
中国科学院微生物研究所、中国微生物学会主办
文章信息
- 钱星宇, 孙学梦, 梁亚冰, 杨凌
- QIAN Xingyu, SUN Xuemeng, LIANG Yabing, YANG Ling
- 生物力对结直肠类器官培养的影响
- Effects of biomechanics on colorectal organoid culture
- 生物工程学报, 2024, 40(5): 1309-1322
- Chinese Journal of Biotechnology, 2024, 40(5): 1309-1322
- 10.13345/j.cjb.230694
-
文章历史
- Received: October 11, 2023
- Accepted: January 29, 2024
- Published: March 1, 2024
2. 内蒙古自治区医学细胞生物学重点实验室, 内蒙古 呼和浩特 010050
2. Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot 010050, Inner Mongolia, China
类器官是一种新兴的研究模型,是器官特异性细胞在体外生长的三维(three-dimensional, 3D)组织[1],组成类器官的细胞可来源于胚胎干细胞、多能诱导干细胞和成体干细胞[2-3]。尽管类器官不是真正意义上的人体器官,但它能高度模拟体内器官结构和功能特征,并尽可能最大程度地重现组织器官的部分功能和生理特征[4-5]。自2009年Sato等成功建立肠道上皮类器官以来[6],肝脏、胰腺、肾脏、乳腺和大脑等各种类器官被陆续建立[7],其中肠道类器官培养系统是最成熟的。正常肠道类器官与原肠上皮组织相似,能保留肠干细胞(intestinal stem cells, ISCs)并维持肠的原有功能性谱系,如具有吸收功能的肠上皮细胞以及具有分泌功能的杯状细胞、肠内分泌细胞和潘氏细胞等[8-9]。结直肠不存在潘氏细胞,但在结直肠隐窝基底中存在“潘氏样”的cKit+细胞,具有类似潘氏细胞的功能[10-11]。
人类肠道由小肠(十二指肠、空肠和回肠)、大肠(盲肠、结肠和直肠)构成,它们都由间充质和平滑肌层包围的单层上皮组成。小肠具有管腔绒毛突起和内陷到间充质的隐窝,而结直肠中不存在绒毛。在肠道疾病中,大肠的发病率明显高于小肠,主要是结直肠容易发生病变,而结直肠癌(colorectal cancer, CRC)是发病率最高的肠道肿瘤[12]。目前常用的CRC研究模型有CRC细胞系和患者来源的肿瘤异种移植(patient-derived tumor xenografts, PDTX),因二维(two-dimensional, 2D)细胞培养主要是细胞在培养皿内以单层贴壁的方式平面生长,无法呈现细胞在体内立体生长的特性和所处的微环境等,从而指导临床治疗存在困难。尽管PDTX模型能弥补2D模型的某些不足,但因成本高、培养周期长限制了其在指导临床治疗方面的应用。而结直肠类器官的出现推动了CRC在发生机制方面的研究,保留肿瘤异质性的CRC类器官为实现临床精准化治疗提供可能。
人类体内包含各种类型的生物力,其中人消化道常见的生物力有肠道蠕动力、肠内容物挤压力和流体剪切力等。肠上皮是排列在肠内表面的单层细胞[13],其受到干细胞微环境信号因子和生物力学因素的相互作用[14]。近年来,有研究者发现生物力学作用在肠道类器官培养中具有不可替代的影响。因此,本文讨论了结直肠类器官的培养,并对拉伸力、压应力和细胞外基质(extracellular matrix, ECM)刚度等生物力影响结直肠类器官增殖、侵袭、转移和耐药等生物特性进行了分析与探讨。
1 结直肠类器官培养肠道类器官是将手术切除和活检等方式获取的肠道组织利用酶消化法处理后,对得到的细胞进行3D培养而建立的体外模型[15]。培养肠道类器官主要涉及3个关键步骤[16]。首先,为ISCs提供合适的生长微环境条件,以便激活或抑制调节发育的关键信号通路。其次,开发肠道类器官所有细胞类型能进行增殖、分化的培养基配方。最后,用3D基质胶包裹培养物,使得培养物在3D空间中能够顺利扩增。结直肠类器官(图 1)的培养方法与肠道类器官具有相通性,只是特定的肠道类器官所需关键信号通路因子存在差异。结直肠类器官的培养基是以Advanced DMEM/ F-12/GlutaminePlus/HEPES培养基为基础,再添加维生素/辅因子和ISCs生长的必需因子来模拟体内生长微环境进行培养[17]。目前广泛使用的基质胶是从富含胞外基质蛋白的Engelbreth- Holm-Sarm (EHS)小鼠肿瘤中提取出的可溶性基底膜制备物,它主要由层粘连蛋白、Ⅳ型胶原和巢蛋白等组成,还包含转化生长因子β (transforming growth factor-β, TGF-β)、表皮生长因子(epidermal growth factor, EGF)、胰岛素样生长因子(insulin- like growth factor, IGF)、成纤维细胞生长因子(fibroblast growth factor, FGF)、组织纤溶酶原激活物和EHS肿瘤自身含有的其他生长因子[18-19]。
![]() |
图 1 正常肠道类器官培养和患者来源的CRC类器官培养 Fig. 1 Normal intestinal organoid culture and patient-derived CRC organoid culture. |
|
培养正常结直肠类器官需要模拟正常结直肠细胞所处的微环境,通过协调多种关键生长信号通路来维持自我更新和分化能力[20-22],包括无翼型MMTV整合位点家族(wingless-type MMTV integration site family, Wnt)、骨形态发生蛋白、EGF和Notch信号通路。这些关键信号通路生长因子使正常结直肠类器官能够扩增,但仍存在类器官细胞多样性低和培养效率低的问题。有研究报道用IGF-1和FGF-2替代TGF-β抑制剂和p38抑制剂能维持人类肠道上皮细胞谱系分化,提高人肠道类器官的形成能力,并且能够稳定培养超过6个月[23-25]。
CRC类器官和正常结直肠类器官的培养方法和条件类似,将正常结直肠类器官培养基成分进行增减相关生长因子即可用于培养CRC类器官[26]。正常结直肠细胞在发生癌变过程中,基因突变会引起癌细胞对某些特定生长因子的依赖性降低[27]。比如大多数CRC患者的Wnt/β-连环蛋白(β-catenin)信号通路关键基因突变使得CRC类器官中的Wnt通路异常激活,所以Wnt不是培养CRC类器官所必需的生长因子[28]。同时,在培养类器官的初始阶段,为防止失巢凋亡和提高存活率,可在培养基中添加Rho相关卷曲螺旋蛋白激酶(Rho associated coiled coil containing protein kinase, ROCK)抑制剂Y-27632[29]。此外,为能够长期且大规模地培养结直肠类器官,研究者们也正在探索条件培养基的使用[30]。
2 生物力作用下的结直肠类器官生物力学是将力应用到生物科学中,从力学角度对生物体结构、功能和运动进行研究。在正常生理条件下,体内组织会受到各种生物力的作用,肿瘤的发生、发展也受到各种生物力作用的影响[31]。Ciasca等[32]将结直肠细胞受到的机械刺激大致分为:(1) 肠道运动与肠内容物的相互作用带来的压力和拉伸力;(2) 在CRC进展中,肿瘤细胞的病理性增殖引起的肿瘤内部压力增加和丰富的血流带来的流体压力;(3) 胶原表达增加促进ECM硬化等。然而传统的结直肠类器官培养系统仅仅依赖于生物化学因素,在体外结合力学作用对结直肠类器官培养的影响尚不明晰。
2.1 拉伸力促进结直肠类器官隐窝形成拉伸力是指细胞所承受的外力拉伸作用。结直肠类器官不仅有肠道上皮的特征,如隐窝结构和特异性自我更新功能[6],还能对生物力刺激作出反应。在结直肠类器官培养过程中并未发现绒毛,却能观察到隐窝增生,因此隐窝增生可作为评估结直肠类器官生长的指标。上皮增生产生的拉力是构成隐窝折叠的主要决定因素,这涉及ISCs扩增和隐窝分裂[33]。在肠类器官中,不对称分布的肌球蛋白Ⅱ驱动细胞骨架上的肌动蛋白收缩,从而引起上皮细胞顶端收缩导致上皮内陷和隐窝出芽。在隐窝出芽之前,ISCs产生的过渡增殖细胞沿着隐窝纵轴向上迁移至隐窝顶部并进一步增殖分化成各类型的肠功能细胞,这些细胞聚集形成隆起向外凸起,最终形成芽状隐窝结构[33-34]。除了新生隐窝出芽,现有隐窝也可以在拉伸力的作用下发生裂变。隐窝裂变由两种发生机制引起[35-36],一种机制是局部相对较软的ISCs簇周围区域出现较硬的“潘氏样细胞” (cKit+细胞)时,容易在拉伸力的作用下发生变形,内陷的ISCs簇扩展到管腔并最终分割原始干细胞;另一种机制是管腔膨胀的类器官产生一片隐窝细胞,上皮因受到机械拉伸的影响发生形变。一旦发生塌陷,隐窝细胞就内陷到腔内,从而将相邻的上皮分离成两个单独的隐窝结构。因此,推测拉伸类器官使细胞呈拉伸反应状态,诱导肌球蛋白重排和积累最终导致隐窝增生。
