AI驱动生物制造专刊序言
作者:

Preface for special issue on AI-driven biomanufacturing
Author:
  • WANG Qinhong

    WANG Qinhong

    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MA Hongwu

    MA Hongwu

    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIA Jianye

    XIA Jianye

    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    生物制造是可持续发展重大战略方向,我国高度重视生物制造产业的发展,国家和地方相继出台生物制造专项政策,大力发展生物制造已成不可阻挡之势。当前,随着系统生物学、合成生物学的不断发展,生物大数据、信息技术正快速与生物技术融合,为生物体系设计、创制及应用提供新理论、新方法、新技术,推动生物制造发展进入人工智能驱动时代。为了把握AI驱动生物制造创新发展脉络,本刊特组织出版专刊,邀请国内多家单位的专家学者,分别从AI驱动底层技术、生物元器件智能设计合成、人工细胞智能设计再造和智能生物过程控制优化4个方面阐述AI驱动生物制造的机遇和挑战、发展现状,展望未来的发展趋势,为更好推动生物制造领域的技术创新和产业发展提供参考。

    Abstract:

    Biomanufacturing is one of important strategies for sustainable development, China places significant emphasis on the development of biomanufacturing, and the national and local governments have successively introduced special policies for biomanufacturing, and vigorously developing biomanufacturing has become an unstoppable trend. At present, with the rapid development of systems biology and synthetic biology, biological big data and information technology are deeply integrating with biotechnology. Novel theories, methods and technologies for the design, creation and application of biological systems are constantly emerging, which promoted the development of biomanufacturing into the era of artificial intelligence (AI). In order to grasp the innovation and development of AI-driven biomanufacturing, we publish this special issue to review the opportunities, challenges, and development status of AI-driven biomanufacturing from aspects such as AI-driven enabling technologies, intelligent design and construction of biological parts, circuits and artificial cells, as well as intelligent bioprocess control and optimization, and look forward to the future developments. This will provide valuable references for effectively promoting technological innovation and industrial development in the field of biomanufacturing.

