中国科学院微生物研究所、中国微生物学会主办
文章信息
- 金利群, 鲁笛, 邢明林, 汪贤文, 柳志强, 郑裕国
- JIN Liqun, LU Di, XING Minglin, WANG Xianwen, LIU Zhiqiang, ZHENG Yuguo
- 免疫抑制剂他克莫司生物合成的研究进展
- Biosynthesis of immunosuppressant tacrolimus: a review
- 生物工程学报, 2023, 39(8): 3095-3110
- Chinese Journal of Biotechnology, 2023, 39(8): 3095-3110
- 10.13345/j.cjb.220994
-
文章历史
- Received: December 12, 2022
- Accepted: February 7, 2023
- Published: February 10, 2023
他克莫司(tacrolimus, FK506)是一种23元大环内酯类化合物,是第二代免疫抑制剂之一,也是第一个被发现的大环内酯类免疫抑制剂。他克莫司于1984年首次由日本藤泽制药公司在筑波链霉菌(Streptomyces tsukubaensis) No. 9993的发酵培养物中发现。
自1994年他克莫司被美国食品药品监督管理局(Food and Drug Administration, FDA)批准用于肝移植治疗以来,已广泛用于肾脏、肝脏和心脏同种异体移植的术后治疗,也广泛用于炎症性皮肤病[1-2]。与以往的免疫抑制剂环孢素相比,他克莫司的疗效是环孢素的10至100倍,并且在多项临床试验中已被证明更有效[3-4],同时他克莫司没有环孢素引起的高血压、高血脂等副作用[5-6],除免疫抑制活性外,他克莫司还具有抗真菌[7]、抗病毒[8]、促神经再生[9]等活性。
他克莫司在器官移植治疗中的疗效是其应用重要性的基础。目前,国内的免疫抑制剂市场已经达到100亿元的规模,他克莫司全球销售额已达到30亿美元,市场规模庞大,且逐年提高。由于他克莫司的分子量大、手性及结构复杂,化学合成法的合成效率相对较低[10-11],国内外主要采用生物发酵法合成他克莫司。许多工作者研究不同的策略以提高他克莫司产量,但仍然存在一定的瓶颈,研究表明发酵工艺优化、基因工程改造等策略对他克莫司产量有重要影响。基于此,本文重点对他克莫司生物合成途径及生物合成基因簇、发酵过程控制和代谢途径改造等方面进行了综述,进而对提高他克莫司产量的研究方向及研究思路进行了展望。
1 他克莫司生物合成途径和基因簇 1.1 他克莫司生物合成途径默克制药公司(美国)的工作人员于20世纪90年代首次对他克莫司的生物合成途径进行了研究[5, 12-14],后经许多工作者的深入研究,他克莫司生物合成过程已被逐步阐明。
如图 1所示,他克莫司生物合成过程可分为4个部分。第一部分是他克莫司合成起始单元的生成:来自莽草酸途径的分支酸水解为(4R, 5R)-4, 5-二羟基环己-1-烯羧酸[(4R, 5R)-4, 5- Dihydroxycyclohex-1-enecarboxylic acid, DHCHC],其作为他克莫司生物合成过程的起始单元[17];第二部分是基于起始单元延伸聚酮链:DHCHC在聚酮合酶(FkbA、FkbB和FkbC)的催化下组装延伸聚酮链,2个丙二酰-CoA、5个甲基丙二酰-CoA、2个甲氧基丙二酰-ACP和1个烯丙基丙二酰-CoA作为链的延伸,依次组装到碳链上[18];第三部分是聚酮链与L-哌啶酸缩合成他克莫司内酯环:L-赖氨酸衍生的L-哌啶酸残基通过酰胺键与聚酮链结合而闭合,形成他克莫司内酯环;第四部分是内酯环经2步修饰形成他克莫司:一步修饰是由FkbM催化的C31处羟基的甲基化,另一步修饰是由细胞色素P450蛋白FkbD催化的C9氧化,这2个修饰对他克莫司的生理活性至关重要[5, 13, 19-20]。值得注意的是,FkbB中第4酰基转移酶AT4 (AT4FkbB)相对宽松的底物选择性是他克莫司合成过程中产生副产物的主要原因。当它选择烯丙基丙二酰-CoA作为下一个延伸链,最终产物是他克莫司;如果选择乙基丙二酰-CoA作为下一个延伸链,最终产物为副产物子囊霉素(FK520)[21];如果选择丙基丙二酰-CoA作为下一个延伸链,最终产物为副产物二氢他克莫司(FK506D),而相较副产物子囊霉素,二氢他克莫司所占的比重非常低[22-23]。综上所述,他克莫司生物合成过程中共有6种直接前体依次参与:DHCHC、丙二酰-CoA、甲基丙二酰-CoA、甲氧基丙二酰-ACP、烯丙基丙二酰-CoA、L-哌啶酸,其中甲氧基丙二酰-ACP和烯丙基丙二酰-CoA是不常见的聚酮链延伸单元,需要通过特殊的生物合成基因簇[24-26],这2种不常见的延伸单元合成过程如图 2所示。
1.2 他克莫司生物合成基因簇他克莫司是由fkb基因簇编码的典型Ⅰ型聚酮合酶(polyketone synthase, PKS)-非核糖体肽合成酶(non-ribosomal peptide synthetase, NRPS)杂合系统合成的聚酮化合物。近些年,整个他克莫司生物合成基因簇,在不同的生产菌株中得到了表征[18, 25, 27-28]。他克莫司的生物合成基因簇如图 3所示。目前有2类他克莫司生物合成基因簇被报道[26]。其中一类他克莫司生物合成基因簇有19个基因:fkbQ、fkbN、fkbM、fkbD、fkbA、fkbP、fkbO、fkbB、fkbC、fkbL、fkbK、fkbJ、fkbI、fkbH、fkbG、allD、allR、allK和allA,主要存在于他克莫司链霉菌(Streptomyces tacrolimicus)和卡那霉素链霉菌(Streptomyces kanamyceticus) KCTC 9225中;而另一类不仅包含前者的19个基因,还包括fkbG基因5′区域的5个额外基因allMNPOS (tcs12345)和fkbQ基因3′区域的2个额外基因tcs6-fkbR (tcs67)[29],并主要存在于S. tsukubaensis NRRL 18488、S. tsukubaensis L19和链霉菌(Streptomyces sp.) KCTC 11604BP中。
在2类他克莫司生物合成基因簇都包含的19个基因中,fkbO负责将分支酸水解成环己-1, 5-二烯羧酸(cyclohex-1, 5-dienecarboxylic acid, DCDC)和丙酮酸,DCDC进一步转化得到合成起始单元DHCHC[17];fkbB、fkbC和fkbA负责组装他克莫司的内酯环碳链;allAKRD (tcsABCD)负责合成烯丙基丙二酰-CoA;fkbGHIJK负责合成甲氧基丙二酰-ACP;fkbL负责L-哌啶酸的生物合成;fkbP负责L-哌啶酸与内酯链缩合成环;fkbD负责他克莫司C9的氧化;fkbM负责他克莫司C31的羟基化;fkbN是通路特异性调控基因,具有正调节作用[26, 30-32];fkbQ负责合成具有编辑功能的“诊断修复”Ⅱ硫酯酶,该酶可以在他克莫司生物合成过程中去除错误的底物[16, 33]。
对于其中一类基因簇中额外的7个基因,研究表明在他克莫司生物合成过程中allMNPOS的转录水平很低,并且这5个基因的敲除对他克莫司的产量没有显著影响[18],因此这些基因的存在可能对他克莫司的生物合成并不重要[28, 30];tcs6的功能目前尚未明确[31-32];fkbR (tcs7)是通路特异性调控基因,但有趣的是,Mo等[32]在Streptomyces sp. KCTC 11604BP中发现fkbR负调节他克莫司生物合成,而这与Zhang等[31]和Goranovič等[26]分别在S. tsukubaensis L19和S. tsukubaensis NRRL 18488中研究的结果相反,可见不同他克莫司生产菌株的生物合成基因簇虽然高度相似,但调控机制可能不同。
2 他克莫司生物合成的研究现状尽管他克莫司在器官移植治疗中效果显著,但在临床治疗中使用成本高。这使得他克莫司产量的提升成为其进一步广泛应用的必要前提。
