中国科学院微生物研究所、中国微生物学会主办
文章信息
- 丁爽, 陈修来, 高聪, 宋伟, 吴静, 魏婉清, 刘佳, 刘立明
- DING Shuang, CHEN Xiulai, GAO Cong, SONG Wei, WU Jing, WEI Wanqing, LIU Jia, LIU Liming
- 模块化工程改造大肠杆菌生产l-色氨酸
- Modular engineering of Escherichia coli for high-level production of l-tryptophan
- 生物工程学报, 2023, 39(6): 2359-2374
- Chinese Journal of Biotechnology, 2023, 39(6): 2359-2374
- 10.13345/j.cjb.221005
-
文章历史
- Received: December 15, 2022
- Accepted: February 14, 2023
- Published: February 16, 2023
2. 江南大学 食品安全国际合作联合实验室, 江苏 无锡 214122;
3. 江南大学生命科学与健康工程学院, 江苏 无锡 214122
2. International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, China;
3. School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
传统工业中,l-色氨酸主要通过化学合成法、生物转化法和酶转化法生产[1]。而如今,微生物直接发酵法生产l-色氨酸因成本低廉、环境友好等优点,已成为工业化生产的主要方法[2-4]。能用于发酵法生产l-色氨酸的菌株有大肠杆菌(Escherichia coli)、谷氨酸棒杆菌(Corynebacterium glutamicum)和酿酒酵母(Saccharomyces cerevisiae)[5-6]。其中,大肠杆菌具有生长快、易培养、改造手段丰富等优点,成为发酵法生产l-色氨酸的首选菌株[7]。然而,受错综复杂的生物代谢途径与反馈调节机制的阻碍,导致E. coli发酵生产l-色氨酸的效率处于较低水平[8-9]。为此,在过去的几十年中,研究人员发展了丰富的代谢工程策略改造E. coli以获得l-色氨酸高产菌株,如通过过表达抗反馈抑制的aroGfbr [3-脱氧-d-阿拉伯庚酮糖-7-磷酸(3‐deoxy‐d‐arabinoheptulosonate‐7‐ phosphate, DAHP)合酶]、trpEfbrDCBA (l-色氨酸操纵子),使E. coli生产l-色氨酸产量达到45.0 g/L,生产强度达到1.07 g/(L·h)[10]。尽管如此,前体物质磷酸烯醇式丙酮酸(phosphoenolpyruvate, PEP)和赤藓糖-4-磷酸(erythrose-4-phosphate, E4P)的匮乏,限制了l-色氨酸产量进一步提升,为此,通过对合成前体E4P的关键基因tktA (转酮酶Ⅰ)和合成前体PEP的关键基因ppsA (磷酸烯醇式丙酮酸合成酶)进行研究,发现在单独表达tktA或ppsA以及共同表达的情况下,l-色氨酸产量分别提高了1.0%、5.6%和11.9%[11]。此外,E. coli发酵生产l-色氨酸过程中往往伴随大量副产物的产生,对菌株的生长与l-色氨酸的合成均会带来不利的影响,为此,通过敲除副产物乙酸合成途径相关的多个基因,使菌体浓度和色氨酸的产量分别提高了11.5%和20.6%[12]。为进一步提高l-色氨酸产量,本团队通过启动子工程调节ppsA、tktA和aroG表达,平衡2个前体PEP与E4P的供给;并通过控制丝氨酸合成途径serA、serB和serC表达,优化丝氨酸供给,使l-色氨酸的产量达到40.1 g/L,有效地提高了l-色氨酸的产量与生产强度;然而糖酸转化率最高仅达到14.2%,进一步通过强化转运蛋白yddG表达,使l-色氨酸的产量和转化率得到进一步提升,但最终糖酸转化率仅为17.1%[13]。
上述代谢工程方法显著提高了l-色氨酸产量,但莽草酸途径作为芳香族氨基酸的共同途径对生产l-色氨酸的影响往往被人们所忽视。为此,把以前期研究中获得的原始菌株E. coli TRP0作为底盘微生物,借助代谢工程策略解除了色氨酸合成途径中的反馈抑制,并利用模块化工程策略优化莽草酸途径(图 1),获得工程菌E. coli TRP9,使l-色氨酸产量达到36.08 g/L,糖酸转化率达到18.55%。
1 材料与方法 1.1 材料 1.1.1 菌株和质粒本研究使用的E. coli JM109用于质粒表达,E. coli TRP及其衍生菌株用于l-色氨酸生产(E. coli TRP为此前研究[13]中所使用的原始菌株E. coli TRP0,经多轮诱变筛选获得,保藏编号CCTCC M20211388。本研究中将其命名为E. coli TRP)。本研究所使用的菌株和质粒见表 1。
Strains and plasmids | Relevant characteristics | Sources |
Plasmids | ||
pBR322-023 | Derivative of pBR322-023, ColE1 ori, TetR | Lab storage |
pRSF-D | Derivative of pRSF-Dute, RSF ori, KanR | Lab storage |
pTet-D | Derivative of pTet-Dute, p15A ori, CmR | Lab storage |
pBR322-023-aroGfbr | ColE1 ori, Tet, Ptac, aroGfbr | This study |
pTet-L-aroB | p15A ori, CmR, PJ23114, aroB | This study |
pTet-M-aroB | p15A ori, CmR, PJ23108, aroB | This study |
pTet-H-aroB | p15A ori, CmR, PJ23119, aroB | This study |
pTet-L-aroE | p15A ori, CmR, PJ23114, aroE | This study |
pTet-M-aroE | p15A ori, CmR, PJ23108, aroE | This study |