在器官形成和肠道功能发生过程中,肠道上皮细胞会经历各种机械力的刺激[37-38]。2022年,Meng等[39]构建了一种机械力诱导的动态小鼠肠道类器官培养系统,从拉伸频率、幅度和加入拉伸时间3个方面研究对类器官的影响,结果表明过早拉伸会阻碍类器官扩张,而延迟拉伸刺激并没有很大程度地引起拉伸组和静态组之间的类器官产生表型差异;高频率拉伸阻碍类器官形成,而低频率拉伸会促进类器官生长;过度拉伸会导致类器官收缩,而振幅低于10%的拉伸力刺激类器官膨胀且促进干性增强;结果揭示第3−6天加入振幅为8%、频率为0.2 Hz (近似肠道的生理蠕动频率)的拉伸力为诱导类器官生长的最佳条件。有研究报道在移植到小鼠肠系膜中的人肠道类器官中,使用压缩镍钛诺弹簧掺入单轴循环拉伸力能诱导类器官出现萌芽,这有助于类器官扩张裂变引起增殖,特别是类器官中的ISCs增殖[40]。这表明拉伸力能上调ISCs的基因表达,促进细胞增殖进而增强类器官的生长能力。
综上,拉伸力能诱导隐窝裂变,刺激ISCs干性增强,从而促进类器官的增殖。而拉伸力频率、幅度和加入时间的改变对结直肠类器官的影响并不相同。因此,在研究结直肠疾病时,需要综合考虑产生拉伸力的因素对结直肠类器官的影响,从而更为准确地阐明拉伸力对结直肠稳态和疾病的作用。
2.2 ECM刚度对结直肠类器官的影响ECM刚度研究属于生物力学中的材料力学研究,其主要在模拟生理状态下研究ECM刚度变化对生物体的影响[41]。ECM为细胞提供结构支持,允许细胞增殖、生长和迁移等。从柔软的脑组织到坚硬的骨组织,ECM能以不同程度的刚度和弹性存在[42-43]。当研究者用不同硬度的水凝胶代替ECM来培养类器官时,发现不同硬度的水凝胶对类器官生长的影响不同。例如,Garreta等[44]将肾脏类器官培养在不同硬度的水凝胶中,发现柔软的微环境促进肾类器官的生长和分化,而Gjorevski等[45]发现与软水凝胶相比,高硬度的水凝胶能够促进ISCs集落生长和肠道类器官形成。前期培养结直肠类器官时,我们发现穹顶状的基质胶环境中的类器官会向周边密集生长且比中心的类器官更大,而平铺的基质胶中的类器官密度、大小较前者更均匀。在没有施加机械力的情况下,仅靠生物化学因素培养的类器官尺寸、形状和表型特征等具有高度可变性,与体内器官存在较大差异。因此,Gjorevski等[45-47]通过控制基质胶刚度来构建具有形状、大小和细胞分布类似的肠道类器官,形成可预测的、可重复的更类似于人源器官的结构,这将有助于类器官标准化并促进机制研究的完善。
事实上,研究者们认为基质硬化会加快大脑、乳腺、肝脏、胰腺和结直肠等肿瘤的进展[48]。2017年,Despotović等[49]发现CRC基质硬度的增加不仅出现在原发病灶,还出现在肿瘤周围10−20 cm的癌旁部位,这表明基质刚度可能会影响CRC的进展。在癌症进展过程中,肿瘤组织内部及周围的胶原沉积和交联增加了ECM的刚性引起组织稳态的失衡,导致正常细胞癌变[50-51]。与正常组织相比,癌前组织和肿瘤组织的ECM表现出更高的硬度[52]。与大多数器官和肿瘤组织的硬度相比,扮演ECM角色的基质胶要软几个数量级[53]。而ECM刚度变化产生的力学信号对类器官的生长是不可或缺的,因此在3D模型中通常调控基质胶硬度来模拟CRC肿瘤微环境[54-55]。2016年,Vellinga等[56]利用I型胶原和基质胶结合来增加ECM硬度,发现患者来源的CRC类器官中的肿瘤细胞侵袭增加。2018年,Brauchle等[57]通过体外和体内实验表明基质刚度增加会促进CRC肿瘤细胞侵袭。ECM刚度的改变不仅会引起肿瘤发生侵袭,还会导致肿瘤转移和产生耐药[58-60]。2021年,Reidy等[61]发现各种胶原蛋白沉积增加导致ECM刚度增加会引起癌细胞迁移增加,同时使得药物进入肿瘤受到阻碍。在肿瘤发展过程中,ECM中的胶原蛋白结构改变和沉积为肿瘤细胞迁移创造条件;其次,增加的ECM硬度影响间质压力导致药物递送受阻;最后,药物可能被ECM中的胶原蛋白成分螯合而产生耐药[62]。
总之,ECM刚度不仅会调控正常结直肠类器官的培养,还在CRC发生发展中起着不能被生物化学因素所替代的作用。虽然在3D模型中控制细胞-ECM的相互作用还面临许多挑战[63],但CRC类器官模型仍有望提供与体内CRC肿瘤更相似的生理条件并为结直肠疾病研究建立基础。
2.3 生物力叠加对结直肠类器官的影响大多数研究生物力对结直肠类器官培养的影响都是独立的,忽视了肠道中的生物力通常是叠加作用的。为克服这些局限性,研究者们利用能模拟体内复杂生理的肠道微流控芯片对生物力作用下的类器官生长、侵袭和药物敏感性进行研究。2012年,Kim等[64]利用存在流动力和循环应力的肠道芯片培养肠上皮细胞,与静态培养物相比,单加入流动力就能促进肠上皮细胞分化、3D绒毛样结构形成和肠屏障功能增加,再叠加循环机械应变力后会进一步促进培养物的生长,与体内肠上皮细胞形态、大小趋于相同。研究者们[65-66]利用微流控芯片培养结直肠类器官,发现类器官的生长趋势显著优于传统静态培养的类器官。与静态培养的肠类器官相比,肠芯片类器官的转录组更接近于人肠道上皮细胞的基因表达。这表明肠芯片为肠道发育、疾病发生机制以及临床前药物评估的研究提供了一个更接近人体肠道组织的模型[67]。2021年,Strelez等[68]通过施加振幅为10%、频率为0.2 Hz的机械拉伸力模拟肠道蠕动,发现HCT116肿瘤细胞侵袭与静态培养相比显著增加。之后该研究者将CRC类器官与芯片系统相结合,发现与静态培养的CRC类器官相比,微流控芯片培养的CRC类器官与患者来源的肿瘤更具有一致性,并且肿瘤的侵袭性增加[69]。2020年,Nashimoto等[70]通过应用可灌注血管网络的微流控芯片培养肿瘤球体模型进行研究,发现球内肿瘤细胞增殖显著加快,且球体内的细胞死亡率降低。与静态培养下的药物作用相比,灌注条件下药物对肿瘤的杀伤作用无剂量依赖性。2021年,Fang等[71]通过在微流控芯片上利用周期性压力改变来模拟生理蠕动,观察到蠕动促进CRC类器官的富含亮氨酸重复序列的G蛋白偶联受体5 (Leucine rich repeat containing G protein-coupled receptor 5, Lgr5)和Ki67表达上调,加药处理后发现类器官的药物摄取率和药物抗肿瘤效率降低。
综上,2D静态模型难以完全模拟肠道微环境的特征,如生理蠕动和流体压力等。而将类器官暴露于生物力作用下,有助于观察其在更接近体内生理条件下的生长形态和药物敏感性等生物特性的变化。因此,将结直肠类器官与微流控器官芯片系统相结合,实现动力学作用的实时观察,对各种生物力叠加作用下结直肠稳态和疾病进展的研究具有推动作用。
3 生物力调控Wnt/β-catenin信号通路传导在肿瘤微环境中,生物力学信号,包括拉伸力、ECM刚度和压缩力,主要通过细胞-细胞和细胞-ECM黏附影响细胞在发育和组织稳态过程中的行为[72]。
3.1 拉伸力启动Wnt/β-catenin信号通路在生理条件下,Wnt信号维持ISCs和隐窝细胞的稳定,而经典的Wnt途径是通过稳定胞质β-catenin起作用的[73]。研究发现,β-catenin信号传导是机械转导和肿瘤发生的重要组成部分[74]。在没有配体时,β-catenin因与由结肠腺瘤样息肉病基因(adenomatous polyposis coli, APC)、轴蛋白(Axin)、酪蛋白激酶1 (casein kinase 1, CK1)和糖原合酶激酶3β (glycogen synthase kinase3β, GSK3β)组成的复合物相互作用而迅速降解,该复合物磷酸化β-catenin并将其定位于泛素介导的蛋白酶体降解(图 2A)。Wnt配体与受体卷曲蛋白(Frizzled)和共受体低密度脂蛋白受体相关蛋白5/6 (low-density lipoprotein receptor-related protein5/6, Lrp5/6)结合形成复合物,招募蛋白Dishevelled (Dvl),进而通过磷酸化Lrp5/6与Axin相互作用,破坏和抑制复合体形成(图 2B)。这导致β-catenin被磷酸化激活,使其转移到细胞核并与T细胞因子(T-cell factor, TCF)/淋巴增强因子(lymphoid enhancer factor, LEF)转录因子相互作用,以调节基因表达。
