Abstract:Transcription factor (TF)-based biosensors have been widely applied in metabolic engineering, synthetic biology, metabolites monitoring, etc. These biosensors are praised for the high orthogonality, modularity, and operability. However, most natural TFs with weak responses and low specificity still demand optimization for desired performance in applications. Herein, we comprehensively summarize the recent advances in the engineering and optimization of TF-based biosensors with the assistance of computational simulation and artificial intelligence. This review includes the regulatory protein engineering aided by protein structure prediction and ligand binding simulation and the regulatory protein responses predicted by a mathematical model obtained from machine learning of mutagenesis data. In comparison with conventional tools, computational simulation and artificial intelligence enable more accurate and rapid design and construction of biosensors. Thus, these technologies will greatly promote the development of novel biosensors for applications.