pTet-H-aroE | p15A ori, CmR, PJ23119, aroE | This study |
pTet-L-aroL | p15A ori, CmR, PJ23114, aroL | This study |
pTet-M-aroL | p15A ori, CmR, PJ23108, aroL | This study |
pTet-H-aroL | p15A ori, CmR, PJ23119, aroL | This study |
pBR322-023-aroGfbr-trpEfbrDCBA | ColE1 ori, TetR, Ptac, aroGfbr, Ptac, aroGfbr | This study |
pRSF-L-prs | RSF ori, KanR, PJ23114, prs | This study |
pRSF-M-prs | RSF ori, KanR, PJ23108, prs | This study |
pRSF-H-prs | RSF ori, KanR, PJ23119, prs | This study |
pRSF-L-serA | RSF ori, KanR, PJ23114, serA | This study |
pRSF-M-serA | RSF ori, KanR, PJ23108, serA | This study |
pRSF-H-serA | RSF ori, KanR, PJ23119, serA | This study |
Strains | ||
E. coli JM109 | General cloning host | TaKaRa Bio |
E. coli TRP | Derivative of E. coli W3110, capable of producing l-tryptophan | Lab storage[13] |
TRP1 | TRP ΔtrpR | This study |
TRP2 | TRP1 ΔtrpL | This study |
TRP3 | TRP2 ΔaroG: : aroGfbr | This study |
TRP3-1 | TRP3 ΔpoxB | This study |
TRP3-2 | TRP3 ΔtdcD | This study |
TRP3-3 | TRP3 Δpta | This study |
TRP3-4 | TRP3 ΔackA | This study |
TRP3-5 | TRP3 ΔldhA | This study |
TRP3-6 | TRP3 Δdld | This study |
TRP4 | TRP3 ΔpoxB: : ppsA | This study |
TRP5 | TRP4 ΔldhA: : tktA | This study |
TRP6 | TRP5 pBR322-023-aroGfbr | This study |
TRP6-0 | TRP6 pTet-D | This study |
TRP6-1 | TRP6 pTet-L-aroB | This study |
TRP6-2 | TRP6 pTet-M-aroB | This study |
TRP6-3 | TRP6 pTet-H-aroB | This study |
TRP6-4 | TRP6 pTet-L-aroE | This study |
TRP6-5 | TRP6 pTet-M-aroE | This study |
TRP6-6 | TRP6 pTet-H-aroE | This study |
TRP6-7 | TRP6 pTet-L-aroL | This study |
TRP6-8 | TRP6 pTet-M-aroL | This study |
TRP6-9 | TRP6 pTet-H-aroL | This study |
TRP7 | TRP6 ΔtdcD: : L-aroB-H-aroE-M-aroL | This study |
TRP8 | TRP7 pBR322-Ptac-aroGfbr-Ptac-trpEfbrDCBA | This study |
TRP8-0 | TRP8 pRSF-D | This study |
TRP8-1 | TRP8 pRSF-L-prs | This study |
TRP8-2 | TRP8 pRSF-M-prs | This study |
TRP8-3 | TRP8 pRSF-H-prs | This study |
TRP8-4 | TRP8 pRSF-L-serA | This study |
TRP8-5 | TRP8 pRSF-M-serA | This study |
TRP8-6 | TRP8 pRSF-H-serA | This study |
TRP9 | TRP8 Δdld: : H-serA-M-prs | This study |
H: High expression level under PJ23119 promoter; M: Moderate expression level under PJ23108 promoter; L: Low expression level under PJ23114 promoter. |
LB培养基:酵母粉5.0 g/L,蛋白胨10 g/L,NaCl 10 g/L (固体培养基中添加2%的琼脂)。
种子培养基:K2HPO4 24 g/L,KH2PO4 9.6 g/L,酵母粉15 g/L,(NH4)2SO4 5.0 g/L,MgSO4 1.0 g/L,葡萄糖30 g/L,四环素50 mg/L,自然pH。
发酵培养基:葡萄糖7.5 g/L,酵母浸粉(安琪酵母FM902) 3.0 g/L,(NH4)2SO4 1.6 g/L,柠檬酸2.0 g/L,K2HPO4 5.6 g/L,MgSO4 2.0 g/L,微量元素液1 mL/L,使用NaOH调节pH至7.0。
微量元素液配方:FeSO4·7H2O 75.6 g/L,CoCl2·6H2O 4.0 g/L,CuSO4·5H2O 0.6 g/L,ZnSO4·7H2O 6.4 g/L,Na2SO4 20 g/L,MnSO4·H2O 4.5 g/L,溶于5 mmol/L H2SO4中。