![]() |
图 2 生物力对Wnt/β-catenin信号的影响 Fig. 2 Effects of biomechanics on Wnt/β-catenin signal. A:没有配体时的经典Wnt/β-catenin信号. B:存在配体时的经典Wnt/β-catenin信号. C:生物力作用下的Wnt/β-catenin信号变化 A: Canonical Wnt/β-catenin signal without ligands. B: Canonical Wnt/β-catenin signal with ligands. C: Wnt/β-catenin signal with biomechanics. |
|
Wnt/β-catenin通路不仅受生物化学因素影响,还受各种生物力学因素调控。在培养基中去除作为Wnt信号激动剂的R-Spondin1后,各种Wnt相关基因的表达显著降低。不添加R-Spondin1时,与静态培养的类器官相比,拉伸后的类器官隐窝中积累了更多的β-catenin。这表明由于R-Spondin1的缺失而导致的Wnt/β-catenin基因表达降低可以通过施加拉伸力激活Wnt/ β-catenin信号传导来挽救[39],从而促进类器官生长。
3.2 ECM刚度调控Wnt/β-catenin信号通路Yes关联蛋白(Yes-associated protein, YAP)和具有PDZ结合基序的转录共激活因子(transcriptional coactivator with PDZ-binding motif, TAZ)是Hippo信号通路的关键下游效应因子,与转录增强相关结构域的转录因子结合后能够促进特定基因的表达,包括细胞增殖、抗凋亡、维持干细胞特性等重要生物学过程。有关基质刚度变化的力学研究表明Hippo-YAP/TAZ途径负责介导机械信号转导,并在调节细胞的增殖和凋亡中起核心作用[75-77]。一方面,Hippo通路中的YAP/TAZ可以通过与Wnt通路中的Dvl结合,从而干扰APC、Axin、CK1和GSK3β的复合物形成,导致β-catenin滞留在胞质中不被降解[78]。另一方面,Hippo通路还可以通过改变β-catenin的转录活性来影响Wnt靶基因的表达。有研究发现磷酸化的YAP/TAZ可与β-catenin结合导致其滞留在胞质中[79]。这些结果提示Hippo通路可负调控β-catenin的转录活性,但其机制仍需更加深入地研究。此外,在胚胎心肌组织中YAP/TAZ可以导致GSK3β的失活,进而稳定胞质的β-catenin来促进其向核内转移。在ECM刚度增加时,YAP/TAZ表达增强[80],TAZ与Dvl结合并抑制Wnt/β-catenin信号传导。此外,ECM刚度的增加导致整合素黏附的激活、聚集和成熟[81],通过整合素依赖机制引起黏附激酶(focal adhesion kinases, FAK)激活[82],进而激活AKT抑制GSK3β,使得β-catenin稳定和增殖基因表达增加,从而刺激类器官增殖(图 2C)。
综上表明,YAP/TAZ和β-catenin的激活是机械应变诱导细胞增殖的主要调节因子,GSK3β是Hippo-YAP/TAZ通路和经典Wnt/β-catenin通路的关键分子[83]。生物力学信号可能会绕过调节Wnt配体或受体表达去促进β-catenin的稳定,使得β-catenin在力的影响下发挥作用[84],从而促进类器官生长。
3.3 压缩力增强Wnt/β-catenin信号通路传导Poling等[40]利用压缩镍钛诺弹簧产生单轴应变来压缩移植的人体肠道类器官,发现机械压缩能促进类器官的生长和成熟。Fernández- Sánchez等[85]通过在小鼠结肠皮下植入磁铁对健康和致瘤性肠隐窝直接施加机械压力,发现隐窝大小和隐窝内增殖细胞数量的增加都与力有关,并且压缩力能增强细胞内的β-catenin靶基因表达。研究表明[86-87],机械压缩可减少肠道类器官中的细胞体积(类似于高渗应激),可能是通过力诱导质膜离子泵开放实现的。机械力诱导的β-catenin磷酸化可能是通过激活其上游激酶或通过对E-钙黏蛋白-连环蛋白(E-cadherin-catenin)复合物施加力使β-catenin的Y654残基暴露而建立的(图 3A)。细胞内的分子挤压力增强Wnt/β-catenin的稳定性并诱导β-catenin的转录来促进ISCs增殖,从而引起隐窝增大分裂(图 3B)。在没有Wnt的情况下,β-catenin破坏复合体会螯合β-catenin并将其靶向降解(图 3B左图)。在有Wnt的情况下,Wnt与Frizzled和LRP5/6的结合可封闭质膜上的破坏复合体并使其失活,从而使β-catenin在细胞膜上聚集并随后向核转移(图 3B中图)。当细胞被压缩时促进Wnt诱导的LRP5/6磷酸化来稳定β-catenin,引起β-catenin的总积累和LRP5/6的磷酸化速率都增高,从而增加β-catenin-TCF靶基因的表达来促进干细胞的自我更新(图 3B右图)。
![]() |
图 3 肠内力诱导β-catenin信号传导的机制[87] Fig. 3 Mechanisms of force-induced β-catenin signaling in the intestine[87]. A:通过从E-cadherin黏附连接释放β-catenin来强制诱导激活β-catenin介导的转录. B:通过细胞内分子拥挤增强β-catenin的Wnt依赖性稳定性,强制诱导激活β-catenin介导的转录 A: Force-induced activation of β-catenin-mediated transcription through release of β-catenin from E-cadherin-based adherens junctions. B: Force-induced activation of β-catenin-mediated transcription by enhancing Wnt-dependent stabilization of β-catenin through intracellular molecular crowding. |
|
相邻的上皮细胞靠黏附链接(adherens junctions, AJs)结合,E-cadherin通过β-catenin和α-catenin将细胞质结构域连接到细胞骨架上的肌动蛋白(actin)形成经典的E-cadherin-catenin复合物。AJs作为一个机械传感器[88],上皮细胞之间发生挤压时,作用于AJs的机械力会触发β-catenin磷酸化位点的暴露,从而促进其从E-cadherin膜池中释放,导致其核内积累和促进增殖基因表达增加[89](图 2C)。Mazzocchi等[90]通过在小鼠结肠肿瘤附近皮下插入磁铁施加机械压力,发现在邻近肿瘤的非肿瘤上皮细胞中,压缩力的增加导致β-catenin的异常激活和促进增殖的β-catenin靶基因表达的增加,使得邻近的正常细胞癌变导致肿瘤体积的增加。由于大多数CRC类器官Wnt通路被异常激活[28],两种方式协同促进CRC类器官迅速增殖,有利于肿瘤细胞进行播散发生侵袭。
综上表明,Wnt/β-catenin途径的激活最终依赖于β-catenin及其核易位的稳定,在核易位中促进TCF/LEF靶基因的转录。体积压缩可以通过稳定LRP5/6信号的形成和提高Wnt/β-catenin信号的表达,这有利于ISCs的自我更新,最终促进肠道类器官的生长。此外,在高渗条件下或者外界施加压缩力形成的CRC类器官表现出更强的Wnt/β-catenin信号,从而刺激CRC细胞增殖和侵袭。
