分子遗传学及合成生物学研究进展. 微生物学报, 2020, 60(8): 1574-1591. ZHAO Y, ZHAO YK, LIU SQ, LI J, LI SL, XIAO DG, YU AQ. Advances in molecular genetics and synthetic biology tools in unconventional yeasts. Acta Microbiologica Sinica, 2020, 60(8): 1574-1591 (in Chinese). DOI:10.13343/j.cnki.wsxb.20190512
|
|
[249] |
叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物. 生物技术通报, 2021, 37(8): 12-24. YE M, GAO JQ, ZHOU YJ. Engineering non- conventional yeast cell factory for the biosynthesis of natural products. Biotechnology Bulletin, 2021, 37(8): 12-24 (in Chinese). DOI:10.13560/j.cnki.biotech.bull.1985.2021-0815
|
|
[250] |
苏立秋, 张歌, 姚震, 梁配新, 戴宗杰, 王钦宏. 非传统酵母代谢工程研究进展. 生物工程学报, 2021, 37(5): 1659-1676. SU LQ, ZHANG G, YAO Z, LIANG PX, DAI ZJ, WANG QH. Advances in metabolic engineering of non-conventional yeasts. Chinese Journal of Biotechnology, 2021, 37(5): 1659-1676 (in Chinese). DOI:10.13345/j.cjb.200707
|
|
[251] |
QIU XL, XU P, ZHAO XR, DU GC, ZHANG J, LI JH. Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica. Metabolic Engineering, 2020, 60: 66-76. DOI:10.1016/j.ymben.2020.03.006
|
|
[252] |
MALCı K, WATTS E, ROBERTS TM, AUXILLOS JY, NOWROUZI B, BOLL HO, DO NASCIMENTO CZS, ANDREOU A, VEGH P, DONOVAN S, FRAGKOUDIS R, PANKE S, WALLACE E, ELFICK A, RIOS-SOLIS L. Standardization of synthetic biology tools and assembly methods for Saccharomyces cerevisiae and emerging yeast species. ACS Synthetic Biology, 2022, 11(8): 2527-2547. DOI:10.1021/acssynbio.1c00442
|
|