[1] |
CHOI S, SONG CW, SHIN JH, LEE SY. Biorefineries for the production of top building block chemicals and their derivatives[J]. Metabolic Engineering, 2015, 28: 223-239.
|
|
[2] |
JIANG M, MA JF, WU MK, LIU RM, LIANG LY, XIN FX, ZHANG WM, JIA HH, DONG WL. Progress of succinic acid production from renewable resources: metabolic and fermentative strategies[J]. Bioresource Technology, 2017, 245(Pt B): 1710-1717.
|
|
[3] |
JAMBUNATHAN P, ZHANG KC. Engineered biosynthesis of biodegradable polymers[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(8): 1037-1058.
|
|
[4] |
JANSEN MLA, van GULIK WM. Towards large scale fermentative production of succinic acid[J]. Current Opinion in Biotechnology, 2014, 30: 190-197.
|
|
[5] |
万屹东, 高有军, 马江锋. 生物法制备丁二酸的研究及产业化进展[J]. 生物加工过程, 2020, 18(5): 583-591, 630. WAN YD, GAO YJ, MA JF. Progress in industrialization on succinic acid production by fermentation[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(5): 583-591, 630 (in Chinese). DOI:10.3969/j.issn.1672-3678.2020.05.007
|
|
[6] |
刘嵘明, 梁丽亚, 吴明科, 姜岷. 微生物发酵生产丁二酸研究进展[J]. 生物工程学报, 2013, 29(10): 1386-1397. LIU RM, LIANG LY, WU MK, JIANG M. Progress in microbial production of succinic acid[J]. Chinese Journal of Biotechnology, 2013, 29(10): 1386-1397 (in Chinese).
|
|
[7] |
GUETTLER MV, RUMLER D, JAIN MK. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen[J]. International Journal of Systematic and Evolutionary Microbiology, 1999, 49(1): 207-216.
|
|
[8] |
LEE P, LEE S, HONG S, CHANG H. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen[J]. Applied Microbiology and Biotechnology, 2002, 58(5): 663-668.
|
|
[9] |
AHN JH, JANG YS, LEE SY. Production of succinic acid by metabolically engineered microorganisms[J]. Current Opinion in Biotechnology, 2016, 42: 54-66.
|
|
[10] |
OREOLUWA JOKODOLA E, NARISETTY V, CASTRO E, DURGAPAL S, COULON F, SINDHU R, BINOD P, RAJESH BANU J, KUMAR G, KUMAR V. Process optimisation for production and recovery of succinic acid using xylose-rich hydrolysates by Actinobacillus succinogenes[J]. Bioresource Technology, 2022, 344(Pt B): 126224.
|
|
[11] |
ZHU XN, TAN ZG, XU HT, CHEN J, TANG JL, ZHANG XL. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli[J]. Metabolic Engineering, 2014, 24: 87-96.
|
|
[12] |
KUMAR R, BASAK B, JEON BH. Sustainable production and purification of succinic acid: a review of membrane-integrated green approach[J]. Journal of Cleaner Production, 2020, 277: 123954.
|
|
[13] |
LI C, ONG KL, CUI ZY, SANG ZY, LI XT, PATRIA RD, QI QS, FICKERS P, YAN JB, LIN CSK. Promising advancement in fermentative succinic acid production by yeast hosts[J]. Journal of Hazardous Materials, 2021, 401: 123414.
|
|
[14] |
YAN DJ, WANG CX, ZHOU JM, LIU YL, YANG MH, XING JM. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value[J]. Bioresource Technology, 2014, 156: 232-239.
|
|
[15] |
TRAN VG, MISHRA S, BHAGWAT SS, SHAFAEI S, SHEN YH, ALLEN JL, CROSLY BA, TAN SI, FATMA Z, RABINOWITZ JD, GUEST JS, SINGH V, ZHAO HM. An end-to-end pipeline for succinic acid production at an industrially relevant scale using Issatchenkia orientalis[J]. Nature Communications, 2023, 14: 6152.
|
|
[16] |
CUI ZY, ZHONG YT, SUN ZJ, JIANG ZN, DENG JY, WANG Q, NIELSEN J, HOU J, QI QS. Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica[J]. Nature Communications, 2023, 14: 8480.
|
|
[17] | |
|
[18] |
VUORISTO KS, MARS AE, SANDERS JPM, EGGINK G, WEUSTHUIS RA. Metabolic engineering of TCA cycle for production of chemicals[J]. Trends in Biotechnology, 2016, 34(3): 191-197.
