代谢组与转录组联合分析镉胁迫下浙麦冬黄酮类化合物积累及生物合成途径
作者:
基金项目:

浙江省数字旱粮重点实验室(2022E10012);浙江省旱粮新品种选育重大科技专项(2021C02064)


Integrated transcriptomics and metabolomics analysis of flavonoid biosynthesis in Ophiopogon japonicum under cadmium stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • | | | |
  • 文章评论
    摘要:

    浙麦冬是浙江省特有的珍贵药用植物,其块根富含黄酮类等生物活性成分,具有抗炎、抗氧化及免疫调节作用。为揭示镉胁迫对浙麦冬黄酮类化合物积累及其生物合成途径的影响,本研究通过不同浓度镉胁迫处理浙麦冬,并借助代谢组学与转录组学联合分析手段探索其变化特征。结果表明,中镉(1 mg/L)和高镉(10 mg/L)等不同浓度镉胁迫处理后浙麦冬黄酮类化合物含量显著增加,且随着镉浓度的升高含量进一步增加。代谢组学分析揭示,浙麦冬中共检测到黄酮类代谢物共110种,包括黄酮类、黄烷醇类、黄酮醇类、黄酮和黄酮醇类衍生物、黄烷酮类、异黄酮类、查耳酮和二氢查耳酮类以及花青素类等,其中黄酮类、黄酮醇类、黄酮和黄酮醇类衍生物以及花青素类在不同浓度镉胁迫处理后均显著富集。通过转录组分析,筛选出多个与黄酮类合成相关的关键基因在镉胁迫后显著上调表达,包括14个编码4-香豆酸辅酶A连接酶(4-coumarate CoA ligase,4CL)、2个查尔酮异构酶(chalcone isomerase,CHI)和14个编码苯丙氨酸解氨酶(phenylalanine ammonia lyase,PAL)的基因。基因-代谢物调控网络分析显示,4CL (Cluster-21637.5012Cluster-21637.90648Cluster-21637.62637)、CHI (Cluster-21637.111909Cluster-21637.123300)与多种黄酮类代谢物之间存在显著正相关性,提示这些基因通过调控黄酮类代谢物的合成,促进了镉胁迫处理下总黄酮量的积累,为镉污染环境中药用植物的栽培和利用提供了理论支持。

    Abstract:

    Ophiopogon japonicus, a precious medicinal plant endemic to Zhejiang Province. Its tuberous roots are rich in bioactive components such as flavonoids, possessing anti-inflammatory, antioxidant, and immunomodulatory properties. To elucidate the impact of cadmium (Cd) stress on the accumulation and biosynthetic pathway of flavonoids in O. japonicus, this study exposed O. japonicus to different concentrations of Cd stress and explored the changes through integrated transcriptomics and metabolomics analysis. The results demonstrated that Cd stress (1 mg/L and 10 mg/L) significantly increased the content of flavonoids in O. japonicus in a concentration-dependent manner. The metabolomics analysis revealed a total of 110 flavonoids including flavones, flavanols, flavonols, flavone and flavonol derivatives, flavanones, isoflavonoids, chalcones and dihydrochalcones, and anthocyanins in O. japonicus, among which flavones, flavonols, flavone and flavonol derivatives, and anthocyanins increased under Cd stress. The transcriptomics analysis identified several key flavonoid biosynthesis-associated genes with up-regulated expression under Cd stress, including 14 genes encoding 4-coumarate CoA ligase (4CL), 2 genes encoding chalcone isomerase (CHI), and 14 genes encoding phenylalanine ammonia lyase (PAL). The gene-metabolite regulatory network indicated significant positive correlations of 4CL (Cluster-21637.5012, Cluster-21637.90648, and Cluster-21637.62637) and CHI (Cluster-21637.111909 and Cluster-21637.123300) with flavonoid metabolites, suggesting that these genes promoted the synthesis of specific flavonoid metabolites, which led to the accumulation of total flavonoids under Cd stress. These findings provide theoretical support for the cultivation and utilization of medicinal plants in Cd-contaminated environments and offered new perspectives for studying plant responses to heavy metal stress.