1.1.3 主要试剂PrimeSTAR高保真酶、T4 DNA连接酶、Taq DNA聚合酶、限制性内切酶,购自宝生物工程(大连)有限公司;一步同源重组酶,购自南京巨匠生物科技有限公司;细菌基因组提取试剂盒、质粒提取试剂盒、胶回收试剂盒,购自南京诺唯赞生物科技有限公司;抗生素,购自生工生物工程(上海)股份有限公司;乳酸、乙酸、3-脱氢莽草酸(3‐dehydroshikimate, DHS)、莽草酸、分支酸,购自Sigma公司;酵母浸粉(安琪酵母FM902),购自安琪酵母股份有限公司;酵母粉、蛋白胨,购自Oxoid公司;葡萄糖,购自西王集团有限公司;PCR引物,亦欣生物科技(上海)有限公司;其他试剂,购自国药集团化学试剂有限公司。
1.2 方法 1.2.1 培养方法固体活化:LB培养基灭菌后,待温度降到45 ℃左右加入四环素。配制好的平板斜面等需放在35 ℃恒温倒置2 d。一代活化:35 ℃培养14–16 h。二代活化:35 ℃培养12–14 h。
种子培养:向培养好的斜面中加入10 mL生理盐水洗下菌苔。摇晃均匀后吸取1 mL菌液移入种子液中(50 mL/500 mL三角瓶),在36 ℃、200 r/min条件下培养6 h。
摇瓶发酵:发酵培养基中初始葡萄糖浓度提高至40 g/L,并添加80 mg/L苯酚红作为pH指示剂。按照10% (体积分数)的接种量将种子培养液接种于装有45 mL发酵培养基的500 mL三角瓶中。在36 ℃、200 r/min条件下培养40 h。发酵过程中,以苯酚红为指示剂,每隔4 h添加一次氨水调节pH。
发酵控制:以1.5 vvm初始通气比、400 r/min初始转速将培养好的种子液按10% (体积分数)的接种量接种于5 L发酵罐[T & J-Intelli-FermA, T & J Bio-engineering (Shanghai) Co., Ltd.]中。发酵过程中开启pH自控,流加25%氨水控制pH为7.0;开启温度自控,发酵温度控制为36 ℃;手动调节转速与通气,维持溶氧在20%−30%。接种6 h左右,溶氧骤升,初始葡萄糖耗尽,启动自动补料模式,通过流加800 g/L葡萄糖控制发酵液中葡萄糖浓度在1 g/L以内。当OD600达到15−16时,加入0.5 mmol/L异丙基-β-d-硫代半乳糖苷(isopropyl- beta-d-thiogalactopyranoside, IPTG)进行诱导。
1.2.2 重组菌株构建基因敲除与整合采用CRISPR-Cas9技术来完成,质粒构建采用标准分子克隆操作和吉布森组装法[14-15]。本研究所使用的引物见表 2。基因trpEfbrDCBA、serA、serB、serC、ppsA和tktA以E. coli TRP基因组DNA为模板,通过PCR扩增获得。基因aroGfbr通过PCR定点突变获得。
Primers | Sequences (5′→3′) | Sizes (bp) |
N20-poxB-F | CATCGGCGCTCACAGCAAGGGTTTTAGAGCTAGAAATAGCAAGTTAAAAT | 50 |
N20-poxB-R | CCTTGCTGTGAGCGCCGATGACTAGTATTATACCTAGGACTGAGC | 45 |
poxB-1 | GAAGGAGATATACATATGGCAGATCTGGCTCCGTATATGGATTGGGTAGAG | 51 |
poxB-2 | TTATTATGACGGGAAATGCCACCCTTTGGTTCTCCATCTCCTGAATGTGATAACG | 55 |
poxB-3 | CGTTATCACATTCAGGAGATGGAGAACCAAAGGGTGGCATTTCCCGTCATAATAA | 55 |
poxB-4 | GCAGCGGTTTCTTTACCAGACTCGAGATTCCCATGCTTCTTTCAGGTATTCCCGCG | 56 |
ppsA-1 | ACAGAAGCGTAGAACGTTATGTCTG | 25 |
ppsA-2 | AGATATTATGCGGCGTTTAACGCAG | 25 |
N20-tdcD-F | GGCCTGGTTGTGGCGCATCTGTTTTAGAGCTAGAAATAGCAAGTTAAAAT | 50 |
N20-tdcD-R | AGATGCGCCACAACCAGGCCACTAGTATTATACCTAGGACTGAGC | 45 |
tdcD-1 | GAAGGAGATATACATATGGCAGATCTCAAAGCGCAGAATATTCCAGTGCTTT | 52 |
tdcD-2 | ATAATCTCTCTACAATACTTCAACTAAACTCTTTTCTCATCCTGAGTTACGGATTA | 56 |
tdcD-3 | TAATCCGTAACTCAGGATGAGAAAAGAGTTTAGTTGAAGTATTGTAGAGAGATTAT | 56 |
tdcD-4 | GCAGCGGTTTCTTTACCAGACTCGAGACATCAAATACGCCCTGGTTATGGG | 51 |
aroBEL-1 | CTACGAAGGTGCATTGAAGGCATACGTGCCGATCAACGTCTCA | 43 |
aroBEL-2 | GCACAAATGACACGCGCATTTCAACAATTGATCGTCTGTGCCAGG | 45 |
N20-ldhA-F | TTCTCTCTGGAAGGTCTGACGTTTTAGAGCTAGAAATAGCAAGTTAAAAT | 50 |
N20-ldhA-R | GTCAGACCTTCCAGAGAGAAACTAGTATTATACCTAGGACTGAGC | 45 |
ldhA-1 | CAAGCAGAATCAAGTTCTACCGTGC | 25 |
ldhA-2 | AGCGGCAAGAAAGACTTTCTCCAGTGATGTTGAATCACA | 39 |
ldhA-3 | AGAAAGTCTTTCTTGCCGCTCCCCTGCATT | 30 |
ldhA-4 | TGTCTGTTTTGCGGTCGCCA | 20 |
tktA-1 | TCACATGTTTATTCTTGAGCTTAATATCCCGACTGGC | 37 |
tktA-2 | AAGCTCAAGAATAAACATGTGAAAGAGAACGCGGC | 35 |
N20-dld-F | TTCTGGTTGCGCCGGGAAGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAT | 50 |