    参考文献
    [1] ASIN-GARCIA E, FAWCETT JD, BATIANIS C, MARTINS dos SANTOS VAP. A snapshot of biomanufacturing and the need for enabling research infrastructure[J]. Trends in Biotechnology, 2024, DOI: 10.1016/j.tibtech.2024.10.014.
    [2] CLOMBURG JM, CRUMBLEY AM, GONZALEZ R. Industrial biomanufacturing: The future of chemical production[J]. Science, 2017, 355(6320): aag0804.
    [3] SCOWN CD, KEASLING JD. Sustainable manufacturing with synthetic biology[J]. Nature Biotechnology, 2022, 40(3): 304-307.
    [4] The Bio Revolution: Innovations transforming economies, societies, and our lives[EB/OL]. [2025-03-04]. https://www.mckinsey.com/industries/life-sciences/our-insights/the-bio-revolution-innovations-transforming-economies-societies-and-our-lives.
    [5] The Bioeconomy to 2030: Designing a Policy Agenda, Main Findings and Policy Conclusions[R]. 2010, Paris: Organization for Economic Co-operation and Development.
    [6] 欧阳平凯. 我国工业生物技术发展回顾及展望. 生物工程学报, 2022, 38(11): 3991-4000. Ouyang PK. The industrial biotechnology in China: development and outlook[J]. Chinese Journal of Biotechnology, 2022, 38(11): 3991-4000.
    [7] 王婉莹, 周颖喆, 刘华娟, 蒋国强. 我国生物制造领域竞争优劣势分析. 化工进展, 2024, 43(S1): 662-666. Wang WY, Zhou YZ, Liu HJ, Jiang GQ. Analysis of competitive advantages and disadvantages in China's biomanufacturing field[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 662-666(in Chinese).
    [8] SHI ZK, LIU P, LIAO XP, MAO ZT, ZHANG JQ, WANG QH, SUN JB, MA HW, MA YH. Data-driven synthetic cell factories development for industrial biomanufacturing[J]. Biodesign Research, 2022, 2022: 9898461.
    [9] 李玉雪, 王波, 宁康. 生物信息学与生物制造: 论生物大数据及其数据挖掘在生物制造中的重要性. 生命科学, 2024, 36(11): 1339-1348. Li YX, Wang B, Ning K. Bioinformatics and biomanufacturing: the importance of big biodata and its data mining in biomanufacturing. Chinese Bulletin of Life Sciences, 2024, 36(11): 1339-1348(in Chinese).
    [10] Artificial Intelligence and Automated Laboratories for Biotechnology: Leveraging Opportunities and Mitigating Risks: A Workshop[EB/OL]. [2025-03-06] https://nap.nationalacademies.org/catalog/27469/artificial-intelligence-and-automated-laboratories-for-biotechnology-leveraging-opportunities-and-mitigating-risks.
    [11] 朱华伟, 李寅. 合成生物制造2025[J]. 生物工程学报, 2025, 41(1): 1-78. Zhu HW, Li Y. Biomanufacturing driven by engineered organisms[J]. Chinese Journal of Biotechnology, 2025, 41(1): 1-78(in Chinese).
    [12] 毛志涛, 廖小平, 马红武. 面向生物制造的数据库、知识库与大模型[J]. 生物工程学报, 2025, 41(3): 901-916. MAO Zhitao, LIAO Xiaoping, MA Hongwu. Databases, knowledge bases, and large models for biomanufacturing[J]. Chinese Journal of Biotechnology, 2025, 41(3): 901-916(in Chinese).
    [13] 刘保艳, 李帅, 苏浩, 盛翔. 人工智能与物理原理融合驱动的蛋白计算模拟技术[J]. 生物工程学报, 2025, 41(3): 917-933. LIU Baoyan, LI Shuai, SU Hao, SHENG Xiang. Artificial intelligence-enhanced physics-based computational modeling technologies for proteins[J]. Chinese Journal of Biotechnology, 2025, 41(3): 917-933(in Chinese).
    [14] 张良, 谈攀, 洪亮. 基于蛋白质语言模型的突变效应预测研究进展[J]. 生物工程学报, 2025, 41(3): 934-948. ZHANG Liang, TAN Pan, HONG Liang. Research progress in mutation effect prediction based on protein language models[J]. Chinese Journal of Biotechnology, 2025, 41(3): 934-948(in Chinese).
    [15] 毛雨丰, 储光芸, 梁庆玲, 刘叶, 杨毅, 廖小平, 王猛. 基于人工智能的CRISPR-Cas系统的设计、挖掘与改造[J]. 生物工程学报, 2025, 41(3): 949-967. MAO Yufeng, CHU Guangyun, LIANG Qingling, LIU Ye, YANG Yi, LIAO Xiaoping, WANG Meng. Artificial intelligence-assisted design, mining, and modification of CRISPR-Cas systems[J]. Chinese Journal of Biotechnology, 2025, 41(3): 949-967(in Chinese).