目前已报道超过15种产生他克莫司的菌株[15],包括S. tsukubaensis No.9993[34-35]、Streptomyces sp. MA6858[14]、Streptomyces sp. ATCC 53770[36]、Streptomyces sp. MA6949[37]、淡青链霉菌(Streptomyces glaucescens) MTCC 5115[38]、Streptomyces sp. ATCC 55098[39]、棒状链霉菌(Streptomyces clavuligerus) CKD1119[40]等。由于天然菌株产量低,不足以满足庞大的市场需求,因此提高他克莫司产量对于满足工业生产至关重要。自他克莫司发现以来,许多研究者们致力于生产菌株选育、发酵过程工艺优化和基因工程改造等不同优化策略来提高他克莫司的生产。
2.1 他克莫司生物合成的发酵过程控制 2.1.1 生产菌株的选育近年来,研究人员为得到高产他克莫司的菌株,主要采用了适应性驯化、诱变育种等方法进行选育。Jung等[41]通过适应性驯化方法,将紫外诱变得到的菌株Streptomyces sp. TST8在含有逐步增加他克莫司浓度的培养基中传代,增加菌株对产物的耐受性,最终筛选得到高产菌株Streptomyces sp. TST10,且在5 L发酵罐中他克莫司产量达到972 mg/L。Mo等[42]利用亚硝基胍(nitrosoguanidine, NTG)与紫外线对Streptomyces sp. KCCM 11116P孢子悬浮液进行复合诱变,再结合其对黑曲霉(Aspergillus niger)的抗真菌活性和对T细胞增殖的抑制能力,经过多轮筛选,最终获得突变菌株Streptomyces sp. RM7011,其他克莫司产量达到94.24 mg/L,比野生型菌株提高11.63倍。Du等[43]通过紫外和NTG诱变出发菌株S. tsukubaensis TJ-01,结合丙二酸二钠和甲基丙二酸二钠的抗性筛选,获得几株高产突变菌株,随后将突变菌株进行原生质体融合,成功获得高产菌株S. tsukubaensis TJ-P325,其产量达到365.6 mg/L,比出发菌增加11倍。Yang等[44]选择S. tsukubaensis LLZ-1作为出发菌株,通过NTG诱变和4-氨基丁酸(他克莫司前体结构类似物)适应获得突变菌株S. tsukubaensis CZ-19,其产量比野生型菌株提高65.13%,产量达到532.44 mg/L。本团队[45]采用抑菌圈法筛选紫外‑常压室温等离子体(atmospheric and room temperature plasma, ARTP)复合诱变的菌株,最终获得突变菌株S. tsukubaensis ZJBH1901,其他克莫司产量为100 mg/L,较出发菌株提高1倍。Ye等[46]针对出发菌株S. tsukubaensis No. 9993采用ARTP诱变技术和原生质体融合技术,经过多轮筛选,最终获得突变菌株S. tsukubaensis R3-C4,其产量为335 mg/L,是出发菌株的2.6倍。本团队[47]利用紫外线处理出发菌株S. tsukubaensis S1,并选择2, 5-二硝基苯甲酸和链霉素作为抗性筛选剂,经过多轮筛选,最终获得突变菌株S. tsukubaensis SCLX0001,其摇瓶发酵水平比出发菌株提高1.54倍。
2.1.2 发酵过程工艺优化发酵过程工艺优化是提高他克莫司生产菌株产量的重要一环。近年来,许多研究者通过他克莫司生产菌株发酵过程培养条件优化和前体物质添加策略来提高产量。
Kim等[48]优化突变株S. clavuligerus Tc-IX-12303发酵工艺,通过发酵培养基中补充3 g/L玉米油,发酵8 d后,他克莫司产量从145 mg/L提高到了235 mg/L。邱观荣等[49]以S. tsukubaensis FIM-16-06作为出发菌株,采用单因素试验和正交试验方法,优化摇瓶发酵培养基组成及温度、转速等操作条件,最终在最优条件下摇瓶发酵的他克莫司产量从352 mg/L提高到586 mg/L,较原生产工艺提高了66%。Patel等[50]优化了菌株S. tsukubaensis NBRC 108819的摇瓶发酵培养基成分,采用单因素试验和响应面方法,使得他克莫司摇瓶发酵产量从205 mg/L提高至604 mg/L。Yan等[51]诱变得到菌株S. tsukubaensis FIM-16-06,通过响应面分析法优化摇瓶发酵培养基,确定3个显著因素(可溶性淀粉、蛋白胨和吐温80)及其最佳浓度,最终他克莫司的摇瓶发酵产量从670 mg/L提高到1 293 mg/L,在1 000 L发酵罐中,他克莫司产量从406 mg/L提高到1 522 mg/L,是初始培养基的3.7倍。Zhang等[52]采用响应面方法优化工程菌株S. tsukubaensis L24的发酵培养基,确定培养基重要组分(酵母提取物、棉籽粕和KH2PO4),优化得到最优发酵培养基,使得他克莫司摇瓶发酵产量从434 mg/L提高至757 mg/L。
前体供应对于次级代谢物生物合成起着重要的作用,因此,添加不同类型化合物促进相关前体合成是提高他克莫司产量较为有效且直接的手段之一[53]。目前,有关报道能够补充前体供应并增加他克莫司产量的化合物添加案例如表 1所示。
Compounds | Concentration (g/L) | Time (h) | Initial yield (mg/L) | Final yield (mg/L) | Improvement (%) | References |
Succinate | 1.50 | 96.00 | 353.20 | 388.70 | 10.05 | [54] |
Sodium succinate | 1.50 | 96.00 | 251.00 | 321.00 | 27.89 | [55] |
Citrate | 0.05 | 30.00 | 78.26 | 103.01 | 31.63 | [56] |
Picolinic acid | 0.03 | / | 7.00 | 33.28 | 375.43 | [57] |
Pipecolate | 0.25 | 48.00 | 353.20 | 394.90 | 11.81 | [54] |
Lysine | 1.00 | 48.00 | 353.20 | 398.80 | 12.91 | [54] |
Lysine | 2.50 | / | 10.00 | 29.00 | 190.00 | [58] |
Lysine | 0.05 | 30.00 | 78.26 | 133.49 | 70.57 | [56] |
Threonine | 2.00 | 72.00 | 251.00 | 279.60 | 11.39 | [55] |
Nicotinic acid | 0.03 | / | 7.00 | 16.05 | 129.29 | [57] |
Nicotinamide | 0.05 | / | 7.00 | 24.24 | 246.29 | [57] |
Proline | 2.00 | 72.00 | 251.00 | 294.17 | 17.20 | [55] |
Alanine | 0.20 | / | 202.00 | 228.00 | 12.87 | [59] |
Leucine | 2.00 | 72.00 | 251.00 | 284.13 | 13.20 | [55] |
Valine | 2.00 | 72.00 | 251.00 | 301.20 | 20.00 | [55] |
Valine | 1.50 | 96.00 | 353.20 | 395.60 | 12.00 | [54] |
Isoleucine | 1.00 | 96.00 | 353.20 | 389.90 | 10.39 | [54] |
Chorismate | 0.25 | 48.00 | 353.20 | 406.90 | 15.20 | [54] |
Shikimate | 1.50 | 72.00 | 251.00 | 321.00 | 27.89 | [55] |