N20-dld-R | GCTTCCCGGCGCAACCAGAAACTAGTATTATACCTAGGACTGAGC | 45 |
dld-1 | GAAGGAGATATACATATGGCAGATCTGATATCCTGACGGGTTACGGTGTTGA | 52 |
dld-2 | TGGCGATACTCTGCCATCCGTAATTTTTTCCACTCCTTGTGGTGGCGAAAAA | 52 |
dld-3 | TTTTTCGCCACCACAAGGAGTGGAAAAAATTACGGATGGCAGAGTATCGCCA | 52 |
dld-4 | GCAGCGGTTTCTTTACCAGACTCGAGGAATGAACAACACGCGCTTTGTTGAA | 52 |
serA/prs-1 | GGAGTGGAAATTACATTAATTGCGTTGCGCGGATC | 35 |
serA/prs-2 | TCCGTAATTTAGCTGCGCTAGTAGACGAGTC | 31 |
aroG-F | TCACATGTTTATTCTTGAGCTTAATATCCCGACTGGC | 37 |
aroG-R | AAGCTCAAGAATAAACATGTGAAAGAGAACGCGGC | 35 |
trp-F | TTAAGGTGGATGTCGCGTTAAGCTTAACCTATAAAAATAGGCGTATCACGAGGC | 54 |
trp-R | CTGCAGTCTAGACTCGAGTAAGGATCCCGACACTCATTAAAATTAGTCGCTAATGA | 56 |
细胞浓度检测:取适量发酵液稀释(稀释至OD600在0.2–0.8范围内),使用紫外分光光度计在波长600 nm下测定OD600。
葡萄糖浓度检测:取适量发酵液经12 000 r/min,离心10 min,取上清液,控制样品中葡萄糖浓度稀释至0–2 g/L以内,采用SBA-40E生物传感分析仪测定(深圳西尔曼科技有限公司)。
l-色氨酸浓度检测:使用Agilent C18色谱柱(250 mm×4.6 mm, 5 μm, Agilent)。流动相配比为0.3 g/L KH2PO4 (水溶液)与甲醇按9:1 (体积比)混合;紫外检测器检测波长为278 nm;进样量10 μL;流速1.0 mL/min;柱温39 ℃。
有机酸浓度检测:使用Aminex HPX-87H色谱柱(7.8 mm×300 mm, 5 μm, Bio-Rad)。流动相为5 mmol/L稀硫酸;紫外检测器检测波长为210 nm;进样量10 μL;流速0.6 mL/min;柱温52 ℃。
胞内代谢物检测:将培养的细胞在15 mL的–40 ℃甘油/水(60:40, 体积比)混合物中冷激,并以12 000 r/min,–20 ℃离心3 min。细胞颗粒用5 mL生理盐水(4 ℃)洗涤2次,然后在5 mL 50%甲醇/水混合物(4 ℃)中重悬。悬浮液经液氮冻融5次循环处理,并以12 000 r/min、4 ℃离心10 min。PEP测定采用磷酸烯醇式丙酮酸(PEP) ELISA检测试剂盒(上海科艾博生物技术有限公司);E4P测定采用赤藓糖-4-磷酸(E4P)酶联免疫分析试剂盒(上海雅吉杨生物科技有限公司);磷酸核糖焦磷酸(phosphoribosyl pyrophosphate, PRPP)测定采用细菌磷酸核糖焦磷酸(PRPP) ELISA检测试剂盒(上海佰利莱生物科技有限公司);丝氨酸测定采用高效液相色谱法(high performance liquid chromatography, HPLC)梯度洗脱测定[16]。
2 结果与分析 2.1 构建合成l-色氨酸底盘微生物为了获得合成l-色氨酸的底盘微生物,本研究以E. coli TRP (实验室保藏)为底盘菌株,利用CRISPR技术敲除l-色氨酸操纵子阻遏蛋白的编码基因trpR,获得工程菌株E. coli TRP1 (TRP ΔtrpR)。为了消除l-色氨酸弱化子的调控,在E. coli TRP1的基础上,敲除l-色氨酸操纵子的弱化子区域(trpL),获得工程菌株E. coli TRP2 (TRP1 ΔtrpL)。为了进一步削弱苯丙氨酸对aroG的反馈抑制,通过蛋白质工程改造,将E. coli TRP2的aroG第211位丝氨酸突变为苯丙氨酸[17],获得工程菌株E. coli TRP3 (TRP2 ΔaroG: : aroGfbr)。如图 2A所示,与E. coli TRP相比,菌株E. coli TRP3在5 L发酵罐上生长没有发生变化,在发酵28 h时,OD600达到最高60.5;l-色氨酸产量和转化率分别提高了70.8%和58.3%,达到11.80 g/L和8.25%。发酵液中副产物乙酸和乳酸含量分别达到9.63 g/L和12.41 g/L (图 2B),显著降低了l-色氨酸转化率。
2.2 重构中心代谢路径增加前体DAHP供应为了降低副产物积累,进一步提高色氨酸的产量与转化率对菌株E. coli TRP3的中心代谢路径进行重构,主要包括3个方面:(1) 敲除副产物合成基因;(2) 在副产物合成基因的位点插入l-色氨酸前体合成基因;(3) 强化表达l-色氨酸合成路径中的关键酶基因aroG[18]。为了降低副产物乙酸的积累,分别敲除菌株E. coli TRP3中的丙酮酸氧化酶基因poxB[19-20]、丙酸激酶基因tdcD[12, 21]、磷酸乙酰转移酶基因pta和乙酸激酶基因ackA[22],获得突变菌株E. coli TRP3-1 (ΔpoxB)、TRP3-2 (ΔtdcD)、TRP3-3 (Δpta)和TRP3-4 (ΔackA);为了降低副产物乳酸合成,分别敲除E. coli TRP3中的乳酸脱氢酶基因ldhA[23]和醌依赖型-乳酸脱氢酶的编码基因dld[24],获得突变菌株E. coli TRP3-5 (TRP3 ΔldhA)和TRP3-6 (TRP3 Δdld) (图 3A)。经摇瓶发酵发现,不同基因的敲除,对菌株生长和生产带来不同程度的影响(图 3B),与E. coli TRP3相比:(1) 敲除poxB,使OD600提高了9.1%,而pta和ackA的敲除则使菌株OD600分别降低18.3%和37.1%,tdcD、ldhA和dld的敲除对菌株的生长没有显著影响;(2) 敲除poxB和ldhA,使l-色氨酸产量分别提高了4.9%和3.8%,而敲除pta和ackA则使产量分别降低了22.7%和34.6%,敲除tdcD和dld对l-色氨酸产量没有显著影响;(3) 敲除ldhA和poxB,使转化率分别提高了5.1%和3.5%,敲除pta和ackA使转化率分别降低了6.6%和11.9%,而敲除tdcD和dld对转化率没有明显影响。上述结果表明,敲除poxB有利于提高细胞生长与产量,敲除ldhA有利于提高转化率,敲除基因pta和ackA不利于提高菌株生长、产量和转化率,而敲除tdcD和dld几乎不影响l-色氨酸生产。