    [16] 王金盛, 孙喆, 张学礼. 生物制造中核酸元件的智能设计[J]. 生物工程学报, 2025, 41(3): 968-992. WANG Jinsheng, SUN Zhe, ZHANG Xueli. Intelligent design of nucleic acid elements in biomanufacturing[J]. Chinese Journal of Biotechnology, 2025, 41(3): 968-992(in Chinese).
    [17] 刘翠, 史振坤, 马红武, 廖小平. 蛋白元件的智能挖掘、改造和从头设计[J]. 生物工程学报, 2025, 41(3): 993-1010. LIU Cui, SHI Zhenkun, MA Hongwu, LIAO Xiaoping. Intelligent mining, engineering, and de novo design of proteins[J]. Chinese Journal of Biotechnology, 2025, 41(3): 993-1010(in Chinese).
    [18] 梁朝宁, 向腊, 唐双焱. 基于转录调控蛋白的生物传感器的智能设计构建[J]. 生物工程学报, 2025, 41(3): 1011-1022. LIANG Chaoning, XIANG La, TANG Shuangyan. Intelligent design of transcription factor-based biosensors[J]. Chinese Journal of Biotechnology, 2025, 41(3): 1011-1022(in Chinese).
    [19] 毛瑞超, 王宝俊. 合成生物元件与线路的智能设计[J]. 生物工程学报, 2025, 41(3): 1023-1051. MAO Ruichao, WANG Baojun. Machine learning-aided design of synthetic biological parts and circuits[J]. Chinese Journal of Biotechnology, 2025, 41(3): 1023-1051(in Chinese).
    [20] 朱岩, 孙际宾. 细胞生命过程数学刻画建模[J]. 生物工程学报, 2025, 41(3): 1052-1078. ZHU Yan, SUN Jibin???佡乴??坭敡楴??奡?丠???桥慬潬???攠獦潯獲挠慣汥敬?獵楬浡畲氠慰瑲楯潣湥?慳湥摳????漠灃瑨楩浮楥穳慥琠楊潯湵?潮晡?戠楯潦瀠牂潩捯整獥獣敨獮孯?嵯???栠椲渰攲猵攬??漱用爳温愺氠?漰昵′?椱漰琷攸挨桩湮漠汃潨杩祮???〩金????????????????㈠???椬渠??桦椮渠旋獽敨??统的机理模型和人工智能模型研究进展[J]. 生物工程学报, 2025, 41(3): 1079-1097. YANG Yi, DU Jun, YANG Chunhe, MA Hongwu. Research progress in mechanism models and artificial intelligence models for protein expression systems[J]. Chinese Journal of Biotechnology, 2025, 41(3): 1079-1097(in Chinese).
    [22] 杨一群, 刘清清, 田硕, 于涛. 细胞工厂能量代谢设计研究进展[J]. 生物工程学报, 2025, 41(3): 1098-1111. YANG Yiqun, LIU Qingqing, TIAN Shuo, YU Tao. Research progress in energy metabolism design of cell factories[J]. Chinese Journal of Biotechnology, 2025, 41(3): 1098-1111(in Chinese).
    [23] 肖陆驰, 鲁洪中. 细胞生理代谢网络模型重构和优化的进展[J]. 生物工程学报, 2025, 41(3): 1112-1132. XIAO Luchi, LU Hongzhong. Advances in reconstruction and optimization of cellular physiological metabolic network models[J]. Chinese Journal of Biotechnology, 2025, 41(3): 1112-1132(in Chinese).
    [24] 刘源, 胡贵鹏, 李晓敏, 刘佳, 高聪, 刘立明. 微生物细胞代谢与环境适应调控研究进展[J]. 生物工程学报, 2025, 41(3): 1133-1151. LIU Yuan, HU Guipeng, LI Xiaomin, LIU Jia, GAO Cong, LIU Liming. Advances in the regulation of microbial cell metabolism and environmental adaptation[J]. Chinese Journal of Biotechnology, 2025, 41(3): 1133-1151(in Chinese).
    [25] 朱岩, 张志丹, 覃培斌, 申杰, 孙际宾. 数据驱动的生物制造过程多组学分析与建模[J]. 生物工程学报, 2025, 41(3): 1152-1178. ZHU Yan, ZHANG Zhidan, QIN Peibin, SHEN Jie, SUN Jibin. Data-driven multi-omics analyses and modelling for bioprocesses[J]. Chinese Journal of Biotechnology, 2025, 41(3): 1152-1178(in Chinese).
    [26] 夏建业, 龙东娇, 陈敏, 陈安祥. 智能生物制造之发酵过程优化: 在线检测、人工智能与数字孪生技术[J]. 生物工程学报, 2025, 41(3): 1179-1196. XIA Jianye, LONG Dongjiao, CHEN Min, CHEN Anxiang. Optimization of fermentation processes in intelligent biomanufacturing: on online monitoring, artificial intelligence, and digital twin technologies[J]. Chinese Journal of Biotechnology, 2025, 41(3): 1179-1196(in Chinese).
    [27] 王智慧, 王聪, 张庆华, 夏建业, 丛威, 杨超. 生物过程的介尺度模拟仿真与AI优化[J]. 生物工程学报, 2025, 41(3): 1197-1218. WANG Zhihui, WANG Cong, ZHANG Qinghua, XIA Jianye
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王钦宏,马红武,夏建业. AI驱动生物制造专刊序言[J]. 生物工程学报, 2025, 41(3): Ⅰ-VIII

复制
分享
文章指标
  • 点击次数:60
  • 下载次数: 66
  • HTML阅读次数: 162
  • 引用次数: 0
历史
  • 收稿日期:2025-03-06
  • 在线发布日期: 2025-03-29
  • 出版日期: 2025-03-25
文章二维码
您是第5996522位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司