基于Boosting机制的决策树集成分类器识别嗜热和常温蛋白
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用Boosting机制的决策树集成分类器对嗜热和常温蛋白进行模式识别。通过自一致性检验、交叉验证和独立样本测试三种方法检测,其中作为Boosting算法中新的Logitboost算法表现更好,其识别的精度分别为100%、88.4%和89.5%,优于神经网络的识别效果。同时探讨了蛋白质分子大小对识别效果的影响。结果表明,将Boosting算法与其它单一分类器有效结合,有望提高研究者对生物分子相关特性的识别能力。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

张光亚 方柏山. 基于Boosting机制的决策树集成分类器识别嗜热和常温蛋白[J]. 生物工程学报, 2006, 22(6):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
生物工程学报 ® 2024 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司