为了提高前体PEP和E4P的供应,在菌株E. coli TRP3中将ppsA (编码PEP合酶)[25]整合到poxB的基因座上,获得菌株E. coli TRP4 (TRP3 ΔpoxB: : ppsA),其在摇瓶水平中l-色氨酸产量提高至2.05 g/L,转化率达到6.55%,较菌株E. coli TRP3-1分别提高5.7%和4.3% (图 3C)。进一步发现菌株E. coli TRP4中胞内PEP含量达到18.60 nmol/g DCW,较E. coli TRP3-1提高了12.5%;而E4P的含量几乎不变,PEP与E4P的比值由E. coli TRP3-1的1.58增加至1.79 (图 3C)。更进一步,将tktA (编码转酮醇酶)[25]整合到菌株E. coli TRP4的ldhA的基因座上,得到突变菌株E. coli TRP5 (TRP4 ΔldhA: : tktA),其在摇瓶上l-色氨酸产量提高至2.31 g/L,转化率为7.21% (图 3C)。菌株E. coli TRP5胞内E4P浓度较菌株E. coli TRP4提高了16.3% (10.38 nmol/g DCW提高到12.07 nmol/g DCW),PEP与E4P比值降低至1.51 (图 3C)。
PEP和E4P缩合形成DAHP,不仅是莽草酸合成路径最为关键的环节,也是l-色氨酸合成路径中的关键限速瓶颈[18]。在E. coli中,该反应由AroG、AroF和AroH三个同工酶(DAHP合酶)共同催化,其中AroG酶活占总酶活的80%,并且该酶受l-苯丙氨酸的反馈抑制[26]。为了进一步提高前体DAHP的积累,在E. coli TRP5中过表达aroGfbr (抗反馈突变体),获得菌株E. coli TRP6 (TRP5 Ptac-aroGfbr)。在摇瓶水平上l-色氨酸产量提高至2.82 g/L,转化率达7.89% (图 3D)。在5 L发酵罐中(图 3D),E. coli TRP6的OD600为84.3,比菌株E. coli TRP3提高了39.3%;l-色氨酸的产量和转化率分别达到17.43 g/L和11.20%,较E. coli TRP3分别提高了47.7%和35.8%;而副产物乙酸和乳酸含量分别下降至3.47 g/L和5.41 g/L,比菌株TRP3分别降低了64.0%和56.4% (图 3E)。综上所述,重构中心代谢路径可以削弱副产物积累对菌株生长和生产的抑制,并增加前体供应,能有效地提高菌株的生产性能。然而,在发酵过程中还发现,莽草酸途径至分支酸模块的中间代谢物3-脱氢莽草酸和莽草酸含量分别达到4.52 g/L和2.50 g/L,而分支酸含量仅为0.64 g/L (图 3E),这一结果表明,莽草酸途径效率较低,无法将前体3-脱氢莽草酸和莽草酸转化为分支酸。
2.3 优化莽草酸途径增加分支酸供应如图 4A所示,莽草酸途径的关键靶点aroB、aroE和aroL对l-色氨酸合成具有重要影响[27]。为此,利用3个水平的启动子高(PJ23119)、中(PJ23108)和低(PJ23114)[28]调控aroB、aroE和aroL表达水平,构建了9株基因工程菌(图 4B)。摇瓶发酵结果(图 4B)表明,与E. coli TRP6相比:(1) 当基因aroB在低(TRP6-1)、中(TRP6-2)、高(TRP6-3)水平表达时,l-色氨酸产量分别提高6.7%、6.0%和3.0%,转化率分别提高6.6%、5.3%和0.1%;(2) 当基因aroE在低(TRP6-4)、中(TRP6-5)、高(TRP6-6)水平表达时,l-色氨酸的产量分别提高9.3%、12.8%和17.2%,转化率分别提高5.5%、8.1%和10.4%;(3) 当基因aroL在低(TRP6-7)、中(TRP6-8)、高(TRP6-9)水平表达时,l-色氨酸的产量分别提高6.7%、20.4%和7.7%,转化率分别提高6.7%、11.8%和5.8%。对上述结果进行总结,发现当基因aroB低水平(TRP6-1)、aroE高水平(TRP6-6)、aroL中水平(TRP6-8)表达时,l-色氨酸产量分别为3.01、3.31和3.40 g/L,转化率为8.41%、8.71%和8.82%。
基于上述结果,在菌株E. coli TRP6中将L-aroB-H-aroE-M-aroL片段组合装配至基因组tdcD的基因座上,得到突变菌株E. coli TRP7 (TRP6 ΔtdcD: : L-aroB-H-aroE-M-aroL)。摇瓶实验表明,菌株E. coli TRP7生长没有发生显著变化,但l-色氨酸产量和转化率比菌株E. coli TRP6分别提高了36.5%和18.1%,达到3.85 g/L和9.32%。在5 L发酵罐中发酵40 h,色氨酸产量和转化率分别达到23.41 g/L和13.41% (图 4C),比菌株E. coli TRP6分别提高了34.3%和19.7%。而DHS和SA含量分别下降了66.6% (4.52 g/L下降到1.51 g/L)和65.6% (2.50 g/L下降到0.86 g/L,图 4D)。此时分支酸含量从0.64 g/L提高至3.64 g/L (E. coli TRP6,图 4D)。上述结果表明,通过启动子工程优化莽草酸途径,能有效地降低中间代谢物积累,从而提高l-色氨酸合成效率。