Shikimate | 0.40 | / | 202.00 | 232.00 | 14.85 | [59] |
Shikimate | 0.50 | 48.00 | 353.20 | 402.80 | 14.04 | [54] |
Shikimate | 0.05 | 30.00 | 78.26 | 119.73 | 52.99 | [56] |
Salicyl alcohol | 0.23 | / | 278.50 | 423.80 | 52.17 | [60] |
Propanol | 2.50 | / | 6.70 | 10.60 | 58.21 | [61] |
Propylene glycol | 7.50 | / | 2.40 | 9.00 | 275.00 | [61] |
Malonate | 0.05 | 30.00 | 78.26 | 127.32 | 62.69 | [56] |
Propionic | 2.50 | / | 5.00 | 12.70 | 154.00 | [61] |
Vinyl propionate | 0.61 | / | 37.96 mg/g | 71.61 mg/g | 88.65 | [42] |
Soybean oil | 10.00 | 24.00 | 251.00 | 361.44 | 44.00 | [55] |
Soybean oil | 5.00 | 24.00 | 353.20 | 391.10 | 10.73 | [54] |
Soybean oil | 1.00 | 24.00 | 54.03 | 106.42 | 96.96 | [56] |
Lactate | 15.00 | 36.00 | 251.00 | 281.00 | 11.95 | [55] |
Lactate | 15.00 | 36.00 | 353.20 | 382.30 | 8.24 | [54] |
Tween 80 | 6.16 | / | 37.96 mg/g | 62.31 mg/g | 64.15 | [42] |
Methyl oleate | 5.00 | / | 6.00 | 15.00 | 150.00 | [62] |
/ means no data. |
从表 1不同类型化合物添加研究中我们可以发现,对于同一化合物,其最适添加量与最适添加时间都会因菌株的差异而有所不同,并且其增产效果也会因出发菌株生产能力的不同而存在较大的差异,相对而言初始产量较低的菌株往往会有更好的增产效果。研究表明通过添加莽草酸可以直接强化莽草酸途径,促进前体DHCHC的合成,在不同菌株中均有明显增产效果[54-56, 59],Wang等[56]在发酵30 h添加终浓度0.05 g/L莽草酸,他克莫司产量较对照提高了52.99%。在FkbL的作用下,添加赖氨酸可以强化前体L-哌啶酸供应,使他克莫司产量提高[54, 56, 58],Huang等[54]在发酵48 h添加终浓度1 g/L赖氨酸,他克莫司产量较对照提高12.91%。在不同菌株发酵过程中添加大豆油,也有不错的增产效果[54-56],通过添加大豆油可以强化脂肪酸代谢,促进CoA类前体生成,促使碳通量定向到聚酮化合物生产[48, 63-64]。
为了实现产量的进一步提高,多种类型化合物联合添加是一种快速有效的增产方式。Xia等[55]针对菌株S. tsukubaensis TJ-04,设计了一种前体补充策略:24 h添加5 g/L豆油;48 h添加8.5 g/L乳酸、0.5 g/L莽草酸、0.1 g/L苯丙氨酸、0.1 g/L色氨酸和0.1 g/L酪氨酸;72 h添加0.5 g/L亮氨酸、0.5 g/L脯氨酸、0.25 g/L苏氨酸和0.5 g/L缬氨酸;96 h添加0.5 g/L琥珀酸钠,最终他克莫司产量从251 mg/L增加到405 mg/L,较对照提高61.4%。同样地,Huang等[54]和Du等[43]分别针对另两种不同的筑波链霉菌设计系统性化合物补充方案,最终分别提高29.5%和21.4%,他们通过添加不同类型化合物在一定程度上将菌株的生产能力挖掘到了最大。
链霉菌的生物合成不仅受相关前体合成[54-55]的控制,还受到复杂的代谢调控网络的控制[31-32],然而,由于链霉菌中细胞内调控网络的复杂性,一些未知因素(例如,某些隐秘途径或基因、氧化应激等环境信号)也可能在次级代谢物的生物合成过程中发挥重要作用[65-67]。诱导剂可以定义为能够在链霉菌培养物中诱导隐秘途径和/或分化的可扩散信号[68]。近些年,激活链霉菌隐秘途径的诱导剂引起了广泛的研究关注,其中许多团队针对筑波链霉菌的诱导剂进行了研究。
孙燕等[69]在发酵96 h添加10 mg/L氯化镧,他克莫司产量较对照提高37.5%,通过RT-PCR验证fkbP的表达量显著增加。Wang等[65]发现丁酸钠(sodium butyrate, SB)、二甲亚砜(dimethyl sulfoxide, DMSO)和LaCl3可使他克莫司的产量提高30%以上。不同化学诱导剂的组合添加结果表明,与对照相比,DMSO和LaCl3处理后的他克莫司产量提高了64.7% (303.6 mg/L)。Poshekhontseva等[70]将灭活的低等真菌作为诱导剂加入发酵培养基中使得筑波链霉菌的他克莫司生产能力得到了惊人的提高。20 g/L的灭活酿酒酵母(Saccharomyces cerevisiae)干粉和褐曲霉(Aspergillus ochraceus)干粉分别使得筑波链霉菌的他克莫司生产能力提高125%和115%。
2.2 基于代谢途径的基因工程改造虽然优化他克莫司发酵过程控制可以促进他克莫司的有效生产,但国内外研究人员仍致力于构建高产他克莫司的基因工程菌株。
基因工程菌株改造主要分为2个方面:他克莫司生物合成基因的改造和旁路代谢途径基因的改造。而在他克莫司生物合成基因簇中,编码聚酮合酶的基因fkbABC长达10 000 bp左右甚至更长,可能因为过表达的操作存在困难,目前尚未有文献报道fkbABC过表达的相关研究,但是基于计算机模拟的基因组代谢模型指出,这些基因的过表达可以有效提高他克莫司的生产效率[71]。目前较为常见的是集中于他克莫司生物合成基因的改造:DHCHC合成基因fkbO[54]、成环基因fkbP与成环前体合成基因fkbL[54]、修饰基因fkbM和fkbD[54]、烯丙基丙二酰-CoA合成基因allAKRD[22, 72-74]、甲氧基丙二酰-ACP合成基因fkbGHIJK[22]以及调控基因fkbN和fkbR[26, 31-32]。具体改造案例如表 2所示。
Gene name | Strain | Engineering strategy | Yield before modification (mg/L) |
Yield after modification (mg/L) |
Improvement (%) | References |
fkbO | S. tsukubaensis D852 | Overexpression | 143.50 | 200.10 | 39.44 | [54] |
fkbL | S. tsukubaensis D852 | Overexpression | 143.50 | 186.30 | 29.83 | [54] |
fkbP | S. tsukubaensis D852 | Overexpression | 143.50 | 161.90 | 12.82 | [54] |
fkbD | S. tsukubaensis D852 | Overexpression | 143.50 | 173.10 | 20.63 | [54] |
fkbM | S. tsukubaensis D852 | Overexpression | 143.50 | 178.30 | 24.25 | [54] |
fkbOLPDM | S. tsukubaensis D852 | Overexpression | 143.50 | 353.20 | 146.13 | [54] |
allAKRD | Streptomyces sp. RM7011 | Overexpression | 95.30 | 238.10 | 149.84 | [73] |
