[1] |
HAN J, ZHOU L, GE XN, GUO X, YANG HC. Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Veterinary Microbiology, 2017, 209: 30-47. DOI:10.1016/j.vetmic.2017.02.020
|
|
[2] |
WANG LJ, XIE WT, CHEN XX, QIAO SL, ZHAO MM, GU Y, ZHAO BL, ZHANG GP. Molecular epidemiology of porcine reproductive and respiratory syndrome virus in central China since 2014: the prevalence of NADC30-like PRRSVs[J]. Microbial Pathogenesis, 2017, 109: 20-28. DOI:10.1016/j.micpath.2017.05.021
|
|
[3] |
杨汉春. 猪场蓝耳病的流行现状与防控对策[J]. 兽医导刊, 2021(1): 7. YANG HC. Epidemic situation and prevention and control countermeasures of blue ear disease in pig farms[J]. Veterinary Orientation, 2021(1): 7 (in Chinese).
|
|
[4] | |
|
[5] |
MAHROOZ A, MUSCOGIURI G, BUZZETTI R, MADDALONI E. The complex combination of COVID-19 and diabetes: pleiotropic changes in glucose metabolism[J]. Endocrine, 2021, 72(2): 317-325. DOI:10.1007/s12020-021-02729-7
|
|
[6] |
CODO AC, DAVANZO GG, de BRITO MONTEIRO L, de SOUZA GF, MURARO SP, VIRGILIO-DA-SILVA JV, PRODONOFF JS, CARREGARI VC, de BIAGI JUNIOR CAO, CRUNFLI F, RESTREPO JLJ, VENDRAMINI PH, REIS-DE-OLIVEIRA G, dos SANTOS KB, TOLEDO-TEIXEIRA DA, PARISE PL, MARTINI MC, MARQUES RE, CARMO HR, BORIN A, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis[J]. Cell Metabolism, 2020, 32(3): 437-446.e5. DOI:10.1016/j.cmet.2020.07.007
|
|
[7] |
LI HZ, LIN CH, QI WB, SUN ZZ, XIE ZX, JIA WX, NING ZY. Senecavirus A-induced glycolysis facilitates virus replication by promoting lactate production that attenuates the interaction between MAVS and RIG-Ⅰ[J]. PLoS Pathogens, 2023, 19(5): e1011371. DOI:10.1371/journal.ppat.1011371
|
|
[8] |
GONG YB, TANG N, LIU PR, SUN YJ, LU SX, LIU WW, TAN L, SONG CP, QIU XS, LIAO Y, YU SQ, LIU XF, LIN SH, DING C. Newcastle disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells[J]. Autophagy, 2022, 18(7): 1503-1521. DOI:10.1080/15548627.2021.1990515
|
|
[9] |
PANG Y, ZHOU YR, WANG YC, SUN Z, LIU J, LI CY, XIAO SB, FANG LR. Porcine reproductive and respiratory syndrome virus nsp1β stabilizes HIF-1α to enhance viral replication[J]. Microbiology Spectrum, 2022, 10(6): e0317322. DOI:10.1128/spectrum.03173-22
|
|
[10] |
LIU XW, LIU X, BAI J, GAO YN, SONG ZB, NAUWYNCK H, WANG XW, YANG YQ, JIANG P. Glyceraldehyde-3-phosphate dehydrogenase restricted in cytoplasmic location by viral GP5 facilitates porcine reproductive and respiratory syndrome virus replication via its glycolytic activity[J]. Journal of Virology, 2021, 95(18): e0021021. DOI:10.1128/JVI.00210-21
|
|
[11] |
LU Q, BAI J, ZHANG LL, LIU J, JIANG ZH, MICHAL JJ, HE QD, JIANG P. Two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling approach revealed first proteome profiles of pulmonary alveolar macrophages infected with porcine reproductive and respiratory syndrome virus[J]. Journal of Proteome Research, 2012, 11(5): 2890-2903. DOI:10.1021/pr201266z
|
|
[12] |
ZHOU L, HE R, FANG PN, LI MQ, YU HS, WANG QM, YU Y, WANG FB, ZHANG Y, CHEN AD, PENG NF, LIN Y, ZHANG R, TRILLING M, BROERING R, LU MJ, ZHU Y, LIU S. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition[J]. Nature Communications, 2021, 12: 98. DOI:10.1038/s41467-020-20316-8
|
|
[13] |
LI XW, SONG YW, WANG XY, FU C, ZHAO FF, ZOU LK, WU KK, CHEN WX, LI ZY, FAN JD, LI YW, LI BK, ZENG S, LIU XD, ZHAO MQ, YI L, CHEN JD, FAN SQ. The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection[J]. Emerging Microbes & Infections, 2023, 12(1): 2164217.