2.4 模块优化分支酸至l-色氨酸途径为了强化分支酸至l-色氨酸的代谢通量(图 5A),在菌株E. coli TRP7中过量表达l-色氨酸操纵子trpEDCBA (trpE所编码的邻氨基苯甲酸合酶在菌株进行诱变时已发生抗反馈突变[13]),获得工程菌株E. coli TRP8 (TRP7 Ptac-trpEfbrDCBA),其在摇瓶中l-色氨酸产量(5.48 g/L)和转化率(10.65%)比菌株E. coli TRP7分别提高了42.3%和14.3% (图 5B)。为了提高l-色氨酸前体丝氨酸与PRPP供应,通过启动子工程分别对丝氨酸合成路径关键基因serA和PRPP合成关键基因prs的表达水平进行优化,获得6株基因工程菌(图 5B)。发现随着serA表达水平的提高,菌株生长、产量和转化效率不断提升,当使用高强度启动子表达serA时,OD600、l-色氨酸产量和转化率分别达到30.15、6.68 g/L和11.56%,比菌株E. coli TRP8分别提高了12.9%、21.9%和8.5%。当基因prs表达水平在中(TRP8-5)和高(TRP8-6)时,l-色氨酸产量提升至5.85 g/L和5.86 g/L,但只有菌株E. coli TRP8-5转化率比E. coli TRP8提高了5.4%。因此,将基因serA和prs分别控制在高、中水平表达时,有利于l-色氨酸的合成。因此,将H-serA-M-prs组合装配至菌株E. coli TRP8基因组中dld基因座上,获得E. coli TRP9 (TRP8 Δdld: : H-serA-M-prs)。在摇瓶中l-色氨酸产量和转化率分别达到7.05 g/L和12.10%,比菌株E. coli TRP8分别提高了28.6%和13.6%,而胞内丝氨酸和PRPP含量较E. coli TRP8分别提高了25.7%和7.2% (图 5C)。5 L发酵罐中发酵40 h,发酵结果如图 5D所示:菌株E. coli TRP9的OD600、l-色氨酸产量和转化率分别达到95.6、36.08 g/L和18.55%。与菌株E. coli TRP7相比,分别提高了18.9%、54.1%和38.3%。另外在发酵液中几乎检测不到分支酸的存在。这些结果表明,分支酸至l-色氨酸模块的优化能有效地提高l-色氨酸的生产能力。
3 讨论与展望l-色氨酸的生物合成涉及糖酵解(Embden-Meyerhof-Parnas pathway, EMP)和戊糖磷酸途径(pentose phosphate pathway, PPP)两条途径,其中EMP途径形成的PEP与PPP途径形成E4P在DAHP合酶的催化下缩合形成DAHP[29]。有研究表明,流向EMP途径的碳通量要比流向PPP途径的碳通量高一个数量级[30],而大肠杆菌中大约只有3%的PEP会用于合成芳香族氨基酸[31]。错综复杂的生物合成途径为l-色氨酸的生产带来诸多隐患,例如副产物竞争碳流、中间代谢物积累以及合成路径代谢通量不足等。本研究通过代谢产物谱分析以及模块化工程,对这些问题进行了系统性的优化。首先,对底盘菌株E. coli TRP3的发酵液进行检测时,发现大量乙酸和乳酸的积累,为此,敲除了乙酸和乳酸合成相关的6个基因poxB、tdcD、pta、ackA、ldhA和dld。随后将PEP合成酶的编码基因ppsA整合至poxB的基因座,将转酮酶Ⅰ的编码基因tktA整合到ldhA的基因座。发酵结果表明,胞内前体PEP和E4P的含量分别提高12.5%和16.3%,而副产物乙酸和乳酸的含量分别降低64.0%和56.4%;针对副产物3-脱氢莽草酸和莽草酸,通过启动子工程将莽草酸途径至分支酸模块的关键基因aroB、aroE和aroL分别控制在低、高、中水平,能有效地将3-脱氢莽草酸和莽草酸含量分别降低66.6%和65.6%。针对分支酸的含量从0.64 g/L增加至3.64 g/L,通过强化l-色氨酸操纵子的表达,同时优化分支酸至l-色氨酸模块中前体物质丝氨酸和PRPP合成的关键基因serA和prs,获得高产菌株E. coli TRP9,其在5 L发酵罐中发酵40 h,OD600、l-色氨酸产量和糖酸转化率分别达到95.6、36.08 g/L和18.55%。
随着合成生物学手段的不断发展,越来越多的代谢工程策略应用于构建l-色氨酸高效生产的细胞工厂。酿酒酵母主要用于l-色氨酸生产的机制与模型的理解和学习[6]、而谷氨酸棒杆菌与大肠杆菌是常用的l-色氨酸工业生产菌株(表 3)。表 3中谷氨酸棒杆菌生产l-色氨酸产量虽高于大肠杆菌,但生产周期几乎是大肠杆菌的2倍,限制了工业化应用。因此,科研人员的注意力集中于代谢改造大肠杆菌,以获得l-色氨酸高产菌种。在前期研究中,本团队通过平衡PEP与E4P供给、优化丝氨酸供应和强化转运蛋白表达,使l-色氨酸的产量提升至52.1 g/L,转化率达到17.1%[13],有效地提高了l-色氨酸的产量,但糖酸转化率仅为理论转化率的75.3%,显著增加了底物成本。为了进一步提高糖酸转化率,相关研究工作主要集中阐释限制糖酸转化率提高的机制、改造葡萄糖转运系统(glucose transport system, PTS)、减少碳流竞争、增加前体供应等方面。大肠杆菌中磷酸烯醇式丙酮酸-糖磷酸转移酶-葡萄糖转运系统(PTS系统)消耗了大约50%的l-色氨酸前体物质PEP[31],导致进入莽草酸途径的碳通量减少了一半,使l-色氨酸的理论转化率仅为22.7%[32]。为进一步提高l-色氨酸的糖酸转化率,在对PTS系统中的磷酸载体蛋白(phosphocarrier protein, HPr)进行深入研究的基础上,构建了一系列HPr突变体,可使菌株糖酸转化率提高45.0%[33]。另一方面,Wu等[34]利用Red同源重组系统、构建包含两类典型PTS系统突变(ptsHIcrr–glf-glk+和ptsG–)的l-色氨酸生产菌,使糖酸转化率分别提高了26.5%和17.6%。但是,PTS系统缺陷会严重影响工程菌株的生长能力,为此,研究人员通过引入运动假单胞菌(Zymomonas mobilis)的葡萄糖促扩散蛋白-葡萄糖激酶基因(glf-glk)来替代PTS系统,同时引入青春双歧杆菌(Bifidobacterium adolescentis)的基因Xfpk来提高E4P供应,不仅改善了工程菌株生长性能,还使l-色氨酸的糖酸转化率取得突破性进展,达到22.7%[35]。而通过降低磷酸乙酰转移酶的亲和力,则可使l-色氨酸转化率提高了18.2%,同时副产物乙酸含量降低了53.5%[22];通过共表达前体合成的关键基因ppsA和tktA,使l-色氨酸转化率由14.74%提升至16.44%,提高了11.5%[11]。尽管如此,l-色氨酸的转化率仍然难以取得实质性突破。在本研究中,通过代谢产物谱分析以及模块化工程解除l-色氨酸生物合成路径中的潜在瓶颈,使工程菌株E. coli TRP9在生产强度与其他高产菌株保持相差不大的情况下,糖酸转化率提高至18.55%,是理论转化率的81.7%。这一数值较此前研究中未进行转运工程改造的菌株(TRP8)提高了30.6%[13],较此前研究中的最终菌株(TRP12)提高了8.5%[13]。
Strains | Titer (g/L) | Yield (%) | Productivity (g/(L·h)) | Carbon source | References |
