生产双链RNA工程菌的研究进展
作者:
基金项目:

山东省重点研发计划(2022CXGC020709)


Research progress in the engineering strains for producing double-stranded RNA
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    保障粮食安全需要新型绿色农药。双链RNA (double-stranded RNA,dsRNA)农药通过外源添加特异性靶向病虫害的dsRNA来触发RNA干扰,抑制病原菌或害虫的关键基因表达,从而实现对特定病虫害的有效控制。双链RNA农药是一种环境友好型的农药,具有较强的特异性和高效的基因沉默能力,但目前还存在生产成本高等问题。利用工程菌株生产dsRNA是一种可行的策略,然而目前还没有具有经济效益的dsRNA生产工程菌株出现。本文综述了利用微生物生产dsRNA的研究进展和生产策略,为dsRNA生产提供了参考。

    Abstract:

    Ensuring food security requires new green pesticides. Double-stranded RNA (dsRNA) pesticides trigger RNA interference by exogenous dsRNA specifically targeting pests and diseases. They can inhibit the expression of key genes in pathogens or pests, thereby achieving effective control of specific pests and diseases. DsRNA pesticides are environmentally friendly, with strong specificity and efficient gene silencing ability, while they have problems such as high production costs. Using engineering strains to produce dsRNA is a feasible strategy, whereas currently there is no cost-effective engineering strain for producing dsRNA. This article reviews the research progress and production strategies of using microorganisms to produce dsRNA, hoping to provide reference for dsRNA production.