allAKRD | S. tsukubaensis ZJU01 | Overexpression | 46.90 | 95.70 | 104.05 | [22] |
fkbGHIJKL | S. tsukubaensis ZJU01 | Overexpression | 46.90 | 61.30 | 30.70 | [22] |
tcs2 | Streptomyces sp. KCTC 11604BP |
Overexpression | 5.22 | 5.18 | –0.77 | [32] |
fkbN | Streptomyces sp. KCTC 11604BP |
Overexpression | 5.22 | 11.10 | 112.64 | [32] |
fkbN | S. tsukubaensis L19 | Overexpression | 143.70 | 252.20 | 75.50 | [31] |
fkbN | S. tsukubaensis NRRL 18488 |
Overexpression | 32.00 | 48.00 | 50.00 | [26] |
tcs7 | Streptomyces sp. KCTC 11604BP |
Overexpression | 5.22 | 4.51 | –13.60 | [32] |
tcs7 | S. tsukubaensis L19 | Overexpression | 143.70 | 204.10 | 42.03 | [31] |
tcs7 | Streptomyces sp. KCTC 11604BP |
Knockout | 5.22 | 9.89 | 89.46 | [32] |
fkbR | S. tsukubaensis NRRL 18488 |
Overexpression | 32.00 | 39.50 | 23.44 | [26] |
从表 2可以看出,对于同一基因,其过表达后的增产效果因初始菌株的不同而存在较大的差异。过表达调控基因fkbN对他克莫司产量提高有比较好的效果,是能够大幅提高产量的单基因操作[26, 31-32]。Huang等[54]针对出发菌株S. tsukubaensis D852,分别过表达基因fkbO、fkbL、fkbP、fkbD和fkbM,他克莫司产量提高10%–40%,通过同时过表达多基因fkbOLPDM,发现产量较对照提高146.13%,获得了比单基因过表达更好的增产效果,可见单基因过表达的增
产效应是存在可以叠加的情况,并且这种增产能力可表现为1+1 > 2。发现在菌株S. tsukubaensis NRRL18488和S. tsukubaensis L19中表现为他克莫司产量提高,而在菌株Streptomyces sp. KCTC 11604BP中则结果相反。此外,allAKRD同时过表达也能达到一个比较可观的增产效果,这说明烯丙基丙二酰-CoA的供应是他克莫司合成的主要限制性因素之一,并且研究表明通过过表达allAKRD基因也可以减少副产物子囊霉素在产物中所占的比例[22, 73]。
针对生物合成基因改造可以直接有效加强他克莫司的生物合成途径,使得他克莫司产量提高。而由于链霉菌代谢网络的复杂性,许多旁路代谢途径也影响他克莫司的生产,因此,通过改造旁路代谢途径可以间接实现他克莫司产量的提高。Wu等[75]基于基因组测序和分析,阻断了竞争常见酰基前体的PKS途径,成功构建了菌株S. tsukubaensis L19-2,其他克莫司产量从140.3 mg/L增加到170.3 mg/L,也有不少学者通过改造旁路代谢途径来考察对他克莫司产量的影响,具体改造案例如表 3所示。
从表 3可以看出,过表达pcc基因(编码丙酰-CoA羧化酶)、bulZ (编码链霉菌抗生素调节蛋白BulZ)等操作均能有效促进他克莫司生产。Mo等[42]在菌株Streptomyces sp. RM7011中异源表达pcc基因,强化前体甲基丙二酰-CoA供应,最终他克莫司产量从94.2 mg/L提升至164.9 mg/L,他克莫司产量显著提高了75.05%。Ma等[76]过表达bulZ及其靶基因bulS2,发现他克莫司的产量达到154 mg/L,与对照菌株S. tsukubaensis T-04相比提高了67.39%。Pires等[77]将S. tsukubaensis NRRL18488作为出发菌株,构建ahpC突变缺陷菌株,而过氧化氢酶AhpC在降解菌内产生的H2O2中起着关键作用,通过调节菌内氧化代谢环境,促进他克莫司生产,最终他克莫司产量提高至29.77 mg/L,较出发菌株提高22.51%,验证了利用氧化应激反应调节他克莫司生产的推测[71, 78]。
Gene name | Strain | Engineering strategy | Yield before modification (mg/L) |
Yield after modification (mg/L) |
Improvement (%) | References |
mutAB | S. clavuligerus CKD 1119 |
Overexpression | 6.00 | 9.00 | 50.00 | [62] |
pcc | Streptomyces sp. RM7011 |
Overexpression | 94.20 | 164.90 | 75.05 | [42] |
bulZ | S. tsukubaensis TJ-04 | Overexpression | 92.00 | 127.00 | 38.04 | [76] |
bulS2 | S. tsukubaensis TJ-04 | Overexpression | 92.00 | 133.00 | 44.57 | [76] |
bulZ, bulS2 | S. tsukubaensis TJ-04 | Overexpression | 92.00 | 154.00 | 67.39 | [76] |
ahpC | S. tsukubaensis NRRL 18488 |
Knockout | 24.30 | 29.77 | 22.51 | [77] |
对于旁路代谢途径的改造,确定合适的靶基因是改造过程中的难点与关键点。基于基因组代谢模型确定改造靶基因是合理有效的手段之一。天津大学团队先后通过该种方法确定了若干靶基因,并进行实验验证[56, 59, 71, 79],相关改造案例如表 4所示。
Gene name | Strain | Engineering strategy | Yield before modification (mg/L) |
Yield after modification (mg/L) |
Improvement (%) | References |
dahp | S. tsukubaensis D852 | Overexpression | 143.50 | 216.80 | 51.08 | [71] |
pntAB | S. tsukubaensis D852 | Overexpression | 143.50 | 205.00 | 42.86 | [71] |
accA2 | S. tsukubaensis D852 | Overexpression | 143.50 | 200.50 | 39.72 | [71] |
zwf2 | S. tsukubaensis D852 | Overexpression | 143.50 | 193.20 | 34.63 | [71] |
tktB | S. tsukubaensis NRRL 18488 |
Overexpression | 55.10 | 73.21 | 32.87 | [79] |
msdh | S. tsukubaensis NRRL 18488 |
Overexpression | 55.10 | 71.20 | 29.22 | [79] |
ask | S. tsukubaensis NRRL 18488 |
Overexpression | 55.10 | 65.17 | 18.28 | [79] |
