[1] |
OLAH GA. Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. DOI:10.1002/anie.200462121
|
|
[2] |
COTTON CA, CLAASSENS NJ, BENITO-VAQUERIZO S, BAR-EVEN A. Renewable methanol and formate as microbial feedstocks. Current Opinion in Biotechnology, 2020, 62: 168-180. DOI:10.1016/j.copbio.2019.10.002
|
|
[3] |
ZHANG WM, SONG M, YANG Q, DAI ZX, ZHANG SJ, XIN FX, DONG WL, MA JF, JIANG M. Current advance in bioconversion of methanol to chemicals. Biotechnology for Biofuels, 2018, 11(1): 1-11. DOI:10.1186/s13068-017-1003-x
|
|
[4] |
张卉, 袁姚梦, 张翀, 杨松, 邢新会. 合成甲基营养细胞工厂同化甲醇的研究进展及未来展望. 合成生物学, 2021, 2(2): 222-233. ZHANG H, YUAN YM, ZHANG C, YANG S, XING XH. Research progresses and future prospects of synthetic methylotrophic cell factory for methanol assimilation. Synthetic Biology Journal, 2021, 2(2): 222-233 (in Chinese).
|
|
[5] |
陶雨萱, 张尚杰, 景艺文, 信丰学, 董维亮, 周杰, 蒋羽佳, 章文明, 姜岷. 甲基营养型大肠杆菌构建策略的研究进展. 化工进展, 2021, 40(7): 3932-3941. TAO YX, ZHANG SJ, JING YW, XIN FX, DONG WL, ZHOU J, JIANG YJ, ZHANG WM, JIANG M. Recent advances in the construction strategy of methylotrophic Escherichia coli. Chemical Industry and Engineering Progress, 2021, 40(7): 3932-3941 (in Chinese). DOI:10.16085/j.issn.1000-6613.2020-1607
|
|
[6] | |
|
[7] |
MATSUSHITA K, ARENTS JC, BADER R, YAMADA M, ADACHI O, POSTMA PW. Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiology, 1997, 143(10): 3149-3156. DOI:10.1099/00221287-143-10-3149
|
|
[8] |
CHISTOSERDOVA L, CHEN SW, LAPIDUS A, LIDSTROM ME. Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. Journal of Bacteriology, 2003, 185(10): 2980-2987. DOI:10.1128/JB.185.10.2980-2987.2003
|
|
[9] |
VELTEROP JS, SELLINK E, MEULENBERG JJ, DAVID S, BULDER I, POSTMA PW. Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. Journal of Bacteriology, 1995, 177(17): 5088-5098. DOI:10.1128/jb.177.17.5088-5098.1995
|
|
[10] |
SHEEHAN MC, BAILEY CJ, DOWDS BA, McCONNELL DJ. A new alcohol dehydrogenase, reactive towards methanol, from Bacillus stearothermophilus. Biochemical Journal, 1988, 252(3): 661-666. DOI:10.1042/bj2520661
|
|
[11] |
KROG A, HEGGESET TMB, MÜLLER JEN, KUPPER CE, SCHNEIDER O, VORHOLT JA, ELLINGSEN TE, BRAUTASET T. Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD + dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS One, 2013, 8(3): e59188. DOI:10.1371/journal.pone.0059188
|
|
[12] |
OCHSNER AM, MÜLLER JEN, MORA CA, VORHOLT JA. In vitro activation of NAD-dependent alcohol dehydrogenases by Nudix hydrolases is more widespread than assumed. FEBS Letters, 2014, 588(17): 2993-2999. DOI:10.1016/j.febslet.2014.06.008
|
|
[13] |
WITTHOFF S, SCHMITZ K, NIEDENFÜHR S, NÖH K, NOACK S, BOTT M, MARIENHAGEN J. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Applied and Environmental Microbiology, 2015, 81(6): 2215-2225. DOI:10.1128/AEM.03110-14
|
|
[14] |
MÜLLER JEN, MEYER F, LITSANOV B, KIEFER P, POTTHOFF E, HEUX S, QUAX WJ, WENDISCH VF, BRAUTASET T, PORTAIS JC, VORHOLT JA. Engineering Escherichia coli for methanol conversion. Metabolic Engineering, 2015, 28: 190-201. DOI:10.1016/j.ymben.2014.12.008
|
|
[15] |
LIMTONG S, SRISUK N, YONGMANITCHAI W, YURIMOTO H, NAKASE T.. Ogataea chonburiensis sp. nov. and Ogataea nakhonphanomensis sp. nov., thermotolerant, methylotrophic yeast species isolated in Thailand, and transfer of Pichia siamensis and Pichia thermomethanolica to the genus Ogataea. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(1): 302-307. DOI:10.1099/ijs.0.65380-0
|
|
[16] |
YURIMOTO H, KATO N, SAKAI Y. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. The Chemical Record, 2005, 5(6): 367-375. DOI:10.1002/tcr.20056
|
|
[17] |
KATO N, YURIMOTO H, THAUER RK. The physiological role of the ribulose monophosphate pathway in bacteria and Archaea. Bioscience, Biotechnology, and Biochemistry, 2006, 70(1): 10-21. DOI:10.1271/bbb.70.10
|
|
[18] |
DALTON H. The biochemistry of methylotrophs. Trends in Biochemical Sciences, 1983, 8(9): 342-343.