4 总结与展望虽然结直肠类器官能高度保留来源组织的遗传特征,并为疾病建模和药物筛选等研究提供技术基础,但结直肠类器官的培养仍然存在一些局限性。首先,维持结直肠类器官在体外长期扩增还存在一定困难,各阶段生长所需的因子并不完全清楚。其次,CRC类器官相对于体内肿瘤缺乏肿瘤,微环境中的间充质细胞、神经和免疫系统等支持。除此之外,各种内源性机械力对ISCs和CRC细胞在体内生长的影响尚未完全清楚。目前生物力对结直肠类器官生物特性作用的研究还不够全面,缺乏对基因表达率特征和类器官自组织能力的深入研究。在体内,各种生物力存在相互作用(叠加作用、协同作用或抵消作用等),但是在体外培养条件下如何模拟这些力的相互作用仍需继续探索。新开发的微流控器官芯片技术的目的是整合血管网络和模拟生化、生物物理条件,这将为研究正常器官发育和疾病病理提供一个更全面的平台。
总之,生物力对结直肠发育和再生的研究将更深入地揭示生物化学和力学因素之间的相互作用,有助于进一步优化结直肠类器官培养体系,不仅为结直肠类器官提供与体内生存环境更接近的培养条件,还有利于研究如何实现结直肠类器官高通量化应用。这些都为进一步探索体内CRC的发生、发展机制和临床转化奠定基础,有利于开发新的CRC诊断技术和个性化的治疗策略,也能更好地为结直肠相关疾病的研究提供参考。
[1] |
WANG YL, LIN HQ, ZHAO LZ, HONG F, HAO J, ZHANG Z, SHENG WQ, SONG LH, DENG CX, ZHAO B, CAO JN, WANG L, WANG L, LIANG LM, CHEN WK, YU CP, SUN ZJ, YANG YY, WANG CL, ZHANG Y, et al. Standard: human intestinal organoids[J]. Cell Regeneration, 2023, 12(1): 23. DOI:10.1186/s13619-023-00168-5
|
[2] |
ROSENBLUTH JM, SCHACKMANN RCJ, GRAY GK, SELFORS LM, LI CMC, BOEDICKER M, KUIKEN HJ, RICHARDSON A, BROCK J, GARBER J, DILLON D, SACHS N, CLEVERS H, BRUGGE JS. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages[J]. Nature Communications, 2020, 11(1): 1711. DOI:10.1038/s41467-020-15548-7
|
[3] |
SCHUTGENS F, CLEVERS H. Human organoids: tools for understanding biology and treating diseases[J]. Annual Review of Pathology, 2020, 15: 211-234. DOI:10.1146/annurev-pathmechdis-012419-032611
|
[4] |
BOCK C, BOUTROS M, CAMP JG, CLARKE L, CLEVERS H, KNOBLICH JA, LIBERALI P, REGEV A, RIOS AC, STEGLE O, STUNNENBERG HG, TEICHMANN SA, TREUTLEIN B, VRIES RGJ, the Human Cell Atlas 'Biological Network' Organoids. The organoid cell atlas[J]. Nature Biotechnology, 2021, 39(1): 13-17. DOI:10.1038/s41587-020-00762-x
|
[5] |
FUJII M, SATO T. Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases[J]. Nature Materials, 2021, 20(2): 156-169. DOI:10.1038/s41563-020-0754-0
|
[6] |
SATO T, VRIES RG, SNIPPERT HJ, van de WETERING M, BARKER N, STANGE DE, van ES JH, ABO A, KUJALA P, PETERS PJ, CLEVERS H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. DOI:10.1038/nature07935
|
[7] |
LANCASTER MA, KNOBLICH JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194): 1247125. DOI:10.1126/science.1247125
|
[8] |
BEUMER J, CLEVERS H. Cell fate specification and differentiation in the adult mammalian intestine[J]. Nature Reviews Molecular Cell Biology, 2021, 22(1): 39-53. DOI:10.1038/s41580-020-0278-0
|
[9] |
WANG YL, SONG WL, YU SC, LIU Y, CHEN YG. Intestinal cellular heterogeneity and disease development revealed by single-cell technology[J]. Cell Regeneration, 2022, 11(1): 26. DOI:10.1186/s13619-022-00127-6
|
[10] |
ROTHENBERG ME, NUSSE Y, KALISKY T, LEE JJ, DALERBA P, SCHEEREN F, LOBO N, KULKARNI S, SIM S, QIAN DL, BEACHY PA, PASRICHA PJ, QUAKE SR, CLARKE MF. Identification of a cKit+ colonic crypt base secretory cell that supports Lgr5+ stem cells in mice[J]. Gastroenterology, 2012, 142(5): 1195-1205.e6. DOI:10.1053/j.gastro.2012.02.006
|
[11] |
SATO T, van ES JH, SNIPPERT HJ, STANGE DE, VRIES RG, van den BORN M, BARKER N, SHROYER NF, van de WETERING M, CLEVERS H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J]. Nature, 2011, 469(7330): 415-418. DOI:10.1038/nature09637
|
[12] |
SUNG H, FERLAY J, SIEGEL RL, LAVERSANNE M, SOERJOMATARAM I, JEMAL A, BRAY F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a Cancer Journal for Clinicians, 2021, 71(3): 209-249. DOI:10.3322/caac.21660
|
[13] |
PÉREZ-GONZÁLEZ C, CEADA G, MATEJČIĆ M, TREPAT X. Digesting the mechanobiology of the intestinal epithelium[J]. Current Opinion in Genetics & Development, 2022, 72: 82-90.
|
[14] |
WANG YL, KIM R, HINMAN SS, ZWARYCZ B, MAGNESS ST, ALLBRITTON NL. Bioengineered systems and designer matrices that recapitulate the intestinal stem cell niche[J]. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5(3): 440-453.e1. DOI:10.1016/j.jcmgh.2018.01.008