    参考文献
    [1] 李小辉, 袁名睿, 陆礼和, 梅双喜, 杨增明, 崔涛, 董汛. 浙麦冬的化学成分研究[J]. 中草药, 2022, 53(2): 347-353. LI XH, YUAN MR, LU LH, MEI SX, YANG ZM, CUI T, DONG X. Chemical composition of Zhejiang Ophiopogon japonicus[J]. Acupuncture Research, 2022, 53(2): 347-353(in Chinese).
    [2] 朱海花, 祝明, 蒋慧莲, 陈勇. 浙麦冬黄酮类成分指纹图谱及2种黄酮类化合物的含量测定[J]. 中国实验方剂学杂志, 2016, 22(7): 85-88. ZHU HH, ZHU M, JIANG HL, CHEN Y. HPLC fingerprints of flavonoids in Ophiopogonis radix of Zhejiang and quantitative analysis of two moisoflavonoids[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2016, 22(7): 85-88(in Chinese).
    [3] LIU Q, LU JJ, HONG HJ, YANG Q, WANG YT, CHEN XJ. Ophiopogon japonicus and its active compounds: a review of potential anticancer effects and underlying mechanisms[J]. Phytomedicine, 2023, 113: 154718.
    [4] WU H, WU ZX, WANG YH, DING J, ZHENG YL, TANG H, YANG L. Transcriptome and metabolome analysis revealed the freezing resistance mechanism in 60-year-old overwintering Camellia sinensis[J]. Biology, 2021, 10(10): 996.
    [5] RAO MJ, FENG BH, AHMAD MH, TAHIR UL QAMAR M, ASLAM MZ, KHALID MF, HUSSAIN S, ZHONG RM, ALI Q, XU Q, MA CJ, WANG LQ. LC-MS/MS-based metabolomics approach identified novel antioxidant flavonoids associated with drought tolerance in citrus species[J]. Frontiers in Plant Science, 2023, 14: 1150854.
    [6] 朱一剑, 李秀壮, 彭小锋, 唐蓉萍, 刘继超, 马望龙, 白麒雅. 黄酮类化合物在植物保护领域的研究进展[J]. 山东化工, 2024, 53(9): 110-113. ZHU YJ, LI XZ, PENG XF, TANG RP, LIU JC, MA WL, BAI QY. Research progress of flavonoids in the field of plant protection[J]. Shandong Chemical Industry, 2024, 53(9): 110-113(in Chinese).
    [7] ZHENG XR, ZHANG MJ, QIAO YH, LI R, ALKAN N, CHEN JY, CHEN FM. Cyclocarya paliurus reprograms the flavonoid biosynthesis pathway against Colletotrichum fructicola[J]. Frontiers in Plant Science, 2022, 13: 933484.
    [8] 陈能场, 郑煜基, 何晓峰, 李小飞, 张晓霞. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. CHEN NC, ZHENG YJ, HE XF, LI XF, ZHANG XX. Analysis of the report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692(in Chinese).