|
|
[19] |
STOLZENBERGER J, LINDNER SN, WENDISCH VF. The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1, 6-bisphosphate aldolases. Microbiology, 2013, 159(Pt_8): 1770-1781. DOI:10.1099/mic.0.067314-0
|
|
[20] |
VUILLEUMIER S, CHISTOSERDOVA L, LEE MC, BRINGEL F, LAJUS A, ZHOU Y, GOURION B, BARBE V, CHANG J, CRUVEILLER S, DOSSAT C, GILLETT W, GRUFFAZ C, HAUGEN E, HOURCADE E, LEVY R, MANGENOT S, MULLER E, NADALIG T, PAGNI M, et al. Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One, 2009, 4(5): e5584. DOI:10.1371/journal.pone.0005584
|
|
[21] |
CROWTHER GJ, KOSÁLY G, LIDSTROM ME. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. Journal of Bacteriology, 2008, 190(14): 5057-5062. DOI:10.1128/JB.00228-08
|
|
[22] |
KAWAGUCHI K, YURIMOTO H, OKU M, SAKAI Y. Yeast methylotrophy and autophagy in a methanol-oscillating environment on growing Arabidopsis thaliana leaves. PLoS One, 2011, 6(9): e25257. DOI:10.1371/journal.pone.0025257
|
|
[23] | |
|
[24] | |
|
[25] |
NAGAI H, MASUDA A, TOYA Y, MATSUDA F. Shimizu H.. Metabolic engineering of mevalonate-producing Escherichia coli strains based on thermodynamic analysis. Metabolic Engineering, 2018, 47: 1-9. DOI:10.1016/j.ymben.2018.02.012
|
|
[26] |
SONNTAG F, KRONER C, LUBUTA P, PEYRAUD R, HORST A, BUCHHAUPT M, SCHRADER J. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol. Metabolic Engineering, 2015, 32: 82-94. DOI:10.1016/j.ymben.2015.09.004
|
|
[27] |
ALI SHAH A, HASAN F, HAMEED A, AHMED S. Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 2008, 26(3): 246-265. DOI:10.1016/j.biotechadv.2007.12.005
|
|
[28] |
GAO X, CHEN JC, WU Q, CHEN GQ. Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Current Opinion in Biotechnology, 2011, 22(6): 768-774. DOI:10.1016/j.copbio.2011.06.005
|
|
[29] |
ORITA I, NISHIKAWA K, NAKAMURA S, FUKUI T. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions. Applied Microbiology and Biotechnology, 2014, 98(8): 3715-3725. DOI:10.1007/s00253-013-5490-9
|
|
[30] |
SUZUKI T, YAMANE T, SHIMIZU S. Kinetics and effect of nitrogen source feeding on production of poly-β-hydroxybutyric acid by fed-batch culture. Applied Microbiology and Biotechnology, 1986, 24(5): 366-369. DOI:10.1007/BF00294591
|
|
[31] |
van DIEN SJ, MARX CJ, O՚BRIEN BN, LIDSTROM ME. Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 andIsolation of a Colorless Mutant. Applied and Environmental Microbiology, 2003, 69(12): 7563-7566. DOI:10.1128/AEM.69.12.7563-7566.2003
|
|
[32] |
LIANG WF. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply. Metabolic Engineering, 2017, 39: 159-168. DOI:10.1016/j.ymben.2016.11.010
|
|
[33] |
DAI ZX. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae. Bioresource Technology, 2017, 245: 1407-1412. DOI:10.1016/j.biortech.2017.05.100