|
[15] |
GAO M, LIN M, RAO M, THOMPSON H, HIRAI K, CHOI M, GEORGAKIS GV, SASSON AR, BUCOBO JC, TZIMAS D, D'SOUZA LS, BUSCAGLIA JM, DAVIS J, SHROYER KR, LI JY, POWERS S, KIM J. Development of patient-derived gastric cancer organoids from endoscopic biopsies and surgical tissues[J]. Annals of Surgical Oncology, 2018, 25(9): 2767-2775. DOI:10.1245/s10434-018-6662-8
|
[16] |
KIM J, KOO BK, KNOBLICH JA. Human organoids: model systems for human biology and medicine[J]. Nature Reviews Molecular Cell Biology, 2020, 21(10): 571-584. DOI:10.1038/s41580-020-0259-3
|
[17] |
BARBÁCHANO A, FERNÁNDEZ-BARRAL A, BUSTAMANTE-MADRID P, PRIETO I, RODRÍGUEZ-SALAS N, LARRIBA MJ, MUÑOZ A. Organoids and colorectal cancer[J]. Cancers, 2021, 13(11): 2657. DOI:10.3390/cancers13112657
|
[18] |
KLEINMAN HK, MARTIN GR. Matrigel: basement membrane matrix with biological activity[J]. Seminars in Cancer Biology, 2005, 15(5): 378-386. DOI:10.1016/j.semcancer.2005.05.004
|
[19] |
POZZI A, YURCHENCO PD, IOZZO RV. The nature and biology of basement membranes[J]. Matrix Biology, 2017, 57/58: 1-11. DOI:10.1016/j.matbio.2016.12.009
|
[20] |
ALLEN J, SEARS CL. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development[J]. Genome Medicine, 2019, 11(1): 11. DOI:10.1186/s13073-019-0621-2
|
[21] |
FARIN HF, van ES JH, CLEVERS H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of paneth cells[J]. Gastroenterology, 2012, 143(6): 1518-1529.e7. DOI:10.1053/j.gastro.2012.08.031
|
[22] |
MAHE MM, SUNDARAM N, WATSON CL, SHROYER NF, HELMRATH MA. Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy[J]. Journal of Visualized Experiments: JoVE, 2015(97): 52483.
|
[23] |
HANYU H, SUGIMOTO S, SATO T. Visualization of differentiated cells in 3D and 2D intestinal organoid cultures[J]. Methods in Molecular Biology, 2023, 2650, 141-153.
|
[24] |
FUJII M, MATANO M, TOSHIMITSU K, TAKANO A, MIKAMI Y, NISHIKORI S, SUGIMOTO S, SATO T. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition[J]. Cell Stem Cell, 2018, 23(6): 787-793.e6. DOI:10.1016/j.stem.2018.11.016
|
[25] |
SATO T, STANGE DE, FERRANTE M, VRIES RGJ, van ES JH, van den BRINK S, van HOUDT WJ, PRONK A, van GORP J, SIERSEMA PD, CLEVERS H. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett's epithelium[J]. Gastroenterology, 2011, 141(5): 1762-1772. DOI:10.1053/j.gastro.2011.07.050
|
[26] |
FUJII M, SHIMOKAWA M, DATE S, TAKANO A, MATANO M, NANKI K, OHTA Y, TOSHIMITSU K, NAKAZATO Y, KAWASAKI K, URAOKA T, WATANABE T, KANAI T, SATO T. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis[J]. Cell Stem Cell, 2016, 18(6): 827-838. DOI:10.1016/j.stem.2016.04.003
|
[27] |
DROST J, van JAARSVELD RH, PONSIOEN B, ZIMBERLIN C, van BOXTEL R, BUIJS A, SACHS N, OVERMEER RM, OFFERHAUS GJ, BEGTHEL H, KORVING J, van de WETERING M, SCHWANK G, LOGTENBERG M, CUPPEN E, SNIPPERT HJ, MEDEMA JP, KOPS GJPL, CLEVERS H. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550): 43-47. DOI:10.1038/nature14415
|
[28] |
FUMAGALLI A, OOST KC, KESTER L, MORGNER J, BORNES L, BRUENS L, SPAARGAREN L, AZKANAZ M, SCHELFHORST T, BEERLING E, HEINZ MC, POSTRACH D, SEINSTRA D, SIEUWERTS AM, MARTENS JWM, van der ELST S, van BAALEN M, BHOWMICK D, VRISEKOOP N, ELLENBROEK SIJ, et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer[J]. Cell Stem Cell, 2020, 26(4): 569-578.e7. DOI:10.1016/j.stem.2020.02.008
|
[29] |
LAU HCH, KRANENBURG O, XIAO HP, YU J. Organoid models of gastrointestinal cancers in basic and translational research[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17(4): 203-222.