aroC | S. tsukubaensis D852 | Overexpression | 78.26 | 109.87 | 40.39 | [56] |
dapA | S. tsukubaensis D852 | Overexpression | 78.26 | 96.37 | 23.14 | [56] |
trpA | S. tsukubaensis NRRL 18488 |
Overexpression | 151.00 | 182.00 | 20.53 | [59] |
panD | S. tsukubaensis NRRL 18488 |
Overexpression | 151.00 | 188.00 | 24.50 | [59] |
aroK | S. tsukubaensis NRRL 18488 |
Overexpression | 151.00 | 183.00 | 21.19 | [59] |
aroD | S. tsukubaensis NRRL 18488 |
Overexpression | 151.00 | 173.00 | 14.57 | [59] |
gdhA | S. tsukubaensis D852 | Knockout | 143.50 | 197.70 | 37.77 | [71] |
ppc | S. tsukubaensis D852 | Knockout | 143.50 | 189.80 | 32.26 | [71] |
gcdh | S. tsukubaensis NRRL 18488 |
Knockout | 55.10 | 77.49 | 40.64 | [79] |
ldhD | S. tsukubaensis NRRL 18488 |
Knockout | 151.00 | 171.00 | 13.25 | [59] |
从表 4可以看出,通过过表达或敲除代谢模型预测的旁路代谢途径基因,他克莫司产量都得到了提高,并且大部分单基因操作都有20%以上的增产效果。Huang等[71]基于KEGG等公共数据库,并手动精炼代谢网络,建立基因组代谢模型(GSMM),其中包括865个化学反应和621个代谢物,用于预测靶基因。通过模型进行单基因敲除和过表达模拟,确定了潜在靶标(用于敲除的gdhA和ppc;用于过表达的dahp、pntAB、accA2和zwf2),在菌株S. tsukubaensis D852中验证,发现过表达编码3-脱氧-D-阿拉伯庚糖酮酸-7-磷酸合成酶基因dahp,他克莫司产量提高至216.8 mg/L,较对照提高51.08%,是增产效果最好的单基因操作。Wang等[79]结合静态优化方法(static optimization methods, SOA)和动态通量平衡分析(dynamic flux balance analysis, DFBA)优化上述基因组代谢模型,成功构建了S. tsukubaensis NRRL18488的GS-DFBA模型,在代谢调整最小化(MOMA)的帮助下预测了靶基因(gcdh、tktB、msdh和ask),验证发现敲除或过表达预测的靶基因能够成功提高他克莫司产量,其中敲除gcdh使得他克莫司产量显著提高40.64%。以上结果证明了基于基因组代谢模型指导基因工程改造的可行性,通过基因组代谢模型模拟可以成功地发现他克莫司生物合成中的一些重要限制因素。
3 总结与展望自筑波链霉菌及其产物他克莫司被发现以来,有关他克莫司生物合成的研究工作颇有成效,他克莫司产量从最初的每升几毫克到目前公布的1 522 mg/L[51],实现了显著的产量跃进。但是,在实现更高规模的他克莫司工业生产水平的过程中仍存在一定的问题:(1) 他克莫司合成过程中有关代谢调控网络的认识尚有模糊点。(2) 目前菌株代谢途径改造方法具有局限性,例如过表达合成途径中的基因、阻断竞争代谢途径等,虽然能获得产量的提高,但由于代谢网络的复杂性,容易使细胞积累过量中间产物,对细胞造成毒害,最终抑制目的产物进一步积累。(3) 关键酶不具有高度特异性,使得产物中存在杂质。(4) 他克莫司为胞内产物,存在严重的反馈抑制。
为构建更加稳定高效的他克莫司生产菌株,可以在现有研究基础上考虑从代谢调控网络、合成途径以及细胞等方面进行多维度研究,从以下几个方向进行探索:(1) 加强他克莫司代谢调控网络的认识:结合转录组学、蛋白质组学等技术对他克莫司生产菌株进行分析,鉴定潜在的调控基因,并探究其作用机理,以期能够通过调控网络改造促进他克莫司生产。(2) 系统性强化合成过程:利用合成生物学策略,对他克莫司的合成途径以及代谢调控过程进行全局分析和优化,理性地强化合成过程中关键的节点,使目标产物高效合成。(3) 优化关键酶的酶学性质:加深对关键酶催化的机理研究,并利用酶工程策略对关键酶的底物选择性进行改造,进而减少甚至消除不需要的副产物。(4) 产物外排途径强化:利用蛋白质工程技术优化筛选他克莫司转运蛋白,并使用合成生物学策略导入他克莫司生产菌株内,来改善他克莫司向胞外转运的效率,缓解他克莫司积累对细胞的毒害。
他克莫司相较传统免疫抑制剂具有更高的疗效和更小的副作用,决定了它在医药行业具有广阔的应用前景。随着我们对他克莫司生物合成过程认识的不断加深,运用代谢工程、合成生物学等手段逐步解决合成过程中所遇到的问题,最终实现他克莫司高水平的工业生产,进而可以促进他克莫司在更多领域的应用开发,充分发挥其多种活性,涌现更多的相关产品,满足多方面市场需求。
[1] |
RATH T. Tacrolimus in transplant rejection. Expert Opinion on Pharmacotherapy, 2013, 14(1): 115-122. DOI:10.1517/14656566.2013.751374
|
[2] |
LIN AN. Innovative use of topical calcineurin inhibitors. Dermatologic Clinics, 2010, 28(3): 535-545. DOI:10.1016/j.det.2010.03.008
|
[3] |
PIRSCH JD, MILLER J, DEIERHOI MH, VINCENTI F, FILO RS. A comparison of tacrolimus (fk506) and cyclosporine for immunosuppression after cadaveric renal transplantation. Transplantation, 1997, 63(7): 977-983. DOI:10.1097/00007890-199704150-00013
|
[4] |
JIANG H, KOBAYASHI M. Differences between cyclosporin A and tacrolimus in organ transplantation. Transplantation Proceedings, 1999, 31(5): 1978-1980. DOI:10.1016/S0041-1345(99)00235-3
|
[5] |
MOTAMEDI H, SHAFIEE A, CAI SJ, STREICHER SL, ARISON BH, MILLER RR. Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK506 and FK520. Journal of Bacteriology, 1996, 178(17): 5243-5248. DOI:10.1128/jb.178.17.5243-5248.1996
|
[6] |
PATEL K, PIAGENTINI M, RASCHER A, TIAN ZQ, BUCHANAN GO, REGENTIN R, HU ZH, HUTCHINSON CR, MCDANIEL R. Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chemistry & Biology, 2004, 11(12): 1625-1633.