|
|
[34] |
KUENZ A, GALLENMÜLLER Y, WILLKE T, VORLOP KD. Microbial production of itaconic acid: developing a stable platform for high product concentrations. Applied Microbiology and Biotechnology, 2012, 96(5): 1209-1216. DOI:10.1007/s00253-012-4221-y
|
|
[35] |
SONNTAG F, BUCHHAUPT M, SCHRADER J. Thioesterases for ethylmalonyl-CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1. Applied Microbiology and Biotechnology, 2014, 98(10): 4533-4544. DOI:10.1007/s00253-013-5456-y
|
|
[36] |
GAO JQ, LI YX, YU W, ZHOU YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nature Metabolism, 2022, 4(7): 932-943. DOI:10.1038/s42255-022-00601-0
|
|
[37] |
CAI P, WU XY, DENG J, GAO LH, SHEN YW, YAO L, ZHOU YJ. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(29): e2201711119. DOI:10.1073/pnas.2201711119
|
|
[38] |
BRAUTASET T, WILLIAMS MD, DILLINGHAM RD, KAUFMANN C, BENNAARS A, CRABBE E, FLICKINGER MC. Role of the Bacillus methanolicus citrate synthase Ⅱ gene, citY, in regulating the secretion of glutamate in l-lysine-secreting mutants. Applied and Environmental Microbiology, 2003, 69(7): 3986-3995. DOI:10.1128/AEM.69.7.3986-3995.2003
|
|
[39] |
BRAUTASET T, JAKOBSEN ØM, DEGNES KF, NETZER R, NÆRDAL I, KROG A, DILLINGHAM R, FLICKINGER MC, ELLINGSEN TE. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase Ⅰ and Ⅱ and their roles for l-lysine production from methanol at 50 ℃. Applied Microbiology and Biotechnology, 2010, 87(3): 951-964. DOI:10.1007/s00253-010-2559-6
|
|
[40] |
BRAUTASET T, JAKOBSEN ØM, JOSEFSEN KD, FLICKINGER MC, ELLINGSEN TE. Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 ℃. Applied Microbiology and Biotechnology, 2007, 74(1): 22-34. DOI:10.1007/s00253-006-0757-z
|
|
[41] |
LIU YQ. Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol. Metabolic Engineering, 2018, 45: 189-199. DOI:10.1016/j.ymben.2017.12.009
|
|
[42] |
JIN XR, ZHANG WJ, WANG Y, SHENG JY, XU RR, LI JH, DU GC, KANG Z. Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered Pichia pastoris. Green Chemistry, 2021, 23(12): 4365-4374. DOI:10.1039/D1GC00260K
|
|
[43] |
HÖFER P, CHOI YJ, OSBORNE MJ, MIGUEZ CB, VERMETTE P, GROLEAU D. Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains. Microbial Cell Factories, 2010, 9(1): 1-13. DOI:10.1186/1475-2859-9-1
|
|
[44] |
BECKER J, WITTMANN C. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angewandte Chemie International Edition, 2015, 54(11): 3328-3350. DOI:10.1002/anie.201409033
|
|
[45] |
WU MK, ZHANG WM, JI YL, YI XY, MA JF, WU H, JIANG M. Coupled CO2 fixation from ethylene oxide off-gas with bio-based succinic acid production by engineered recombinant Escherichia coli. Biochemical Engineering Journal, 2017, 117: 1-6.