|
|
[19] |
CHENG KK, ZHAO XB, ZENG J, ZHANG JA. Biotechnological production of succinic acid: current state and perspectives[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(3): 302-318.
|
|
[20] |
LIN H, BENNETT GN, SAN KY. Genetic reconstruction of the aerobic central metabolism inEscherichia coli for the absolute aerobic production of succinate[J]. Biotechnology and Bioengineering, 2005, 89(2): 148-156.
|
|
[21] |
GONG FY, CAI Z, LI Y. Synthetic biology for CO2 fixation[J]. Science China Life Sciences, 2016, 59(11): 1106-1114.
|
|
[22] |
LIU XT, FENG XJ, DING YM, GAO WJ, XIAN M, WANG JC, ZHAO G. Characterization and directed evolution of propionyl-CoA carboxylase and its application in succinate biosynthetic pathway with two CO2 fixation reactions[J]. Metabolic Engineering, 2020, 62: 42-50.
|
|
[23] |
LUCENA RM, DOLZ-EDO L, BRUL S, de MORAIS MA Jr, SMITS G. Extreme low cytosolic pH is a signal for cell survival in acid stressed yeast[J]. Genes, 2020, 11(6): 656.
|
|
[24] |
PEREIRA R, MOHAMED ET, RADI MS, HERRGÅRD MJ, FEIST AM, NIELSEN J, CHEN Y. Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(45): 27954-27961.
|
|
[25] |
徐伟, 柴丽娜, 傅徐阳, 马婷婷, 付大伟, 王薇. 耐低pH酵母菌的分离及其对酸胁迫环境的适应性[J]. 食品工业科技, 2019, 40(16): 112-117. XU W, CHAI LN, FU XY, MA TT, FU DW, WANG W. Isolation of low pH resistant yeast and its adaptability to acid stress environment[J]. Science and Technology of Food Industry, 2019, 40(16): 112-117 (in Chinese).
|
|
[26] |
齐艳利, 刘晖, 周配, 高聪, 刘立明. 过表达基因elo1和ole1增强光滑球拟酵母Δmed15B菌株的低pH耐受能力[J]. 微生物学报, 2021, 61(5): 1359-1369. QI YL, LIU H, ZHOU P, GAO C, LIU LM. Enhancing low pH tolerance of Candida glabrata Δmed15B by overexpressing genes Elo1 and ole1[J]. Acta Microbiologica Sinica, 2021, 61(5): 1359-1369 (in Chinese).
|
|
[27] |
OOKUBO A, HIRASAWA T, YOSHIKAWA K, NAGAHISA K, FURUSAWA C, SHIMIZU H. Improvement of L-lactate production by CYB2 gene disruption in a recombinant Saccharomyces cerevisiae strain under low pH condition[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(11): 3063-3066.
|
|
[28] |
刘兴艳, 贾博, 赵芳, 王成, 李静援, 战吉宬, 黄卫东. 酿酒酵母对弱有机酸胁迫的应激机制研究进展[J]. 食品与发酵工业, 2013, 39(6): 125-129. LIU XY, JIA B, ZHAO F, WANG C, LI JY, ZHAN JC, HUANG WD. Research progress on weak organic acid stress mechanism of Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2013, 39(6): 125-129 (in Chinese).
|
|
[29] |
MAEDA T. The signaling mechanism of ambient pH sensing and adaptation in yeast and fungi[J]. The FEBS Journal, 2012, 279(8): 1407-1413.
|
|
[30] |
ABBOTT DA, ZELLE RM, PRONK JT, van MARIS AJA. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges[J]. FEMS Yeast Research, 2009, 9(8): 1123-1136.
|
|
[31] |
OTERO JM, CIMINI D, PATIL KR, POULSEN SG, OLSSON L, NIELSEN J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory[J]. PLoS One, 2013, 8(1): e54144.
|
|
[32] |
GOFFEAU A. Four years of post-genomic life with 6, 000 yeast genes[J]. FEBS Letters, 2000, 480(1): 37-41.
|
|
[33] |
KUBO Y, TAKAGI H, NAKAMORI S. Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain[J]. Journal of Bioscience and Bioengineering, 2000, 90(6): 619-624.
|
|
[34] |
RAAB AM, GEBHARDT G, BOLOTINA N, WEUSTER-BOTZ D, LANG C. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid[J]. Metabolic Engineering, 2010, 12(6): 518-525.