|
[30] |
MIYOSHI H, STAPPENBECK TS. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture[J]. Nature Protocols, 2013, 8(12): 2471-2482. DOI:10.1038/nprot.2013.153
|
[31] |
PALMIERI V, LUCCHETTI D, MAIORANA A, PAPI M, MAULUCCI G, CALAPÀ F, CIASCA G, GIORDANO R, SGAMBATO A, de SPIRITO M. Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer[J]. Soft Matter, 2015, 11(28): 5719-5726. DOI:10.1039/C5SM01089F
|
[32] |
CIASCA G, PAPI M, MINELLI E, PALMIERI V, de SPIRITO M. Changes in cellular mechanical properties during onset or progression of colorectal cancer[J]. World Journal of Gastroenterology, 2016, 22(32): 7203-7214. DOI:10.3748/wjg.v22.i32.7203
|
[33] |
SUMIGRAY KD, TERWILLIGER M, LECHLER T. Morphogenesis and compartmentalization of the intestinal crypt[J]. Developmental Cell, 2018, 45(2): 183-197.e5. DOI:10.1016/j.devcel.2018.03.024
|
[34] |
ZACHOS NC, KOVBASNJUK O, FOULKE-ABEL J, IN J, BLUTT SE, de JONGE HR, ESTES MK, DONOWITZ M. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology[J]. Journal of Biological Chemistry, 2016, 291(8): 3759-3766. DOI:10.1074/jbc.R114.635995
|
[35] |
ALMET AA, HUGHES BD, LANDMAN KA, NÄTHKE IS, OSBORNE JM. A multicellular model of intestinal crypt buckling and fission[J]. Bulletin of Mathematical Biology, 2018, 80(2): 335-359. DOI:10.1007/s11538-017-0377-z
|
[36] |
TALLAPRAGADA NP, CAMBRA HM, WALD T, KEOUGH JALBERT S, ABRAHAM DM, KLEIN OD, KLEIN AM. Inflation-collapse dynamics drive patterning and morphogenesis in intestinal organoids[J]. Cell Stem Cell, 2021, 28(9): 1516-1532.e14. DOI:10.1016/j.stem.2021.04.002
|
[37] |
WANG S, WALTON KD, GUMUCIO DL. Signals and forces shaping organogenesis of the small intestine[J]. Current Topics in Developmental Biology, 2019, 132: 31-65.
|
[38] |
DUREL JF, NERURKAR NL. Mechanobiology of vertebrate gut morphogenesis[J]. Current Opinion in Genetics & Development, 2020, 63: 45-52.
|
[39] |
MENG FL, SHEN CC, YANG L, NI C, HUANG JY, LIN KJ, CAO ZX, XU SC, CUI WL, WANG XX, ZHOU BL, XIONG CY, WANG JH, ZHAO B. Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal[J]. Cell Regeneration, 2022, 11(1): 39. DOI:10.1186/s13619-022-00137-4
|
[40] |
POLING HM, WU D, BROWN N, BAKER M, HAUSFELD TA, HUYNH N, CHAFFRON S, DUNN JCY, HOGAN SP, WELLS JM, HELMRATH MA, MAHE MM. Mechanically induced development and maturation of human intestinal organoids in vivo[J]. Nature Biomedical Engineering, 2018, 2(6): 429-442. DOI:10.1038/s41551-018-0243-9
|
[41] |
WEN Q, JANMEY PA. Effects of non-linearity on cell-ECM interactions[J]. Experimental Cell Research, 2013, 319(16): 2481-2489. DOI:10.1016/j.yexcr.2013.05.017
|
[42] |
BONNANS C, CHOU J, WERB Z. Remodelling the extracellular matrix in development and disease[J]. Nature Reviews Molecular Cell Biology, 2014, 15(12): 786-801. DOI:10.1038/nrm3904
|
[43] |
CROTTI S, PICCOLI M, RIZZOLIO F, GIORDANO A, NITTI D, AGOSTINI M. Extracellular matrix and colorectal cancer: how surrounding microenvironment affects cancer cell behavior?[J]. Journal of Cellular Physiology, 2017, 232(5): 967-975. DOI:10.1002/jcp.25658
|
[44] |
GARRETA E, PRADO P, TARANTINO C, ORIA R, FANLO L, MARTÍ E, ZALVIDEA D, TREPAT X, ROCA-CUSACHS P, GAVALDÀ-NAVARRO A, COZZUTO L, CAMPISTOL JM, IZPISÚA BELMONTE JC, HURTADO del POZO C, MONTSERRAT N. Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells[J]. Nature Materials, 2019, 18(4): 397-405. DOI:10.1038/s41563-019-0287-6
|
[45] |
GJOREVSKI N, SACHS N, MANFRIN A, GIGER S, BRAGINA ME, ORDÓÑEZ-MORÁN P, CLEVERS H, LUTOLF MP. Designer matrices for intestinal stem cell and organoid culture[J]. Nature, 2016, 539(7630): 560-564. DOI:10.1038/nature20168
|
[46] |
GJOREVSKI N, LUTOLF MP. Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture[J]. Nature Protocols, 2017, 12(11): 2263-2274. DOI:10.1038/nprot.2017.095
|
[47] |
GJOREVSKI N, NIKOLAEV M, BROWN TE, MITROFANOVA O, BRANDENBERG N, DelRIO FW, YAVITT FM, LIBERALI P, ANSETH KS, LUTOLF MP. Tissue geometry drives deterministic organoid patterning[J]. Science, 2022, 375(6576): eaaw9021. DOI:10.1126/science.aaw9021
|
[48] |
LI YW, WONG IY, GUO M. Reciprocity of cell mechanics with extracellular stimuli: emerging opportunities for translational medicine[J]. Small, 2022, 18(36): e2107305. DOI:10.1002/smll.202107305
|
[49] |
DESPOTOVIĆ SZ, MILIĆEVIĆ NM, MILOŠEVIĆ DP, DESPOTOVIĆ N, ERCEG P, SVORCAN P, SCHUMACHER U, ULLRICH S, MIHAJLOVIĆ G, KALEM D, MARKOVIĆ S, LALIĆ IM, KRMPOT AJ, RABASOVIĆ MD, PANTELIĆ DV, JOVANIĆ SZ, RÖSCH T, MILIĆEVIĆ Ž. Remodeling of extracellular matrix of the lamina propria in the uninvolved human rectal mucosa 10 and 20 cm away from the malignant tumor[J]. Tumour Biology, 2017, 39(7): 1010428317711654.