|
[7] |
KUNZ J, HALL MN. Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. Trends in Biochemical Sciences, 1993, 18(9): 334-338. DOI:10.1016/0968-0004(93)90069-Y
|
[8] |
MORTOLA E, ENDO Y, OHNO K, WATARI T, TSUJIMOTO H, HASEGAWA A. The use of two immunosuppressive drugs, cyclosporin A and tacrolimus, to inhibit virus replication and apoptosis in cells infected with feline immunodeficiency virus. Veterinary Research Communications, 1998, 22(8): 553-563. DOI:10.1023/A:1006197804888
|
[9] |
KONOFAOS P, TERZIS J. FK506 and nerve regeneration: past, present, and future. Journal of Reconstructive Microsurgery, 2013, 29(3): 141-148. DOI:10.1055/s-0032-1333314
|
[10] |
SMITH AB, CHEN K, ROBINSON DJ, LAAKSO LM, HALE KJ. Formal total synthesis of FK506. Concise construction of the C(10)-C(34) segment via an effective coupling tactic. Tetrahedron Letters, 1994, 35(25): 4271-4274. DOI:10.1016/S0040-4039(00)73331-4
|
[11] |
NAKATSUKA M, RAGAN JA, SAMMAKIA T, SMITH DB, UEHLING DE, SCHREIBER SL. Total synthesis of FK506 and an FKBP probe reagent, (C8, C9-13C2)-FK506. Journal of the American Chemical Society, 1990, 112(14): 5583-5601. DOI:10.1021/ja00170a024
|
[12] |
MOTAMEDI H, CAI SJ, SHAFIEE A, ELLISTON KO. Structural organization of A multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK506. European Journal of Biochemistry, 1997, 244(1): 74-80. DOI:10.1111/j.1432-1033.1997.00074.x
|
[13] |
MOTAMEDI H, SHAFIEE A. The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. European Journal of Biochemistry, 1998, 256(3): 528-534. DOI:10.1046/j.1432-1327.1998.2560528.x
|
[14] |
SHAFIEE A, MOTAMEDI H, CHEN T. Enzymology of FK-506 biosynthesis. purification and characterization of 31-O-desmethyl FK-506 O: methyltransferase from Streptomyces sp. MA6858. European Journal of Biochemistry, 1994, 225(2): 755-764. DOI:10.1111/j.1432-1033.1994.00755.x
|
[15] |
BARREIRO C, MARTÍNEZ-CASTRO M. Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Applied Microbiology and Biotechnology, 2014, 98(2): 497-507. DOI:10.1007/s00253-013-5362-3
|
[16] |
BAN YH, PARK SR, YOON YJ. The biosynthetic pathway of FK506 and its engineering: from past achievements to future prospects. Journal of Industrial Microbiology and Biotechnology, 2016, 43(2/3): 389-400.
|
[17] |
ANDEXER JN, KENDREW SG, NUR-E-ALAM M, LAZOS O, FOSTER TA, ZIMMERMANN AS, WARNECK TD, SUTHAR D, COATES NJ, KOEHN FE, SKOTNICKI JS, CARTER GT, GREGORY MA, MARTIN CJ, MOSS SJ, LEADLAY PF, WILKINSON B. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(12): 4776-4781.
|
[18] |
MO S, KIM DH, LEE JH, PARK JW, BASNET DB, BAN YH, YOO YJ, CHEN SW, PARK SR, CHOI EA, KIM E, JIN YY, LEE SK, PARK JY, LIU Y, LEE MO, LEE KS, KIM SJ, KIM D, PARK BC, et al. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. Journal of the American Chemical Society, 2011, 133(4): 976-985. DOI:10.1021/ja108399b
|
[19] |
陈单丹, 岑沛霖, 刘文, 徐志南. 大环内酯类免疫抑制剂他克莫司的生物合成机制研究进展. 有机化学, 2013, 33(6): 1254-1262. CHEN DD, CEN PL, LIU W, XU ZN. Progress in studying the biosynthetic mechanism of the macrolide immunosuppressant tacrolimus. Chinese Journal of Organic Chemistry, 2013, 33(6): 1254-1262 (in Chinese). |
[20] |
van DUYNE GD, STANDAERT RF, KARPLUS PA, SCHREIBER SL, CLARDY J. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science, 1991, 252(5007): 839-842. DOI:10.1126/science.1709302
|
[21] |
JIANG H, WANG YY, GUO YY, SHEN JJ, ZHANG XS, LUO HD, REN NN, JIANG XH, LI YQ. An acyltransferase domain of FK506 polyketide synthase recognizing both an acyl carrier protein and coenzyme A as acyl donors to transfer allylmalonyl and ethylmalonyl units. FEBS Journal, 2015, 282(13): 2527-2539. DOI:10.1111/febs.13296
|
[22] |
CHEN DD, ZHANG Q, ZHANG QL, CEN PL, XU ZN, LIU W. Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. Applied and Environmental Microbiology, 2012, 78(15): 5093-5103. DOI:10.1128/AEM.00450-12
|
[23] |
KOSEC G, GORANOVIČ D, MRAK P, FUJS Š, KUŠČER E, HORVAT J, KOPITAR G, PETKOVIĆ H. Novel chemobiosynthetic approach for exclusive production of FK506. Metabolic Engineering, 2012, 14(1): 39-46. DOI:10.1016/j.ymben.2011.11.003
|
[24] |
KATO Y, BAI LQ, XUE Q, REVILL WP, YU TW, FLOSS HG. Functional expression of genes involved in the biosynthesis of the novel polyketide chain extension unit, methoxymalonyl-acyl carrier protein, and engineered biosynthesis of 2-desmethyl-2-methoxy-6-deoxyerythronolide B. Journal of the American Chemical Society, 2002, 124(19): 5268-5269. DOI:10.1021/ja0127483
|
[25] |
GORANOVIČ D, KOSEC G, MRAK P, FUJS Š, HORVAT J, KUŠČER E, KOPITAR G, PETKOVIĆ H. Origin of the allyl group in FK506 biosynthesis. Journal of Biological Chemistry, 2010, 285(19): 14292-14300. DOI:10.1074/jbc.M109.059600
|
[26] |
GORANOVIČ D, BLAŽIČ M, MAGDEVSKA V, HORVAT J, KUŠČER E, POLAK T, SANTOS-ABERTURAS J, MARTÍNEZ-CASTRO M, BARREIRO C, MRAK P, KOPITAR G, KOSEC G, FUJS Š, MARTÍN JF, PETKOVIĆ H. FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis. BMC Microbiology, 2012, 12(1): 1-15. DOI:10.1186/1471-2180-12-1
|
[27] |
BARREIRO C, MARTÍN JF, GARCÍA-ESTRADA C. Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-15.
|
[28] |
BAUER JS, FILLINGER S, FÖRSTNER K, HERBIG A, JONES AC, FLINSPACH K, SHARMA C, GROSS H, NIESELT K, APEL AK. dRNA-seq transcriptional profiling of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis NRRL18488 and general analysis of the transcriptome. RNA Biology, 2017, 14(11): 1617-1626. DOI:10.1080/15476286.2017.1341020
|
[29] |
ORDÓÑEZ-ROBLES M, SANTOS-BENEIT F, MARTÍN J. Unraveling nutritional regulation of tacrolimus biosynthesis in Streptomyces tsukubaensis through omic approaches. Antibiotics, 2018, 7(2): 39. DOI:10.3390/antibiotics7020039
|
[30] |
ORDÓÑEZ-ROBLES M, RODRÍGUEZ-GARCÍA A, MARTÍN JF. Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes. Applied Microbiology and Biotechnology, 2016, 100(18): 8091-8103. DOI:10.1007/s00253-016-7696-0
|
[31] |
ZHANG XS, LUO HD, TAO Y, WANG YY, JIANG XH, JIANG H, LI YQ. FkbN and Tcs7 are pathway-specific regulators of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis L19. Journal of Industrial Microbiology & Biotechnology, 2016, 43(12): 1693-1703.