|
|
[35] |
ITO Y, HIRASAWA T, SHIMIZU H. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(1): 151-159.
|
|
[36] |
XIBERRAS J, KLEIN M, de HULSTER E, MANS R, NEVOIGT E. Engineering Saccharomyces cerevisiae for succinic acid production from glycerol and carbon dioxide[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 566.
|
|
[37] |
KLEIN M, CARRILLO M, XIBERRAS J, ISLAM ZU, SWINNEN S, NEVOIGT E. Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses[J]. Metabolic Engineering, 2016, 38: 464-472.
|
|
[38] |
RENDULIĆ T, PERPELEA A, ORTIZ JPR, CASAL M, NEVOIGT E. Mitochondrial membrane transporters as attractive targets for the fermentative production of succinic acid from glycerol in Saccharomyces cerevisiae[J]. FEMS Yeast Research, 2024, 24: foae009.
|
|
[39] |
刘立明, 刘佳, 陈修来, 高聪, 王学明, 吴静, 宋伟, 魏婉清. 一株产丁二酸的酿酒酵母及其应用: CN116144516B[P]. 2023-08-08. LIU LM, LIU J, CHEN XL, GAO C, WANG XM, WU J, SONG W, WEI WQ. A Saccharomyces cerevisiae for succinic acid production and its application: CN116144516B[P]. 2023-08-08 (in Chinese).
|
|
[40] |
RUSH BRIAN J, WATTS KEVIN T, MCINTOSH JR. VERNON L, FOSMER ARLENE M, POYNTER GREGORY M, MCMULLIN THOMAS W. Yeast cells having reductive tca pathway from pyruvate to succinate and overexpressing an exogenous NAD(P)+ transhydrogenase enzyme: United States Patent Application 20180100170[P]. 2018-04-12.
|
|
[41] |
XIAO H, SHAO ZY, JIANG Y, DOLE S, ZHAO HM. Exploiting Issatchenkia orientalis SD108 for succinic acid production[J]. Microbial Cell Factories, 2014, 13: 121.
|
|
[42] |
LIU HH, JI XJ, HUANG H. Biotechnological applications of Yarrowia lipolytica: past, present and future[J]. Biotechnology Advances, 2015, 33(8): 1522-1546.
|
|
[43] |
CAVALLO E, CHARREAU H, CERRUTTI P, FORESTI ML. Yarrowia lipolytica: a model yeast for citric acid production[J]. FEMS Yeast Research, 2017, 17(8): fox084.
|
|
[44] |
KAMZOLOVA SV, DEDYUKHINA EG, SAMOILENKO VA, LUNINA JN, PUNTUS IF, ALLAYAROV RL, CHIGLINTSEVA MN, MIRONOV AA, MORGUNOV IG. Isocitric acid production from rapeseed oil by Yarrowia lipolytica yeast[J]. Applied Microbiology and Biotechnology, 2013, 97(20): 9133-9144.
|
|
[45] |
GUO HW, SU SJ, MADZAK C, ZHOU JW, CHEN HW, CHEN G. Applying pathway engineering to enhance production of alpha-ketoglutarate in Yarrowia lipolytica[J]. Applied Microbiology and Biotechnology, 2016, 100(23): 9875-9884.
|
|
[46] |
KAMZOLOVA SV, YUSUPOVA AI, VINOKUROVA NG, FEDOTCHEVA NI, KONDRASHOVA MN, FINOGENOVA TV, MORGUNOV IG. Chemically assisted microbial production of succinic acid by the yeast Yarrowia lipolytica grown on ethanol[J]. Applied Microbiology and Biotechnology, 2009, 83(6): 1027-1034.
|
|
[47] |
KAMZOLOVA SV, VINOKUROVA NG, SHEMSHURA ON, BEKMAKHANOVA NE, LUNINA JN, SAMOILENKO VA, MORGUNOV IG. The production of succinic acid by yeast Yarrowia lipolytica through a two-step process[J]. Applied Microbiology and Biotechnology, 2014, 98(18): 7959-7969.
|
|
[48] |
KAMZOLOVA SV, VINOKUROVA NG, DEDYUKHINA EG, SAMOILENKO VA, LUNINA JN, MIRONOV AA, ALLAYAROV RK, MORGUNOV IG. The peculiarities of succinic acid production from rapeseed oil by Yarrowia lipolytica yeast[J]. Applied Microbiology and Biotechnology, 2014, 98(9): 4149-4157.