|
[50] |
ROMERO-LÓPEZ M, TRINH AL, SOBRINO A, HATCH MMS, KEATING MT, FIMBRES C, LEWIS DE, GERSHON PD, BOTVINICK EL, DIGMAN M, LOWENGRUB JS, HUGHES CCW. Recapitulating the human tumor microenvironment: colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth[J]. Biomaterials, 2017, 116: 118-129. DOI:10.1016/j.biomaterials.2016.11.034
|
[51] |
BORDELEAU F, MASON BN, L0LLIS EM, MAZZOLA M, ZANOTELLI MR, SOMASEGAR S, CALIFANO JP, MONTAGUE C, LaVALLEY DJ, HUYNH J, MENCIA-TRINCHANT N, NEGRÓN ABRIL YL, HASSANE DC, BONASSAR LJ, BUTCHER JT, WEISS RS, REINHART-KING CA. Matrix stiffening promotes a tumor vasculature phenotype[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(3): 492-497.
|
[52] |
NG S, TAN WJ, PEK MMX, TAN MH, KURISAWA M. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture[J]. Biomaterials, 2019, 219: 119400. DOI:10.1016/j.biomaterials.2019.119400
|
[53] |
MICALET A, PAPE J, BAKKALCI D, JAVANMARDI Y, HALL C, CHEEMA U, MOEENDARBARY E. Evaluating the impact of a biomimetic mechanical environment on cancer invasion and matrix remodeling[J]. Advanced Healthcare Materials, 2023, 12(14): e2201749. DOI:10.1002/adhm.202201749
|
[54] |
KOORMAN T, JANSEN KA, KHALIL A, HAUGHTON PD, VISSER D, RÄTZE MAK, HAAKMA WE, SAKALAUSKAITÈ G, van DIEST PJ, de ROOJJ J, DERKSEN PWB. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment[J]. Oncogene, 2022, 41(17): 2458-2469. DOI:10.1038/s41388-022-02258-1
|
[55] |
MICALET A, MOEENDARBARY E, CHEEMA U. 3D in vitro models for investigating the role of stiffness in cancer invasion[J]. ACS biomaterials science & engineering, 2023, 9(7): 3729-3741.
|
[56] |
VELLINGA TT, den UIL S, RINKES IHB, MARVIN D, PONSIOEN B, ALVAREZ-VARELA A, FATRAI S, SCHEELE C, ZWIJNENBURG DA, SNIPPERT H, VERMEULEN L, MEDEMA JP, STOCKMANN HB, KOSTER J, FIJNEMAN RJA, de ROOIJ J, KRANENBURG O. Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion[J]. Oncogene, 2016, 35(40): 5263-5271. DOI:10.1038/onc.2016.60
|
[57] |
BRAUCHLE E, KASPER J, DAUM R, SCHIERBAUM N, FALCH C, KIRSCHNIAK A, SCHÄFFER TE, SCHENKE-LAYLAND K. Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas[J]. Matrix Biology, 2018, 68/69: 180-193. DOI:10.1016/j.matbio.2018.03.016
|
[58] |
TRÉDAN O, GALMARINI CM, PATEL K, TANNOCK IF. Drug resistance and the solid tumor microenvironment[J]. JNCI: Journal of the National Cancer Institute, 2007, 99(19): 1441-1454. DOI:10.1093/jnci/djm135
|
[59] |
TANG X, KUHLENSCHMIDT TB, LI Q, ALI S, LEZMI S, CHEN H, PIRES-ALVES M, LAEGREID WW, SAIF TA, KUHLENSCHMIDT MS. A mechanically-induced colon cancer cell population shows increased metastatic potential[J]. Molecular Cancer, 2014, 13: 131. DOI:10.1186/1476-4598-13-131
|
[60] |
DÄSTER S, AMATRUDA N, CALABRESE D, IVANEK R, TURRINI E, DROESER RA, ZAJAC P, FIMOGNARI C, SPAGNOLI GC, IEZZI G, MELE V, MURARO MG. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment[J]. Oncotarget, 2017, 8(1): 1725-1736. DOI:10.18632/oncotarget.13857
|
[61] |
REIDY E, LEONARD NA, TREACY O, RYAN AE. A 3D view of colorectal cancer models in predicting therapeutic responses and resistance[J]. Cancers, 2021, 13(2): 227. DOI:10.3390/cancers13020227
|
[62] |
EGEBLAD M, RASCH MG, WEAVER VM. Dynamic interplay between the collagen scaffold and tumor evolution[J]. Current Opinion in Cell Biology, 2010, 22(5): 697-706. DOI:10.1016/j.ceb.2010.08.015
|
[63] |
PAPE J, EMBERTON M, CHEEMA U. 3D cancer models: the need for a complex stroma, compartmentalization and stiffness[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 660502. DOI:10.3389/fbioe.2021.660502
|
[64] |
KIM HJ, HUH D, HAMILTON G, INGBER DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow[J]. Lab on a chip, 2012, 12(12): 2165-2174. DOI:10.1039/c2lc40074j
|
[65] |
RAJASEKAR S, LIN DSY, ABDUL L, LIU A, SOTRA A, ZHANG F, ZHANG BY. IFlowPlate-a customized 384-well plate for the culture of perfusable vascularized colon organoids[J]. Advanced Materials, 2020, 32(46): e2002974. DOI:10.1002/adma.202002974
|
[66] |
APOSTOLOU A, PANCHAKSHARI RA, BANERJEE A, MANATAKIS DV, PARASKEVOPOULOU MD, LUC R, ABU-ALI G, DIMITRIOU A, LUCCHESI C, KULKARNI G, MAULANA TI, KASENDRA M, KERNS JS, BLECK B, EWART L, MANOLAKOS ES, HAMILTON GA, GIALLOURAKIS C, KARALIS K. A novel microphysiological colon platform to decipher mechanisms driving human intestinal permeability[J]. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12(5): 1719-1741. DOI:10.1016/j.jcmgh.2021.07.004
|
[67] |
KASENDRA M, LUC R, YIN JY, MANATAKIS DV, KULKARNI G, LUCCHESI C, SLIZ J, APOSTOLOU A, SUNUWAR L, OBRIGEWITCH J, JANG KJ, HAMILTON GA, DONOWITZ M, KARALIS K. Duodenum intestine-chip for preclinical drug assessment in a human relevant model[J]. eLife, 2020, 9: e50135. DOI:10.7554/eLife.50135
|
[68] |
STRELEZ C, CHILAKALA S, GHAFFARIAN K, LAU R, SPILLER E, UNG N, HIXON D, YOON AY, SUN RX, LENZ HJ, KATZ JE, MUMENTHALER SM. Human colorectal cancer-on-chip model to study the microenvironmental influence on early metastatic spread[J]. iScience, 2021, 24(5): 102509. DOI:10.1016/j.isci.2021.102509
|
[69] |
STRELEZ C, PEREZ R, CHLYSTEK JS, CHERRY C, YOON AY, HALIDAY B, SHAH C, GHAFFARIAN K, SUN RX, JIANG H, LAU R, SCHATZ A, LENZ HJ, KATZ JE, MUMENTHALER SM. Integration of patient-derived organoids and organ-on-chip systems: investigating colorectal cancer invasion within the mechanical and GABAergic tumor microenvironment[J]. BioRxiv: the Preprint Server for Biology, 2023, 2023, 09.14.557797.