C. glutamicum KY9218 | 58.0 | NA | 0.725 | Sucrose | [36] |
E. coli S028 | 40.3 | 15.0 | 0.661 | Glucose | [9] |
E. coli FB-04(pta1)ΔpyfK | 45.5 | 14.0 | 0.948 | Glucose | [33] |
E. coli KW023 | 39.7 | 16.7 | 0.827 | Glucose | [37] |
E. coli SX11 | 41.7 | 22.7 | 1.040 | Glucose | [35] |
E. coli TRP12 | 52.1 | 17.1 | 1.450 | Glucose | [13] |
E. coli TRP9 | 36.1 | 18.6 | 0.903 | Glucose | This study |
NA: Not available. |
虽然对PTS系统进行代谢改造能有效地提高l-色氨酸的糖酸转化率,但大量研究表明,PTS系统的改造导致菌株生长受到抑制,进而限制了l-色氨酸产量进一步提高[37]。因此,后续研究中重点关注于底物-产物转运系统的优化,通过基因电路、群体响应开关等代谢工程元件调节微生物生长、生产以及底物-产物转运,构建微生物智能转运系统,以有效地提高l-色氨酸产量和糖酸转化率。
[1] |
LIU S, XU JZ, ZHANG WG. Advances and prospects in metabolic engineering of Escherichia coli for l-tryptophan production. World Journal of Microbiology and Biotechnology, 2022, 38(2): 1-16.
|
[2] |
IKEDA M. Amino acid production processes[M]//Microbial Production of l-Amino Acids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002: 1-35.
|
[3] |
FANG MY, ZHANG C, YANG S, CUI JY, JIANG PX, LOU K, WACHI M, XING XH. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microbial Cell Factories, 2015, 14(1): 1-13. DOI:10.1186/s12934-014-0183-3
|
[4] |
FANG MY, WANG TM, ZHANG C, BAI JL, ZHENG X, ZHAO XJ, LOU CB, XING XH. Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metabolic Engineering, 2016, 33: 41-51. DOI:10.1016/j.ymben.2015.10.006
|
[5] |
IKEDA M. Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Applied Microbiology and Biotechnology, 2006, 69(6): 615-626. DOI:10.1007/s00253-005-0252-y
|
[6] |
ZHANG J, PETERSEN SD, RADIVOJEVIC T, RAMIREZ A, PÉREZ-MANRÍQUEZ A, ABELIUK E, SÁNCHEZ BJ, COSTELLO Z, CHEN Y, FERO MJ, MARTIN HG, NIELSEN J, KEASLING JD, JENSEN MK. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nature Communications, 2020, 11: 4880. DOI:10.1038/s41467-020-17910-1
|
[7] |
NIU H, LI RR, LIANG QF, QI QS, LI Q, GU PF. Metabolic engineering for improving l-tryptophan production in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2019, 46(1): 55-65. DOI:10.1007/s10295-018-2106-5
|
[8] |
RODRIGUEZ A, MARTNEZ JA, FLORES N, ESCALANTE A, GOSSET G, BOLIVAR F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microbial Cell Factories, 2014, 13(1): 1-15. DOI:10.1186/1475-2859-13-1
|
[9] |
CHEN L, ZENG AP. Rational design and metabolic analysis of Escherichia coli for effective production of l-tryptophan at high concentration. Applied Microbiology and Biotechnology, 2017, 101(2): 559-568. DOI:10.1007/s00253-016-7772-5
|
[10] |
BERRY A. Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends in Biotechnology, 1996, 14(7): 250-256. DOI:10.1016/0167-7799(96)10033-0
|
[11] |
SHEN T, LIU Q, XIE XX, XU QY, CHEN N. Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression. Journal of Biomedicine and Biotechnology, 2012, 2012: 605219.