|
|
[49] |
YUZBASHEV TV, YUZBASHEVA EY, SOBOLEVSKAYA TI, LAPTEV IA, VYBORNAYA TV, LARINA AS, MATSUI K, FUKUI K, SINEOKY SP. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica[J]. Biotechnology and Bioengineering, 2010, 107(4): 673-682.
|
|
[50] |
YUZBASHEV TV, YUZBASHEVA EY, LAPTEV IA, SOBOLEVSKAYA TI, VYBORNAYA TV, LARINA AS, GVILAVA IT, ANTONOVA SV, SINEOKY SP. Is it possible to produce succinic acid at a low pH?[J]. Bioengineered Bugs, 2011, 2(2): 115-119.
|
|
[51] |
YUZBASHEV TV, BONDARENKO PY, SOBOLEVSKAYA TI, YUZBASHEVA EY, LAPTEV IA, KACHALA VV, FEDOROV AS, VYBORNAYA TV, LARINA AS, SINEOKY SP. Metabolic evolution and 13C flux analysis of a succinate dehydrogenase deficient strain of Yarrowia lipolytica[J]. Biotechnology and Bioengineering, 2016, 113(11): 2425-2432.
|
|
[52] |
BONDARENKO PY, FEDOROV AS, SINEOKY SP. Optimization of repeated-batch fermentation of a recombinant strain of the yeast Yarrowia lipolytica for succinic acid production at low pH[J]. Applied Biochemistry and Microbiology, 2017, 53(9): 882-887.
|
|
[53] |
JOST B, HOLZ M, AURICH A, BARTH G, BLEY T, MÜLLER RA. The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica[J]. Applied Microbiology and Biotechnology, 2015, 99(4): 1675-1686.
|
|
[54] |
BABAEI M, RUEKSOMTAWIN KILDEGAARD K, NIAEI A, HOSSEINI M, EBRAHIMI S, SUDARSAN S, ANGELIDAKI I, BORODINA I. Engineering oleaginous yeast as the host for fermentative succinic acid production from glucose[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 361.
|
|
[55] |
GAO CJ, YANG XF, WANG HM, RIVERO CP, LI C, CUI ZY, QI QS, LIN CSK. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica[J]. Biotechnology for Biofuels, 2016, 9(1): 179.
|
|
[56] |
LI C, YANG XF, GAO S, WANG HM, LIN CSK. High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica[J]. Bioresource Technology, 2017, 225: 9-16.
|
|
[57] |
LI C, GAO S, YANG XF, LIN CSK. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor[J]. Bioresource Technology, 2018, 249: 612-619.
|
|
[58] |
YANG XF, WANG HM, LI C, LIN CSK. Restoring of glucose metabolism of engineered Yarrowia lipolytica for succinic acid production via a simple and efficient adaptive evolution strategy[J]. Journal of Agricultural and Food Chemistry, 2017, 65(20): 4133-4139.
|
|
[59] |
LI C, GAO S, LI XT, YANG XF, LIN CSK. Efficient metabolic evolution of engineered Yarrowia lipolytica for succinic acid production using a glucose-based medium in an in situ fibrous bioreactor under low-pH condition[J]. Biotechnology for Biofuels, 2018, 11: 236.
|
|
[60] |
CUI ZY, GAO CJ, LI JJ, HOU J, LIN CSK, QI QS. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH[J]. Metabolic Engineering, 2017, 42: 126-133.
|
|
[61] |
YU QL, CUI ZY, ZHENG YQ, HUO HL, MENG LL, XU JJ, GAO CJ. Exploring succinic acid production by engineered Yarrowia lipolytica strains using glucose at low pH[J]. Biochemical Engineering Journal, 2018, 139: 51-56.
|
|
[62] |
JIANG ZN, CUI ZY, ZHU ZW, LIU YH, TANG YJ, HOU J, QI QS. Engineering of Yarrowia lipolytica transporters for high-efficient production of biobased succinic acid from glucose[J]. Biotechnology for Biofuels, 2021, 14(1): 145.
|
|
[63] |
JAGTAP SS, RAO CV. Microbial conversion of xylose into useful bioproducts[J]. Applied Microbiology and Biotechnology, 2018, 102(21): 9015-9036.
|
|
[64] |
RODRIGUEZ GM, HUSSAIN MS, GAMBILL L, GAO DF, YAGUCHI A, BLENNER M. Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway[J]. Biotechnology for Biofuels, 2016, 9(1): 149.