|
|
[14] | |
|
[15] |
KOYASU S, KOBAYASHI M, GOTO Y, HIRAOKA M, HARADA H. Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge[J]. Cancer Science, 2018, 109(3): 560-571. DOI:10.1111/cas.13483
|
|
[16] |
TIAN MF, LIU WY, LI X, ZHAO PY, SHEREEN MA, ZHU CL, HUANG SY, LIU SY, YU X, YUE MM, PAN P, WANG WB, LI YK, CHEN XL, WU KL, LUO Z, ZHANG QW, WU JG. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19[J]. Signal Transduction and Targeted Therapy, 2021, 6: 308. DOI:10.1038/s41392-021-00726-w
|
|
[17] |
TANNAHILL GM, CURTIS AM, ADAMIK J, PALSSON-MCDERMOTT EM, McGETTRICK AF, GOEL G, FREZZA C, BERNARD NJ, KELLY B, FOLEY NH, ZHENG L, GARDET A, TONG Z, JANY SS, CORR SC, HANEKLAUS M, CAFFREY BE, PIERCE K, WALMSLEY S, BEASLEY FC, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α[J]. Nature, 2013, 496: 238-242. DOI:10.1038/nature11986
|
|
[18] |
GUO XK, ZHU ZQ, ZHANG WJ, MENG XX, ZHU Y, HAN P, ZHOU XH, HU YW, WANG RL. Nuclear translocation of HIF-1α induced by influenza A (H1N1) infection is critical to the production of proinflammatory cytokines[J]. Emerging Microbes & Infections, 2017, 6(5): e39.
|
|
[19] |
ZHU BB, WU Y, HUANG S, ZHANG RX, SON YM, LI CF, CHEON IS, GAO XC, WANG M, CHEN Y, ZHOU X, NGUYEN Q, PHAN AT, BEHL S, TAKETO MM, MACK M, SHAPIRO VS, ZENG H, EBIHARA H, MULLON JJ, et al. Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection[J]. Immunity, 2021, 54(6): 1200-1218.e9. DOI:10.1016/j.immuni.2021.04.001
|
|
[20] |
EARLY JO, MENON D, WYSE CA, CERVANTES-SILVA MP, ZASLONA Z, CARROLL RG, PALSSON-MCDERMOTT EM, ANGIARI S, RYAN DG, CORCORAN SE, TIMMONS G, GEIGER SS, FITZPATRICK DJ, O'CONNELL D, XAVIER RJ, HOKAMP K, O'NEILL L AJ, CURTIS AM. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): E8460-E8468.
|
|
[21] |
LIU XJ, COOPER DE, CLUNTUN AA, WARMOES MO, ZHAO S, REID MA, LIU J, LUND PJ, LOPES M, GARCIA BA, WELLEN KE, KIRSCH DG, LOCASALE JW. Acetate production from glucose and coupling to mitochondrial metabolism in mammals[J]. Cell, 2018, 175(2): 502-513.e13. DOI:10.1016/j.cell.2018.08.040
|
|
[22] |
LI TL, LI XH, ATTRI KS, LIU CH, LI LP, HERRING LE, ASARA JM, LEI YL, SINGH PK, GAO CJ, WEN HT. O-GlcNAc transferase links glucose metabolism to MAVS-mediated antiviral innate immunity[J]. Cell Host & Microbe, 2018, 24(6): 791-803.e6.
|
|
[23] |
WANG A, HUEN SC, LUAN HH, YU S, ZHANG CL, GALLEZOT JD, BOOTH CJ, MEDZHITOV R. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation[J]. Cell, 2016, 166(6): 1512-1525.e12. DOI:10.1016/j.cell.2016.07.026
|
|
[24] |
ZHANG WN, WANG GH, XU ZG, TU HQ, HU FQ, DAI J, CHANG Y, CHEN YQ, LU YJ, ZENG HL, CAI Z, HAN F, XU C, JIN GX, SUN L, PAN BS, LAI SW, HSU CC, XU J, CHEN ZZ, et al. Lactate is a natural suppressor of RLR signaling by targeting MAVS[J]. Cell, 2019, 178(1): 176-189.e15. DOI:10.1016/j.cell.2019.05.003
|
|
[25] |
ZHANG LJ, LIU X, MAO J, SUN YY, GAO YN, BAI J, JIANG P. Porcine reproductive and respiratory syndrome virus-mediated lactate facilitates virus replication by targeting MAVS[J]. Veterinary Microbiology, 2023, 284: 109846. DOI:10.1016/j.vetmic.2023.109846
|
|