    参考文献
    [1] DEUTSCH CA, TEWKSBURY JJ, TIGCHELAAR M, BATTISTI DS, MERRILL SC, HUEY RB, NAYLOR RL. Increase in crop losses to insect pests in a warming climate[J]. Science, 2018, 361(6405): 916-919.
    [2] HOUGH J, HOWARD JD, BROWN S, PORTWOOD DE, KILBY PM, DICKMAN MJ. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 980592.
    [3] SPARMANN A, VOGEL J. RNA-based medicine: from molecular mechanisms to therapy[J]. The EMBO Journal, 2023, 42(21): e114760.
    [4] WU JE, YANG J, CHO WC, ZHENG YD. Argonaute proteins: Structural features, functions and emerging roles[J]. Journal of Advanced Research, 2020, 24: 317-324.
    [5] 汪芳, 党聪, 金虹霞, 肖山, 钟馥骏, 方琦, 姚洪渭, 叶恭银. RNA干扰技术在害虫防治中的应用及其安全性[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 683-691. WANG F, DANG C, JIN HX, XIAO S, ZHONG FJ, FANG Q, YAO HW, YE GY. Application of RNA interference technology in pest control and its safety[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 683-691(in Chinese).
    [6] 路子琪, 王静, 张震, 王教瑜, 孙国仓, 林福呈. 基于RNAi的生物农药研究进展[J]. 浙江农业学报, 2024, 36(4): 968-977. LU ZQ, WANG J, ZHANG Z, WANG JY, SUN GC, LIN FC. Research progress of biological pesticides based on RNAi[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 968-977(in Chinese).
    [7] 关若冰, 李海超, 苗雪霞. RNA生物农药的商业化现状及存在问题[J]. 中国农业科学, 2022, 55(15): 2949-2960. GUAN RB, LI HC, MIAO XX. Commercialization Status and Existing Problems of RNA Biopesticides[J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960(in Chinese).
    [8] 关梅, 晁子健, 闫硕, 沈杰. RNA农药的研究现状和发展前景[J]. 现代农药, 2023, 22(2): 11-18. GUAN M, CHAO ZJ, YAN S, SHEN J. Research status and development prospect of RNA pesticide[J]. Modern Agrochemicals, 2023, 22(2): 11-18(in Chinese).
    [9] GUAN RB, CHU DD, HAN XY, MIAO XX, LI HC. Advances in the development of microbial double-stranded RNA production systems for application of RNA interference in agricultural pest control[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 753790.
    [10] 张建珍, 柴林, 史学凯, 高璐, 范云鹤. RNA干扰技术与害虫防治[J]. 山西大学学报(自然科学版), 2021, 44(5): 980-987. ZHANG JZ, CHAI L, SHI XK, GAO L, FAN YH. RNA interference technology and pest control[J]. Journal of Shanxi University (Natural Science Edition), 2021, 44(5): 980-987(in Chinese).
    [11] YANG L, TIAN Y, PENG YY, NIU JZ, WANG JJ. Expression dynamics of core RNAi machinery genes in pea aphids upon exposure to artificially synthesized dsRNA and miRNAs[J]. Insects, 2020, 11(2): 70.
    [12] TANING CN, ARPAIA S, CHRISTIAENS O, DIETZ-PFEILSTETTER A, JONES H, MEZZETTI B, SABBADINI S, SORTEBERG HG, SWEET J, VENTURA V, SMAGGHE G. RNA‐based biocontrol compounds: current status and perspectives to reach the market[J]. Pest Management Science, 2020, 76(3): 841-845.
    [13] ZOTTI M, DOS SANTOS EA, CAGLIARI D, CHRISTIAENS O, TANING CNT, SMAGGHE G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes[J]. Pest Management Science, 2018, 74(6): 1239-1250.
    [14] MA ZZ, ZHOU H, WEI YL, YAN S, SHEN J. A novel plasmid-Escherichia coli system produces large batch dsRNAs for insect gene silencing[J]. Pest Management Science, 2020, 76(7): 2505-2512.
    [15] YIN GH, SUN ZN, LIU N, ZHANG L, SONG YZ, ZHU CX, WEN FJ. Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system[J]. Applied Microbiology and Biotechnology, 2009, 84(2): 323-333.
    [16] HASHIRO S, MITSUHASHI M, YASUEDA H. Overexpression system for recombinant RNA in Corynebacterium glutamicum using a strong promoter derived from corynephage BFK20[J]. Journal of Bioscience and Bioengineering, 2019, 128(3): 255-263.
    [17] HASHIRO S, CHIKAMI Y, KAWAGUCHI H, KRYLOV AA, NIIMI T, YASUEDA H. Efficient production of long double-stranded RNAs applicable to agricultural pest control by Corynebacterium glutamicum equipped with coliphage T7-expression system[J]. Applied Microbiology and Biotechnology, 2021, 105(12): 4987-5000.
    [18] NIEHL A, SOININEN M, PORANEN MM, HEINLEIN M. Synthetic biology approach for plant protection using dsRNA[J]. Plant Biotechnology Journal, 2018, 16(9): 1679-1687.
    [19] PARK MG, KIM WJ, CHOI JY, KIM JH, PARK DH, KIM JY, WANG MH, JE YH. Development of a Bacillus thuringiensis based dsRNA production platform to control sacbrood virus in Apis cerana[J]. Pest Management Science, 2020, 76(5): 1699-1704.