|
|
[65] |
ONG KL, LI C, LI XT, ZHANG Y, XU JL, LIN CSK. Co-fermentation of glucose and xylose from sugarcane bagasse into succinic acid by Yarrowia lipolytica[J]. Biochemical Engineering Journal, 2019, 148: 108-115.
|
|
[66] |
PRABHU AA, LEDESMA-AMARO R, LIN CSK, COULON F, THAKUR VK, KUMAR V. Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control[J]. Biotechnology for Biofuels, 2020, 13: 113.
|
|
[67] |
DASARI MA, KIATSIMKUL PP, SUTTERLIN WR, SUPPES GJ. Low-pressure hydrogenolysis of glycerol to propylene glycol[J]. Applied Catalysis A: General, 2005, 281(1/2): 225-231.
|
|
[68] |
YANG FX, HANNA MA, SUN RC. Value-added uses for crude glycerol: a byproduct of biodiesel production[J]. Biotechnology for Biofuels, 2012, 5: 13.
|
|
[69] |
LI Q, WU H, LI ZM, YE Q. Enhanced succinate production from glycerol by engineered Escherichia coli strains[J]. Bioresource Technology, 2016, 218: 217-223.
|
|
[70] |
ONG KL, FICKERS P, LIN CSK. Enhancing succinic acid productivity in the yeast Yarrowia lipolytica with improved glycerol uptake rate[J]. The Science of the Total Environment, 2020, 702: 134911.
|
|
[71] |
MUTYALA S, KIM JR. Recent advances and challenges in the bioconversion of acetate to value-added chemicals[J]. Bioresource Technology, 2022, 364: 128064.
|
|
[72] |
KIEFER D, MERKEL M, LILGE L, HENKEL M, HAUSMANN R. From acetate to bio-based products: underexploited potential for industrial biotechnology[J]. Trends in Biotechnology, 2021, 39(4): 397-411.
|
|
[73] |
KIM Y, LAMA SM, AGRAWAL D, KUMAR V, PARK S. Acetate as a potential feedstock for the production of value-added chemicals: metabolism and applications[J]. Biotechnology Advances, 2021, 49: 107736.
|
|
[74] |
NARISETTY V, PRABHU AA, BOMMAREDDY RR, COX R, AGRAWAL D, MISRA A, HAIDER MA, BHATNAGAR A, PANDEY A, KUMAR V. Development of hypertolerant strain of Yarrowia lipolytica accumulating succinic acid using high levels of acetate[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(33): 10858-10869.
|
|
[75] |
COTTON CA, CLAASSENS NJ, BENITO-VAQUERIZO S, BAR-EVEN A. Renewable methanol and formate as microbial feedstocks[J]. Current Opinion in Biotechnology, 2020, 62: 168-180.
|
|
[76] |
HAYNES CA, GONZALEZ R. Rethinking biological activation of methane and conversion to liquid fuels[J]. Nature Chemical Biology, 2014, 10: 331-339.
|
|
[77] |
LI HZ, QIU CL, REN SJ, DONG QB, ZHANG SX, ZHOU FL, LIANG XH, WANG JG, LI SG, YU M. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels[J]. Science, 2020, 367(6478): 667-671.
|
|
[78] |
KATTEL S, RAMÍREZ PJ, CHEN JG, RODRIGUEZ JA, LIU P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299.
|
|
[79] |
GRACIANI J, MUDIYANSELAGE K, XU F, BABER AE, EVANS J, SENANAYAKE SD, STACCHIOLA DJ, LIU P, HRBEK J, FERNÁNDEZ SANZ J, RODRIGUEZ JA. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO₂[J]. Science, 2014, 345(6196): 546-550.
|
|
[80] |
GREGORY GJ, BENNETT RK, PAPOUTSAKIS ET. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs[J]. Metabolic Engineering, 2022, 71: 99-116.
|
|
[81] |
ANTONIEWICZ MR. Synthetic methylotrophy: strategies to assimilate methanol for growth and chemicals production[J]. Current Opinion in Biotechnology, 2019, 59: 165-174.
|
|
[82] |
ZHANG SJ, GUO F, YANG Q, JIANG YJ, YANG SH, MA JF, XIN FX, HASUNUMA T, KONDO A, ZHANG WM, JIANG M. Improving methanol assimilation in Yarrowia lipolytica via systematic metabolic engineering combined with compartmentalization[J]. Green Chemistry, 2023, 25(1): 183-195.
|
|