|
[70] |
NASHIMOTO Y, OKADA R, HANADA S, ARIMA Y, NISHIYAMA K, MIURA T, YOKOKAWA R. Vascularized cancer on a chip: the effect of perfusion on growth and drug delivery of tumor spheroid[J]. Biomaterials, 2020, 229: 119547. DOI:10.1016/j.biomaterials.2019.119547
|
[71] |
FANG GC, LU HX, AL-NAKASHLI R, CHAPMAN R, ZHANG YQ, JU LA, LIN GG, STENZEL MH, JIN DY. Enabling peristalsis of human colon tumor organoids on microfluidic chips[J]. Biofabrication, 2021, 14(1): 10.
|
[72] |
CHARRAS G, YAP AS. Tensile forces and mechanotransduction at cell-cell junctions[J]. Current Biology, 2018, 28(8): R445-R457. DOI:10.1016/j.cub.2018.02.003
|
[73] |
WARBOYS CM. Mechanoactivation of Wnt/β-catenin pathways in health and disease[J]. Emerging Topics in Life Sciences, 2018, 2(5): 701-712. DOI:10.1042/ETLS20180042
|
[74] |
OU GQ, WEAVER VM. Tumor-induced solid stress activates β-catenin signaling to drive malignant behavior in normal, tumor-adjacent cells[J]. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2015, 37(12): 1293-1297. DOI:10.1002/bies.201500090
|
[75] |
MOHRI Z, del RIO HERNANDEZ A, KRAMS R. The emerging role of YAP/TAZ in mechanotransduction[J]. Journal of Thoracic Disease, 2017, 9(5): E507-E509. DOI:10.21037/jtd.2017.03.179
|
[76] |
BENHAM-PYLE BW, PRUITT BL, NELSON WJ. Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry[J]. Science, 2015, 348(6238): 1024-1027. DOI:10.1126/science.aaa4559
|
[77] |
GREGORIEFF A, LIU Y, INANLOU MR, KHOMCHUK Y, WRANA JL. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer[J]. Nature, 2015, 526(7575): 715-718. DOI:10.1038/nature15382
|
[78] |
VARELAS X, MILLER BW, SOPKO R, SONG SY, GREGORIEFF A, FELLOUSE FA, SAKUMA R, PAWSON T, HUNZIKER W, McNEILL H, WRANA JL, ATTISANO L. The Hippo pathway regulates Wnt/beta-catenin signaling[J]. Developmental Cell, 2010, 18(4): 579-591. DOI:10.1016/j.devcel.2010.03.007
|
[79] |
IMAJO M, MIYATAKE K, IIMURA A, MIYAMOTO A, NISHIDA E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling[J]. The EMBO Journal, 2012, 31(5): 1109-1122. DOI:10.1038/emboj.2011.487
|
[80] |
ARAGONA M, PANCIERA T, MANFRIN A, GIULITTI S, MICHIELIN F, ELVASSORE N, DUPONT S, PICCOLO S. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors[J]. Cell, 2013, 154(5): 1047-1059. DOI:10.1016/j.cell.2013.07.042
|
[81] |
KECHAGIA Z, SÁEZ P, GÓMEZ-GONZÁLEZ M, CANALES B, VISWANADHA S, ZAMARBIDE M, ANDREU I, KOORMAN T, BEEDLE AEM, ELOSEGUI-ARTOLA A, DERKSEN PWB, TREPAT X, ARROYO M, ROCA-CUSACHS P. The laminin-keratin link shields the nucleus from mechanical deformation and signalling[J]. Nature Materials, 2023, 22: 1409-1420. DOI:10.1038/s41563-023-01657-3
|
[82] |
ASTUDILLO P. Extracellular matrix stiffness and Wnt/β-catenin signaling in physiology and disease[J]. Biochemical Society Transactions, 2020, 48(3): 1187-1198. DOI:10.1042/BST20200026
|
[83] |
XIN M, KIM Y, SUTHERLAND LB, QI XX, McANALLY J, SCHWARTZ RJ, RICHARDSON JA, BASSEL-DUBY R, OLSON EN. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size[J]. Science Signaling, 2011, 4(196): ra70.
|
[84] |
CHEN TC, SAW TB, MÈGE RM, LADOUX B. Mechanical forces in cell monolayers[J]. Journal of Cell Science, 2018, 131(24): jcs218156. DOI:10.1242/jcs.218156
|
[85] |
FERNÁNDEZ-SÁNCHEZ ME, BARBIER S, WHITEHEAD J, BÉALLE G, MICHEL A, LATORRE-OSSA H, REY C, FOUASSIER L, CLAPERON A, BRULLÉ L, GIRARD E, SERVANT N, RIO-FRIO T, MARIE H, LESIEUR S, HOUSSET C, GENNISSON JL, TANTER M, MÉNAGER C, FRE S, et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure[J]. Nature, 2015, 523(7558): 92-95. DOI:10.1038/nature14329
|
[86] |
LI YW, CHEN MR, HU JL, SHENG R, LIN QR, HE X, GUO M. Volumetric compression induces intracellular crowding to control intestinal organoid growth via Wnt/β-catenin signaling[J]. Cell Stem Cell, 2021, 28(1): 63-78.e7. DOI:10.1016/j.stem.2020.09.012
|
[87] |
HOUTEKAMER RM, van der Net MC, MAURICE MM, GLOERICH M. Mechanical forces directing intestinal form and function[J]. Current Biology, 2022, 32(14): R791-R805. DOI:10.1016/j.cub.2022.05.041
|
[88] |
LADOUX B, NELSON WJ, YAN J, MÈGE RM. The mechanotransduction machinery at work at adherens junctions[J]. Integrative Biology: Quantitative Biosciences from Nano to Macro, 2015, 7(10): 1109-1119. DOI:10.1039/c5ib00070j
|
[89] |
RÖPER JC, MITROSSILIS D, STIRNEMANN G, WAHARTE F, BRITO I, FERNANDEZ-SANCHEZ ME, BAADEN M, SALAMERO J, FARGE E. The major β-catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation in vivo[J]. eLife, 2018, 7: e33381. DOI:10.7554/eLife.33381
|
[90] |
MAZZOCCHI A, DOMINIJANNI A, SOKER S. Pleural effusion aspirate for use in 3D lung cancer modeling and chemotherapy screening[J]. Methods in Molecular Biology, 2022, 2394, 471-483.
|