    [20] LEONARD SP, POWELL JE, PERUTKA J, GENG P, HECKMANN LC, HORAK RD, DAVIES BW, ELLINGTON AD, BARRICK JE, MORAN NA. Engineered symbionts activate honey bee immunity and limit pathogens[J]. Science, 2020, 367(6477): 573-576.
    [21] WHITTEN MMA, FACEY PD, del SOL R, FERNÁNDEZ-MARTÍNEZ LT, EVANS MC, MITCHELL JJ, BODGER OG, DYSON PJ. Symbiont-mediated RNA interference in insects[J]. Proceedings Biological Sciences, 2016, 283(1825): 20160042.
    [22] MYSORE K, LI P, WANG CW, HAPAIRAI LK, SCHEEL ND, REALEY JS, SUN LH, ROETHELE JB, SEVERSON DW, WEI N, DUMAN-SCHEEL M. Characterization of a yeast interfering RNA larvicide with a target site conserved in the synaptotagmin gene of multiple disease vector mosquitoes[J]. PLoS Neglected Tropical Diseases, 2019, 13(5): e0007422.
    [23] ÁLVAREZ-SÁNCHEZ AR, ROMO-QUINONES C, ROSAS-QUIJANO R, REYES AG, BARRAZA A, MAGALLÓN-BARAJAS F, ANGULO C, MEJÍA-RUÍZ CH. Production of specific dsRNA against white spot syndrome virus in the yeast Yarrowia lipolytica[J]. Aquaculture Research, 2018, 49(1): 480-491.
    [24] LI Y, DU JW, XU Y, GAO JQ, SONG YZ, ZHU CX. RNAi silencing of rice black-streaked dwarf virus P10 and two insect vector genes to reduce virus transmission protects rice plants against RBSDV[J]. Journal of Plant Interactions, 2021, 16(1): 83-92.
    [25] TIMMONS L, COURT DL, FIRE A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans[J]. Gene, 2001, 263(1/2): 103-112.
    [26] ZHU F, XU JJ, PALLI R, FERGUSON J, PALLI SR. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata[J]. Pest Management Science, 2011, 67(2): 175-182.
    [27] HASHIRO S, MITSUHASHI M, CHIKAMI Y, KAWAGUCHI H, NIIMI T, YASUEDA H. Construction of Corynebacterium glutamicum cells as containers encapsulating dsRNA overexpressed for agricultural pest control[J]. Applied Microbiology and Biotechnology, 2019, 103(20): 8485-8496.
    [28] MAKEYEV EV, GRIMES JM. RNA-dependent RNA polymerases of dsRNA bacteriophages[J]. Virus Research, 2004, 101(1): 45-55.
    [29] LEVANOVA AA, PORANEN MM. Utilization of bacteriophage phi6 for the production of high-quality double-stranded RNA molecules[J]. Viruses, 2024, 16(1): 166.
    [30] GAN JH, TROPEA JE, AUSTIN BP, COURT DL, WAUGH D?????㈠?????????????????扳物?孨??嵩???唠??入??婥?佨啡?????奯?丠??婵奢??圭?乴??塮?????乎??买??婣?佳乳?????婹??乩??坮呵??乥?啳?圠???坛?九??千??剬?丠′堰???娠?伲临?′?为?″圵?中??夶????举?″報?????問畒浅氠????剁?剁??婁??乌??夠??????丬?塈奁??剅慒琠楅潉測愠汃?捅潎渠獙瑙爬甠捅瑇楇潌湅?潏晎?杋敋測漠浒故?牌故摙甠捊敓搬??畃版歅桅潌氠摎敄爬椠慓汅敖獅?捓桏慎猠獄楗猬?晗慅捉椠汎椬琠慄瑕敍獁?攭晓晃楈捅楅敌渠瑍?栠教瑥敡牳潴氠潩杮潴略獲?灥牲潩摮畧挠瑒楎潁渠?潡晲?湩慣瑩畤牥慳氠?灡牲潧摥畴捩瑮獧?普牥潵浲?灬爠潧瑥敮潥扳愠捩瑮敤牵楣慥嬠?嵩??丠慲瑡畴牥敳??潦洠洼畩渾楁据慯瑰楨潥湬獥??土ど资ㄠ??????????????ty[J]. Malaria Journal, 2017, 16(1): 461.
    [32] MA N, McALLISTER WT. In a head-on collision, two RNA polymerases approaching one another on the same DNA may pass by one another[J]. Journal of Molecular Biology, 2009, 391(5): 808-812.
    [33] 崔洁. 一种基于Red/ET重组工程的生物元件库高效构建方法及应用[D]. 济南: 山东大学, 2023. CUI J. An efficient construction method of biological component library based on Red/ET recombination engineering and its application[D]. Jinan: Shandong University, 2023(in Chinese).
    [34] 于广乐. 细菌高效基因转录激活系统的开发和应用[D]. 济南: 山东大学, 2023. YU GL. Development and application of efficient gene transcription activation system in bacteria[D]. Jinan: Shandong University, 2023(in Chinese).
    [35] DELGADO-MARTÍN J, VELASCO L. An efficient dsRNA constitutive expression system in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2021, 105(16/17): 6381-6393.
    [36] ZHANG Y, GUO ML, ZHANG XY, ZHANG N, ZHU P, WANG H. Multiple optimizations of recombinant plasmid for improving expression of Hepatitis B core antigen in Escherichia coli[J]. Protein Expression and Purification, 2022, 198: 106127.
    [37] LIU MZ, LI ZH, HUANG JF, YAN JJ, ZHAO GP, ZHANG YF. OptoLacI: optogenetically engineered lactose operon repressor LacI responsive to light instead of IPTG[J]. Nucleic Acids Research, 2024, 52(13): 8003-8016.
    [38] BAUM JA, CHRISTIAN AT, EVDOKIMOV A, MOSHIRI F, WEAVER LM, ZHANG H. Compositions and methods for the improved production and delivery of RNA by efficient transcription termination: US20160145630[P]. 2016-05-26.
    [39] PEISLEY A, HUR S. Multi-level regulation of cellular recognition of viral dsRNA[J]. Cellular and Molecular Life Sciences, 2013, 70(11): 1949-1963.