|
[32] |
MO S, YOO YJ, BAN YH, LEE SK, KIM E, SUH JW, YOON YJ. Roles of fkbN in positive regulation and tcs7 in negative regulation of FK506 biosynthesis in Streptomyces sp. strain KCTC 11604BP. Applied and Environmental Microbiology, 2012, 78(7): 2249-2255. DOI:10.1128/AEM.06766-11
|
[33] |
KOTOWSKA M, PAWLIK K. Roles of type II thioesterases and their application for secondary metabolite yield improvement. Applied Microbiology and Biotechnology, 2014, 98(18): 7735-7746. DOI:10.1007/s00253-014-5952-8
|
[34] |
KINO T, HATANAKA H, HASHIMOTO M, NISHIYAMA M, GOTO T, OKUHARA M, KOHSAKA M, AOKI H, IMANAKA H. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. The Journal of Antibiotics, 1987, 40(9): 1249-1255. DOI:10.7164/antibiotics.40.1249
|
[35] |
KINO T, HATANAKA H, MIYATA S, INAMURA N, NISHIYAMA M, YAJIMA T, GOTO T, OKUHARA M, KOHSAKA M, AOKI H, OCHIAI T. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. The Journal of Antibiotics, 1987, 40(9): 1256-1265. DOI:10.7164/antibiotics.40.1256
|
[36] |
GARRITY GM, HEIMBUCH BK, MOTAMEDI H, SHAFIEE A. Genetic relationships among actinomycetes that produce the immunosuppressant macrolides FK506, FK520/FK523 and rapamycin. Journal of Industrial Microbiology, 1993, 12(1): 42-47. DOI:10.1007/BF01570127
|
[37] |
SIGMUND JM, CLARK DC, RAINEY FA, ANDERSON AS. Detection of eubacterial 3-hydroxy-3-methylglutaryl coenzyme A reductases from natural populations of actinomycetes. Microbial Ecology, 2003, 46(1): 106-112. DOI:10.1007/s00248-002-2029-5
|
[38] |
KUMAR P, SHARMA S, SHUKLA A, KUMAR S, MAURYA R, KATIAL V, MITRA A, GIGRAS P. Production of tacrolimus (FK-506) using new streptomyces species: US20070191415[P]. 2007-08-16.
|
[39] |
SALITURO GM, DUMONT F, GARRITY GM, HUANG L, OMSTEAD MN, FERNANDEZ IM, MATAS TD. Process for producing FK-506: US5194378[P]. 1993-03-16.
|
[40] |
KIM HS, PARK YI. Isolation and identification of a novel microorganism producing the immunosuppressant tacrolimus. Journal of Bioscience and Bioengineering, 2008, 105(4): 418-421. DOI:10.1263/jbb.105.418
|
[41] |
JUNG S, MOON S, LEE K, PARK YJ, YOON S, YOO YJ. Strain development of Streptomyces sp. for tacrolimus production using sequential adaptation. Journal of Industrial Microbiology & Biotechnology, 2009, 36(12): 1467-1471.
|
[42] |
MO S, LEE SK, JIN YY, OH CH, SUH JW. Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011. Applied Microbiology and Biotechnology, 2013, 97(7): 3053-3062. DOI:10.1007/s00253-012-4413-5
|
[43] |
DU WJ, HUANG D, XIA ML, WEN JP, HUANG M. Improved FK506 production by the precursors and product-tolerant mutant of Streptomyces tsukubaensis based on genome shuffling and dynamic fed-batch strategies. Journal of Industrial Microbiology and Biotechnology, 2014, 41(7): 1131-1143. DOI:10.1007/s10295-014-1450-3
|
[44] |
YANG TY, LI JJ, LI LZ, ZHANG HY, MA J, CHEN Z, HU CY, JU X, FU JL. Improvement of FK506 production by selection of 4-aminobutyric acid-tolerant mutant and optimization of its fermentation using response surface methodology. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57(6): 715-722. DOI:10.1007/s13765-014-4207-9
|
[45] |
柳志强, 张博, 方晨捷, 郑裕国, 张薇, 吴晖, 何志勇, 方丽纳, 徐金勇, 范萍, 金美英. 高通量诱变筛选高产他克莫司筑波链霉菌的方法及菌株: CN112111482A[P]. 2020-12-22. LIU ZQ, ZHANG B, FANG CJ, ZHENG YG, ZHANG W, WU H, HE ZY, FANG LN, XU JY, FAN P, JIN MY. High-throughput mutagenesis screening for high tacrolimus-producing Streptomyces tsukubensis methods and strains: CN112111482A[P]. 2020-12-22 (in Chinese). |
[46] |
YE LT, YE RF, HU FX, WANG GZ. Combination of atmospheric and room temperature plasma (ARTP) mutagenesis, genome shuffling and dimethyl sulfoxide (DMSO) feeding to improve FK506 production in Streptomyces tsukubaensis. Biotechnology Letters, 2021, 43(9): 1809-1820. DOI:10.1007/s10529-021-03154-6
|
[47] |
金利群, 程茂茂, 柳志强, 邢明林, 鲁笛, 张博, 郑裕国. 筑波链霉菌SCLX0001及其在发酵生产他克莫司中的应用: CN113980873A[P]. 2022-01-28. JIN LQ, CHENG MM, LIU ZQ, XING ML, LU D, ZHANG B, ZHENG YG. Streptomyces tsukubensis SCLX0001 and its application in fermentative production of tacrolimus: CN113980873A[P]. 2022-01-28 (in Chinese). |
[48] |
KIM HS, PARK YI. Lipase activity and tacrolimus production in Streptomyces clavuligerus CKD 1119 mutant strains. Journal of Microbiology and Biotechnology, 2007, 17(10): 1638-1644.
|
[49] |
邱观荣, 张祝兰, 严凌斌, 张引, 任林英, 连云阳. Streptomyces sp. FIM-16-06产他克莫司摇瓶发酵条件的优化. 工业微生物, 2019, 49(1): 8-13. QIU GR, ZHANG ZL, YAN LB, ZHANG Y, REN LY, LIAN YY. Optimization of fermentation conditions of tacrolimus-producing strain Streptomyces sp. FIM-16-06. Industrial Microbiology, 2019, 49(1): 8-13 (in Chinese). DOI:10.3969/j.issn.1001-6678.2019.01.002 |
[50] |
PATEL G, KHOBRAGADE TP, AVAGHADE SR, PATIL MD, NILE SH, KAI GY, BANERJEE UC. Optimization of media and culture conditions for the production of tacrolimus by Streptomyces tsukubaensis in shake flask and fermenter level. Biocatalysis and Agricultural Biotechnology, 2020, 29: 101803. DOI:10.1016/j.bcab.2020.101803
|
[51] |
YAN LB, ZHANG ZL, ZHANG Y, YANG HJ, QIU GR, WANG DS, LIAN YY. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology. Biotechnology Letters, 2021, 43(9): 1765-1778. DOI:10.1007/s10529-021-03144-8
|
[52] |
ZHANG XY, WU QB, ZHANG XY, LV ZY, MO XT, LI YQ, CHEN XN. Elevation of FK506 production by regulatory pathway engineering and medium optimization in Streptomyces tsukubaensis. Process Biochemistry, 2021, 111: 139-146. DOI:10.1016/j.procbio.2021.09.008
|
[53] |
REEVES AR, CERNOTA WH, BRIKUN IA, WESLEY RK, MARK WEBER J. Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metabolic Engineering, 2004, 6(4): 300-312. DOI:10.1016/j.ymben.2004.03.003
|
[54] |
HUANG D, XIA ML, LI SS, WEN JP, JIA XQ. Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies. Journal of Industrial Microbiology and Biotechnology, 2013, 40(9): 1023-1037. DOI:10.1007/s10295-013-1301-7
|
[55] |
XIA ML, HUANG D, LI SS, WEN JP, JIA XQ, CHEN YL. Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnology and Bioengineering, 2013, 110(10): 2717-2730. DOI:10.1002/bit.24941
|
[56] |
WANG C, LIU J, LIU HH, LIANG SX, WEN JP. Combining metabolomics and network analysis to improve tacrolimus production in Streptomyces tsukubaensis using different exogenous feedings. Journal of Industrial Microbiology and Biotechnology, 2017, 44(11): 1527-1540. DOI:10.1007/s10295-017-1974-4
|
[57] |
TURŁO J, GAJZLERSKA W, KLIMASZEWSKA M, KRÓL M, DAWIDOWSKI M, GUTKOWSKA B. Enhancement of tacrolimus productivity in Streptomyces tsukubaensis by the use of novel precursors for biosynthesis. Enzyme and Microbial Technology, 2012, 51(6/7): 388-395.