|
|
[46] |
ZHANG WM. Expression of global regulator IrrE for improved succinate production under high salt stress by Escherichia coli. Bioresource Technology, 2018, 254: 151-156. DOI:10.1016/j.biortech.2018.01.091
|
|
[47] |
GAO CJ, YANG XF, WANG HM, RIVERO CP, LI C, CUI ZY, QI QS, LIN CSK. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnology for Biofuels, 2016, 9(1): 1-11. DOI:10.1186/s13068-015-0423-8
|
|
[48] |
CUI ZY. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metabolic Engineering, 2017, 42: 126-133. DOI:10.1016/j.ymben.2017.06.007
|
|
[49] |
KNUF C, NOOKAEW I, BROWN SH, McCULLOCH M, BERRY A, NIELSEN J. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions. Applied and Environmental Microbiology, 2013, 79(19): 6050-6058. DOI:10.1128/AEM.01445-13
|
|
[50] |
OCHSENREITHER K, FISCHER C, NEUMANN A, SYLDATK C. Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863. Applied Microbiology and Biotechnology, 2014, 98(12): 5449-5460. DOI:10.1007/s00253-014-5614-x
|
|
[51] |
HU W, LIU J, CHEN JH, WANG SY, LU D, WU QH, LI WJ. A mutation of Aspergillus niger for hyper-production of citric acid from corn meal hydrolysate in a bioreactor. Journal of Zhejiang University: Science B, 2014, 15(11): 1006-1010. DOI:10.1631/jzus.B1400132
|
|
[52] |
GUO F, DAI ZX, PENG WF, ZHANG SJ, ZHOU J, MA JF, DONG WL, XIN FX, ZHANG WM, JIANG M. Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnology and Bioengineering, 2021, 118(1): 357-371. DOI:10.1002/bit.27575
|
|
[53] |
ERB TJ, FUCHS G, ALBER BE. (2 S)-Methylsuccinyl-CoA dehydrogenase closes the ethylmalonyl-CoA pathway for acetyl-CoA assimilation. Molecular Microbiology, 2009, 73(6): 992-1008. DOI:10.1111/j.1365-2958.2009.06837.x
|
|
[54] |
HU B, LIDSTROM ME. Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production. Biotechnology for Biofuels, 2014, 7(1): 1-10. DOI:10.1186/1754-6834-7-1
|
|
[55] |
HU B, YANG YM, BECK DAC, WANG QW, CHEN WJ, YANG J, LIDSTROM ME, YANG S. Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance. Biotechnology for Biofuels, 2016, 9(1): 1-14. DOI:10.1186/s13068-015-0423-8
|
|
[56] |
FILLET S, ADRIO JL. Microbial production of fatty alcohols. World Journal of Microbiology and Biotechnology, 2016, 32(9): 1-10.
|
|
[57] |
MOTOYAMA H, ANAZAWA H, KATSUMATA R, ARAKI K, TESHIBA S. Amino acid production from methanol by Methylobacillus glycogenes Mutants: isolation of l-glutamic acid hyper-producing mutants from M. glycogenes strains, and derivation of l-threonine and l-lysine-producing mutants from them. Bioscience, Biotechnology, and Biochemistry, 1993, 57(1): 82-87. DOI:10.1271/bbb.57.82
|
|
[58] |
MOTOYAMA H, YANO H, TERASAKI Y, ANAZAWA H. Overproduction of l-lysine from methanol by Methylobacillus glycogenes derivatives carrying a plasmid with a mutated dapA gene. Applied and Environmental Microbiology, 2001, 67(7): 3064-3070. DOI:10.1128/AEM.67.7.3064-3070.2001
|
|
[59] |
HANSON RS, DILLINGHAM R, OLSON P, LEE GH, CUE D, SCHENDEL FJ, BREMMON C, FLIEKINGER MC. Production of l-lysine and some other amino acids by mutants of B. methanolicus[M]// Microbial Growth on C1 Compounds. Dordrecht: Springer Netherlands, 1996: 227-236.
|
|
[60] |
GUNJI Y, YASUEDA H. Enhancement of l-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter. Journal of Biotechnology, 2006, 127(1): 1-13. DOI:10.1016/j.jbiotec.2006.06.003
|
|
[61] |
SIRIROTE P, YAMANE T, SHIMIZU S. Production of l-serine from methanol and glycine by resting cells of a methylotroph under automatically controlled conditions. Journal of Fermentation Technology, 1986, 64(5): 389-396. DOI:10.1016/0385-6380(86)90025-7
|
|
[62] |
HAGISHITA T, YOSHIDA T, IZUMI Y, MITSUNAGA T. Efficient l-serine production from methanol and Glycine by resting cells of Methylobacterium sp. strain MN 43. Bioscience, Biotechnology, and Biochemistry, 1996, 60(10): 1604-1607. DOI:10.1271/bbb.60.1604
|
|
[63] |
SCHENDEL FJ, BREMMON CE, FLICKINGER MC, GUETTLER M, HANSON RS. l-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp.. Applied and Environmental Microbiology, 1990, 56(4): 963-970. DOI:10.1128/aem.56.4.963-970.1990
|
|
[64] |
AOKI R, WADA M, TAKESUE N, TANAKA K, YOKOTA A. Enhanced glutamic acid production by a H +-ATPase-defective mutant of Corynebacterium glutamicum. Bioscience, Biotechnology, and Biochemistry, 2005, 69(8): 1466-1472. DOI:10.1271/bbb.69.1466
|
|
[65] |
ARFMAN N, DIJKHUIZEN L, KIRCHHOF G, LUDWIG W, SCHLEIFER KH, BULYGINA ES, CHUMAKOV KM, GOVORUKHINA NI, TROTSENKO YA, WHITE D, SHARP RJ. Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. International Journal of Systematic Bacteriology, 1992, 42(3): 439-445. DOI:10.1099/00207713-42-3-439
|
|
[66] |
BENNETT RK. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. Metabolic Engineering, 2018, 45: 75-85. DOI:10.1016/j.ymben.2017.11.016
|
|
[67] |
WHITAKER WB. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metabolic Engineering, 2017, 39: 49-59. DOI:10.1016/j.ymben.2016.10.015
|
|
[68] |
YU H, LIAO JC. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds. Nature Communications, 2018, 165‒174: 3992.