    [40] FÁTYOL K, FEKETE KA, LUDMAN M. Double-stranded-RNA-binding protein 2 participates in antiviral defense[J]. Journal of Virology, 2020, 94(11): e00017-20.
    [41] GUPTA AK, TATINENI S. RNA silencing suppression mechanisms of Triticum mosaic virus P1: dsRNA binding property and mapping functional motifs[J]. Virus Research, 2019, 269: 197640.
    [42] BAUERNFRIED S, SCHERR MJ, PICHLMAIR A, DUDERSTADT KE, HORNUNG V. Human NLRP1 is a sensor for double-stranded RNA[J]. Science, 2021, 371(6528): eabd0811.
    [43] ESSER-NOBIS K, HATFIELD LD, GALE M Jr. Spatiotemporal dynamics of innate immune signaling via RIG-I-like receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(27): 15778-15788.
    [44] KU J, KIM S, PARK J, KIM TS, KHARBASH R, SHIN EC, CHAR K, KIM Y, LI S. Reactive polymer targeting dsRNA as universal virus detection platform with enhanced sensitivity[J]. Biomacromolecules, 2020, 21(6): 2440-2454.
    [45] MA ZZ, ZHENG Y, CHAO ZJ, CHEN HT, ZHANG YH, YIN MZ, SHEN J, YAN S. Visualization of the process of a nanocarrier-mediated gene delivery: stabilization, endocytosis and endosomal escape of genes for intracellular spreading[J]. Journal of Nanobiotechnology, 2022, 20(1): 124.
    [46] LI MS, MA ZZ, PENG M, LI L, YIN MZ, YAN S, SHEN J. A gene and drug co-delivery application helps to solve the short life disadvantage of RNA drug[J]. Nano Today, 2022, 43: 101452.
    [47] PAPIĆ L, RIVAS J, TOLEDO S, ROMERO J. Double-stranded RNA production and the kinetics of recombinant Escherichia coli HT115 in fed-batch culture[J]. Biotechnology Reports, 2018, 20: e00292.
    [48] 计慧君, 林羿光, 付彤煜, 郑思春. 基于细菌体系生产双链RNA的条件优化[J]. 环境昆虫学报, 2023, 45(3): 703-710. JI HJ, LIN YG, FU TY, ZHENG SC. Optimization of conditions for double stranded RNA production based on bacterial systems[J]. Journal of Environmental Entomology, 2023, 45(3): 703-710(in Chinese).
    [49] 常瑞, 王俊, 付开赟, 廖兰兰, 丁新华, 何江, 郭文超, 吐尔逊·阿合买提, 任羽. 4种原核表达双链RNA的dsRNA提取方法效果评价[J]. 新疆农业科学, 2021, 58(4): 700-711. CHANG R, WANG J, FU KY,LIAO LL, DING XH, HE J, GUO WC. Comparative Study on the Effect of 4 kind of dsRNA Extraction Methods form Prokaryotic Expression Double-stranded RNA[J]. Xinjiang Agricultural Sciences, 2021, 58(4): 700-711(in Chinese).
    [50] FIGUEIREDO PRATES LH, MERLAU M, RÜHL-TEICHNER J, SCHETELIG MF, HÄCKER I. An optimized/scale up-ready protocol for extraction of bacterially produced dsRNA at good yield and low costs[J]. International Journal of Molecular Sciences, 2023, 24(11): 9266.
    [51] TONG XH, ZHANG K, HAN Y, LI TL, DUAN M, JI RJ, WANG XG, ZHOU X, ZHANG Y, YIN H. Fast and sensitive CRISPR detection by minimized interference of target amplification[J]. Nature Chemical Biology, 2024, 20(7): 885-893.
    [52] WANG TH, SIMMEL P FC. Switchable fluorescent light-up aptamers based on riboswitch architectures[J]. Angewandte Chemie International Edition, 2023, 62(41): e202302858.
    [53] MU X, GREENWALD E, AHMAD S, HUR S. An origin of the immunogenicity of in vitro transcribed RNA[J]. Nucleic Acids Research, 2018, 46(10): 5239-5249.
    [54] BILGI V, FOSU-NYARKO J, JONES MGK. Using vital dyes to trace uptake of dsRNA by green peach aphid allows effective assessment of target gene knockdown[J]. International Journal of Molecular Sciences, 2017, 18(1): 80.
    [55] ZONG M, YU C, LI J, SUN D, WANG J, MO Z, QIN C, YANG D, ZHANG Z, ZENG Q, LI C, MA K, WAN H, LI J, HE S. Redox and Near-Infrared Light-Responsive Nanoplatform for Enhanced Pesticide Delivery and Pest Control in Rice: Construction, Efficacy, and Potential Mechanisms[J]. ACS Applied Materials & Interfaces, 2023, 15(35): 41351-41361.
    [56] MAVROMMATI M, DASKALAKI A, PAPANIKOLAOU S, AGGELIS G. Adaptive laboratory evolution principles and applications in industrial biotechnology[J]. Biotechnology Advances, 2022, 54: 107795.
    [57] VOLK MJ, TRAN VG, TAN SI, MISHRA S, FATMA Z, BOOB A, LI HX, XUE P, MARTIN TA, ZHAO HM. Metabolic engineering: methodologies and applications[J]. Chemical Reviews, 20
    引证文献
引用本文

崔锦程,崔洁,卞小莹. 生产双链RNA工程菌的研究进展[J]. 生物工程学报, 2025, 41(2): 546-558

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-13
  • 最后修改日期:2024-10-10
  • 在线发布日期: 2025-02-11
  • 出版日期: 2025-02-25
文章二维码
您是第5996633位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司