|
[58] |
MARTÍNEZ-CASTRO M, SALEHI-NAJAFABADI Z, ROMERO F, PÉREZ-SANCHIZ R, FERNÁNDEZ- CHIMENO RI, MARTÍN JF, BARREIRO C. Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer 'Streptomyces tsukubaensis'. Applied Microbiology and Biotechnology, 2013, 97(5): 2139-2152. DOI:10.1007/s00253-012-4364-x
|
[59] |
LI Y, LIANG SX, WANG JH, MA DX, WEN JP. Enhancing the production of tacrolimus by engineering target genes identified in important primary and secondary metabolic pathways and feeding exogenous precursors. Bioprocess and Biosystems Engineering, 2019, 42(7): 1081-1098. DOI:10.1007/s00449-019-02106-9
|
[60] |
SUN Y, YE RF. Impact of a novel precursor on FK506 production and key gene transcription in Streptomyces tsukubaensis No. 9993. Research on Chemical Intermediates, 2016, 42(4): 3351-3358. DOI:10.1007/s11164-015-2215-y
|
[61] |
GAJZLERSKA W, KURKOWIAK J, TURŁO J. Use of three-carbon chain compounds as biosynthesis precursors to enhance tacrolimus production in Streptomyces tsukubaensis. New Biotechnology, 2015, 32(1): 32-39. DOI:10.1016/j.nbt.2014.07.006
|
[62] |
MO S, BAN YH, PARK JW, YOO YJ, YOON YJ. Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. Journal of Industrial Microbiology & Biotechnology, 2009, 36(12): 1473-1482.
|
[63] |
SINGH BP, BEHERA BK. Regulation of tacrolimus production by altering primary source of carbons and amino acids. Letters in Applied Microbiology, 2009, 49(2): 254-259. DOI:10.1111/j.1472-765X.2009.02652.x
|
[64] |
WANG WS, LI SS, LI ZL, ZHANG JY, FAN KQ, TAN GY, AI GM, LAM SM, SHUI GH, YANG ZH, LU HZ, JIN PJ, LI YH, CHEN XY, XIA XK, LIU XT, DANNELLY HK, YANG C, YANG Y, ZHANG SL, et al. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces. Nature Biotechnology, 2020, 38(1): 76-83. DOI:10.1038/s41587-019-0335-4
|
[65] |
WANG C, HUANG D, LIANG SX. Identification and metabolomic analysis of chemical elicitors for tacrolimus accumulation in Streptomyces tsukubaensis. Applied Microbiology and Biotechnology, 2018, 102(17): 7541-7553. DOI:10.1007/s00253-018-9177-0
|
[66] |
ZONG GL, FU JF, ZHANG PP, ZHANG WC, XU Y, CAO GX, ZHANG RZ. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Critical Reviews in Biotechnology, 2021, 42: 1260-1283.
|
[67] |
BU QT, LI YP, XIE H, LI JF, LV ZY, SU YT, LI YQ. Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in Actinomycetes. Metabolic Engineering, 2021, 67: 198-215. DOI:10.1016/j.ymben.2021.06.003
|
[68] |
MANTECA Á, YAGÜE P. Streptomyces differentiation in liquid cultures as a trigger of secondary metabolism. Antibiotics, 2018, 7(2): 41. DOI:10.3390/antibiotics7020041
|
[69] |
孙燕, 叶蕊芳, 任雪岩. 稀土元素对他克莫司生物合成和相关基因表达的影响. 中国医药工业杂志, 2016, 47(4): 402-406. SUN Y, YE RF, REN XY. Effect of rare earth elements on the biosynthesis of tacrolimus and related gene expression. Chinese Journal of Pharmaceuticals, 2016, 47(4): 402-406 (in Chinese). DOI:10.16522/j.cnki.cjph.2016.04.008 |
[70] |
POSHEKHONTSEVA VY, FOKINA VV, SUKHODOLSKAYA GV, SHUTOV AA, DONOVA MV. Study of the effect of lower eukaryotes on tacrolimus (FK-506) biosynthesis by the Streptomyces tsukubensis strain VKM Ac-2618D. Applied Biochemistry and Microbiology, 2020, 56(8): 847-853. DOI:10.1134/S0003683820080062
|
[71] |
HUANG D, LI SS, XIA ML, WEN JP, JIA XQ. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Microbial Cell Factories, 2013, 12(1): 1-18. DOI:10.1186/1475-2859-12-1
|
[72] |
BLAŽIČ M, KOSEC G, BAEBLER Š, GRUDEN K, PETKOVIĆ H. Roles of the crotonyl-CoA carboxylase/reductase homologues in acetate assimilation and biosynthesis of immunosuppressant FK506 in Streptomyces tsukubaensis. Microbial Cell Factories, 2015, 14(1): 1-12. DOI:10.1186/s12934-014-0183-3
|
[73] |
MO S, LEE SK, JIN YY, SUH JW. Improvement of FK506 production in the high-yielding strain Streptomyces sp. RM7011 by engineering the supply of allylmalonyl-CoA through a combination of genetic and chemical approach. Journal of Microbiology and Biotechnology, 2016, 26(2): 233-240. DOI:10.4014/jmb.1506.06032
|
[74] |
MO S, SUH JW. Elucidation of first step of the allylmalonyl-CoA biosynthetic pathway by expression of heterologous KSIII gene and enhancement of 36-methyl-FK506 production by genetic and chemical engineering. Applied Biological Chemistry, 2016, 59(1): 77-88. DOI:10.1007/s13765-015-0139-2
|
[75] |
WU QB, ZHANG XY, CHEN XN, LI YQ. Improvement of FK506 production via metabolic engineering-guided combinational strategies in Streptomyces tsukubaensis. Microbial Cell Factories, 2021, 20(1): 1-11. DOI:10.1186/s12934-020-01497-9
|
[76] |
MA DX, WANG C, CHEN H, WEN JP. Manipulating the expression of SARP family regulator BulZ and its target gene product to increase tacrolimus production. Applied Microbiology and Biotechnology, 2018, 102(11): 4887-4900. DOI:10.1007/s00253-018-8979-4
|
[77] |
PIRES SDS, OLIVEIRA R, MORADAS-FERREIRA P, MENDES MV. The onset of tacrolimus biosynthesis in Streptomyces tsukubaensis is dependent on the intracellular redox status. Antibiotics, 2020, 9(10): 703. DOI:10.3390/antibiotics9100703
|
[78] |
WANG J, LIU HH, HUANG D, JIN LN, WANG C, WEN JP. Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil. Applied Microbiology and Biotechnology, 2017, 101(6): 2447-2465. DOI:10.1007/s00253-017-8136-5
|
[79] |
WANG C, LIU J, LIU HH, WANG JH, WEN JP. A genome-scale dynamic flux balance analysis model of Streptomyces tsukubaensis NRRL18488 to predict the targets for increasing FK506 production. Biochemical Engineering Journal, 2017, 123: 45-56. DOI:10.1016/j.bej.2017.03.017
|