|
|
[69] |
ZHANG WM, ZHANG T, SONG M, DAI ZX, ZHANG SJ, XIN FX, DONG WL, MA JF, JIANG M. Metabolic engineering of Escherichia coli for high yield production of succinic acid driven by methanol. ACS Synthetic Biology, 2018, 7(12): 2803-2811. DOI:10.1021/acssynbio.8b00109
|
|
[70] |
PRICE JV, CHEN L, WHITAKER WB, PAPOUTSAKIS E, CHEN W. Scaffoldless engineered enzyme assembly for enhanced methanol utilization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12691-12696. DOI:10.1073/pnas.1601797113
|
|
[71] |
WANG C, REN J, ZHOU LB, LI ZD, CHEN L, ZENG AP. An aldolase-catalyzed new metabolic pathway for the assimilation of formaldehyde and methanol to synthesize 2-keto-4-hydroxybutyrate and 1, 3-propanediol in Escherichia coli. ACS Synthetic Biology, 2019, 8(11): 2483-2493. DOI:10.1021/acssynbio.9b00102
|
|
[72] |
TUYISHIME P. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metabolic Engineering, 2018, 49: 220-231. DOI:10.1016/j.ymben.2018.07.011
|
|
[73] |
LESSMEIER L, PFEIFENSCHNEIDER J, CARNICER M, HEUX S, PORTAIS JC, WENDISCH VF. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Applied Microbiology and Biotechnology, 2015, 99(23): 10163-10176. DOI:10.1007/s00253-015-6906-5
|
|
[74] |
CUI LY, LIANG WF, ZHU WL, SUN MY, ZHANG C, XING XH. Medium redesign for stable cultivation and high production of mevalonate by recombinant Methtylobacterium extorquens AM1 with mevalonate synthetic pathway. Biochemical Engineering Journal, 2017, 119: 67-73. DOI:10.1016/j.bej.2016.12.001
|
|
[75] |
SIEGEL JB, LEE SMITH A, POUST S, WARGACKI AJ, BAR-EVEN A, LOUW C, SHEN BW, EIBEN CB, TRAN HM, NOOR E, GALLAHER JL, BALE J, YOSHIKUNI Y, GELB MH, KEASLING JD, STODDARD BL, LIDSTROM ME, BAKER D. Computational protein design enables a novel one-carbon assimilation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 3704-3709. DOI:10.1073/pnas.1500545112
|
|
[76] |
LU XY, LIU YW, YANG YQ, WANG SS, WANG Q, WANG XY, YAN ZH, CHENG J, LIU C, YANG X, LUO H, YANG S, GOU JR, YE LZ, LU LN, ZHANG ZD, GUO Y, NIE Y, LIN JP, LI S, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nature Communications, 2019, 10: 1378. DOI:10.1038/s41467-019-09095-z
|
|
[77] |
YANG JG, SUN SS, MEN Y, ZENG Y, ZHU YM, SUN YX, MA YH. Transformation of formaldehyde into functional sugars via multi-enzyme stepwise cascade catalysis. Catalysis Science & Technology, 2017, 7(16): 3459-3463.
|
|
[78] |
ZHANG SJ, GUO F, YANG Q, JIANG YJ, YANG SH, MA JF, XIN FX, HASUNUMA T, KONDO A, ZHANG WM, JIANG M. Improving methanol assimilation in Yarrowia lipolytica via systematic metabolic engineering combined with compartmentalization. Green Chemistry, 2023, 25(1): 183-195. DOI:10.1039/D2GC02783F
|
|
[79] |
ROTH TB, WOOLSTON BM, STEPHANOPOULOS G, LIU DR. Phage-assisted evolution of Bacillus methanolicus methanol dehydrogenase 2. ACS Synthetic Biology, 2019, 8(4): 796-806. DOI:10.1021/acssynbio.8b00481
|
|
[80] |
CELIK E, CALIK P, OLIVER SG. Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: effects of methanol feeding rate. Biotechnology and Bioengineering, 2010, 105(2): 317-329. DOI:10.1002/bit.22543
|
|