|
[12] |
XU QY, BAI F, CHEN N, BAI G. Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase l-tryptophan production. PLoS One, 2017, 12(6): e0179240. DOI:10.1371/journal.pone.0179240
|
[13] |
GUO L, DING S, LIU YD, GAO C, HU GP, SONG W, LIU J, CHEN XL, LIU LM. Enhancing tryptophan production by balancing precursors in Escherichia coli. Biotechnology and Bioengineering, 2022, 119(3): 983-993. DOI:10.1002/bit.28019
|
[14] |
JIANG Y, CHEN B, DUAN CL, SUN BB, YANG JJ, YANG S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 2015, 81(7): 2506-2514. DOI:10.1128/AEM.04023-14
|
[15] |
GIBSON DG, YOUNG L, CHUANG RY, VENTER JC, HUTCHISON CA Ⅲ, SMITH HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343-345. DOI:10.1038/nmeth.1318
|
[16] |
CHEN Z, CHEN XJ, LI QY, ZHOU P, ZHAO ZJ, LI BG. Transcriptome analysis reveals potential mechanisms of l-serine production by Escherichia coli fermentation in different carbon-nitrogen ratio medium. Foods, 2022, 11(14): 2092. DOI:10.3390/foods11142092
|
[17] |
DING DQ, BAI DY, LI JL, MAO ZT, ZHU YR, LIU P, LIN JP, MA HW, ZHANG DW. Analyzing the genetic characteristics of a tryptophan-overproducing Escherichia coli. Bioprocess and Biosystems Engineering, 2021, 44(8): 1685-1697. DOI:10.1007/s00449-021-02552-4
|
[18] |
LEE SY. High cell-density culture of Escherichia coli. Trends in Biotechnology, 1996, 14(3): 98-105. DOI:10.1016/0167-7799(96)80930-9
|
[19] |
NEUMANN P, WEIDNER A, PECH A, STUBBS MT, TITTMANN K. Structural basis for membrane binding and catalytic activation of the peripheral membrane enzyme pyruvate oxidase from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17390-17395. DOI:10.1073/pnas.0805027105
|
[20] |
WANG J, HUANG J, SHI JM, XU QY, XIE XX, CHEN N. Fermentation characterization of an l-tryptophan producing Escherichia coli strain with inactivated phosphotransacetylase. Annals of Microbiology, 2013, 63(4): 1219-1224. DOI:10.1007/s13213-012-0579-4
|
[21] |
SAWERS G. A novel mechanism controls anaerobic and catabolite regulation of the Escherichia coli tdc operon. Molecular Microbiology, 2004, 39(5): 1285-1298. DOI:10.1111/j.1365-2958.2001.02316.x
|
[22] |
LIU LN, DUAN XG, WU J. L-tryptophan production in Escherichia coli improved by weakening the pta-AckA pathway. PLoS One, 2016, 11(6): e0158200. DOI:10.1371/journal.pone.0158200
|
[23] |
ZHU JF, SHIMIZU K. Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for d-lactate production under microaerobic condition. Metabolic Engineering, 2005, 7(2): 104-115. DOI:10.1016/j.ymben.2004.10.004
|
[24] |
DOWD SR, PRATT EA, SUN ZY, HO C. Nature and environment of the sulfhydryls of membrane-associated d-lactate dehydrogenase of Escherichia coli. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1995, 1252(2): 278-283.
|
[25] |
WANG J, SHEN XL, REY J, YUAN QP, YAN YJ. Recent advances in microbial production of aromatic natural products and their derivatives. Applied Microbiology and Biotechnology, 2018, 102(1): 47-61. DOI:10.1007/s00253-017-8599-4
|
[26] |
李柱. 通过理性遗传改造大肠杆菌利用葡萄糖合成色氨酸的研究[D]. 天津: 天津大学硕士学位论文, 2020. LI Z. Engineering Escherichia coli for production of tryptophan from glucose via rational genetic manipulations[D]. Tianjin: Master's Thesis of Tianjin University, 2020 (in Chinese). |
[27] |
JUMINAGA D, BAIDOO EEK, REDDING- JOHANSON AM, BATTH TS, BURD H, MUKHOPADHYAY A, PETZOLD CJ, KEASLING JD. Modular engineering of l-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2012, 78(1): 89-98. DOI:10.1128/AEM.06017-11
|
[28] |
GUO L, DIAO WW, GAO C, HU GP, DING Q, YE C, CHEN XL, LIU J, LIU LM. Engineering Escherichia coli life span for enhancing chemical production. Nature Catalysis, 2020, 3(3): 307-318. DOI:10.1038/s41929-019-0411-7
|
[29] |
郭亮, 高聪, 柳亚迪, 陈修来, 刘立明. 大肠杆菌生产饲用氨基酸的研究进展. 合成生物学, 2021, 2(6): 964-981. GUO L, GAO C, LIU YD, CHEN XL, LIU LM. Advances in bioproduction of feed amino acid by Escherichia coli. Synthetic Biology Journal, 2021, 2(6): 964-981 (in Chinese). |
[30] |
MIGUEL S, GUO WH, FENG XY, SHAO ZY. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2016, 113(12): 2676-2685. DOI:10.1002/bit.26037
|
[31] |
GOSSET G. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microbial Cell Factories, 2005, 4(1): 1-11. DOI:10.1186/1475-2859-4-1
|
[32] |
DODGE TC, GERSTNER JM. Optimization of the glucose feed rate profile for the production of tryptophan from recombinant E coli. Journal of Chemical Technology & Biotechnology, 2002, 77(11): 1238-1245.
|
[33] |
LIU LN, CHEN S, WU J. Phosphoenolpyruvate: glucose phosphotransferase system modification increases the conversion rate during l-tryptophan production in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2017, 44(10): 1385-1395. DOI:10.1007/s10295-017-1959-3
|
[34] |
吴涛, 赵津津, 毛贤军. 大肠杆菌磷酸烯醇式丙酮酸-糖磷酸转移酶系统改造对产l-色氨酸的影响. 生物工程学报, 2017, 33(11): 1877-1882. WU T, ZHAO JJ, MAO XJ. Effect of PTS modifications on l-tryptophan production in Escherichia coli. Chinese Journal of Biotechnology, 2017, 33(11): 1877-1882 (in Chinese). |
[35] |
XIONG B, ZHU YD, TIAN DG, JIANG S, FAN XG, MA Q, WU HY, XIE XX. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli. Biotechnology and Bioengineering, 2021, 118(3): 1393-1404. DOI:10.1002/bit.27665
|
[36] |
ITO J, YANOFSKY C. The nature of the anthranilic acid synthetase complex of Escherichia coli. Journal of Biological Chemistry, 1966, 241(17): 4112-4114. DOI:10.1016/S0021-9258(18)99820-0
|
[37] |
CHEN YY, LIU YF, DING DQ, CONG LN, ZHANG DW. Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. Journal of Industrial Microbiology and Biotechnology, 2018, 45(5): 357-367. DOI:10.1007/s10295-018-2020-x
|