    [9] EL RASAFI T, OUKARROUM A, HADDIOUI A, SONG H, KWON EE, BOLAN N, TACK FMG, SEBASTIAN A, PRASAD MNV, RINKLEBE J. Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(5): 675-726.
    [10] 何静, 易航, 杨希, 荣姝恬, 王丽. 基于LC-MS技术对镉胁迫下地钱代谢组的性别响应差异研究??奝?丠??????挨揪甶淑畦汈愩琬椠漲渰′挳栬愠父愰挨琴攩爺椠猱琵椹挭猱?漸昮?灈汅愠湊琬?晙汉愠癈漬渠潙楁摎獇?慘測搠?敏晎晇攠捓瑔猬?潗晁?捇甠汌琮椠癓慴瑵楤潹渠?浮攠慧獥畮牤敥獲?潲湥?瑰桯敮楳牥?扤楩潦獦祥湲瑥桮散獥椠獯??愼?爾敍癡楲散睨孡?嵴??倠汰慯湬瑹?偯桲祰獨楡漼氯潩朾礠?慥湴摡??楬潯捭桥攠浵楮獤瑥牲礠???ね??????????????づ??扯牮?孌??嵍????呣?乮?????半??丠??????佬唠???卓??????搠敕湮瑩楶晥楲捳慩瑴楹漠渨?潡晴???捬漠畓浣慩牥慮瑣敥??捤潩整湩穯祮洩攬??‰氲椳本愠猶攰??????‵猹甭戱猶琸爨慩瑮攠?牨敩据潥杳湥椩琮椼潢湲 ̄摛漱洱慝椠湃獈孁?嵇??员栬攠?偁汎慇渠瑗??潓畈牉渠慚汓??至ぁくㄠ??水???????????????戬爠?孈?ぎ崠?????夠??娬唠余?????娬??义??塃??????????奇?????娠??丮??乯????????????乴???????乣??????婩?佥啤?????娠??佹?偩???敧湩潣浡敬?睡楮摡敬?楳摩敳渠瑲楥晶楥捡慬瑥楤漠湣?慤湭慩汵祭猠楴獯?潥晲?瑮档敥???捣潨畡浮慩牳慭琠敩???潮??汣楡朠慲獩散???????杲敹湺敡?晳慡浴楩汶祡?支硩瀾爠敌献猩楛潊湝?瀠牊潯晵楲汮敡獬?楯湦??楧??畣杵汬慴湵獲?牬攠条楮慤??楯??愠湃摨?業瑩獳?睲楹氬搠′爰攲氳愬琠椷瘱攨猲‰?椺????椹???椷???慢湲搾獛栱甲牝椠捙慁??椠??爬攠獙楁獎瑇愠湌挬攠?慁湎摇?獘愬氠瑚?獁瑎片攠獔猬嬠?嵁??????做汈慁湏琠??椠潈汁潎朠祍???ぁ????????????????扴牲?孳?ㄠ嵩????乥?堠???即啹?坴???婩??乯?????婶??乯?奤???婮?乬???卥???楮??牳慡硩楫湯畳獡?浯慮湩摮獳栠畩牮椠捲慯??楳????挼潩甾浂慵牰慬瑥敵??潭??汨楩杮慥獮敳?监?敩渾栠慄湃捛敊獝?搠牐潨畹杴桯瑣?慥湭摩?潴獲浹漬琠椲挰′猰琬爠攱猷猷?琠漱氱攲爴愳渴挮攼?潲显?琱漳扝愠捊捉潁?戠祚?椬渠捓版敉愠獙楎測朠?捁潎湇椠晊敐爬礠汗?慎汇挠潚框漬氠?捈潁湎瑇攠湘琬嬠?嵉??偘汙愬渠瑄?倠桑礬猠楎潉汕漠杊祔?愠湌摉??楂潃挬栠敄浕椠獒瑈爬礠??㈠ぇ??????????????ぐ???扮牴?孧??嵴?婯?唠?????婡??佣?坩?????删卡???啭佥???????????坡?乹??女??????坬???偯?乧??卭儠???摴敳渠瑲楥晳楰捯慮瑤楩潮湧?慴湯搠?捡桤慭物慵捭琠敳牴楲穥慳瑳椠潴湨?潯晵??椠??桧慵汬捡潴湩敯??楯??楴獨潥洠敦牬慡獶敯?杯敩湤攠獢?楯湳癹潮汴癨敥摳?楳渠?晡汴慨癷潡湹潛楊摝?瀠牆潲摯畮捴瑩楥潲湳?楩湮??楬??牴愠捓慣敩湥慮?捥愬洠戲漰搲椳愬渠愱??椠?嬱?崴???爮漼湢瑲椾敛爱猴?椠湄?偒汙慁湎瑁?十捒楄攠湈挬攠???ご????????????????扭牬?孈??嵍?婎??乊??堠?????删???丠?????佮?公啳?佭啯乤?呬?????啬???????灥牬潯瑰敭潥汮祴琬椠捳?牧敮条畬汩慮瑧漬爠?据潤渠瑳牴潲汥汳楳渠杲??楰??桳慥汳捛潊湝攮??極??獥祮湴琠桏慰獩敮?獯瑮愠扩楮氠楐瑬祡?慴渠摂?景汬慯癧潹測漠椲搰′戳椬漠猷礲渺琠栱攰猲椳猵‰椮渼??椾??爵慝戠楓摈潏灍獁楌獉??椬?孄?嵓??听栠敁?偉汆愠湎琬??敁汒汒??㈠き????????????????ㄠ?????扉牎?孁??嵆?婒?唠??????乕??奎??坋?丠??卓??坕?乚??婁??????????敳湥漠浰敨?睳楩摯敬?楧摩散湡瑬椠晲楯捬慥瑳椠潯湦??捬桡慶牯慮捯瑩敤牳椠穩慮琠楰潬湡??愠湥摮?敩硲灯牮敭獥獮楴潡湬?慳湴慲汥祳獳椠獲?潳晰???卥?朠敡湮敤?晴慯浬楥汲祡?浣敥浛扊敝爮猠?楬湡??楳??栲爰礲猲愬渠琱栱攨洲甲洩?渠愳渱欵椸渮朼敢湲猾敛??楝?字?嵎???敊測攠獌??㈠こ?水?????ㄠ??????????戬爠?孕㈠?嵈??千????????博?????卐??删????乭?????啬???乮??乳?????乳????剰??呩桴敩?灥桬慹爠浲慥捧潵汬潡杴楥捳愠汴?慥渠摴?扬楥潲污潮杣楥挠慯汦?牰潬污敮獴?漠晴?攠牤楲潯摵楧捨瑴礠潳汴孲?嵳???牮捤栠楕癖攭獂?潲晡?偩桡慴物浯慮捛慊汝?删敐獬敡慮牴挠桓???の?づ????????′??呼???日??戱爮?孢??嵛?????????????前呌奆?丠????呁传?丬?呃呁??噔???倮氠慒湥瑣獥?畴渠摡敤牶?獮瑣牥敳猠獯??楴湨癥漠汲癯敬浥敳渠瑯?漠晦?慡當硯楮湯?慤湳搠?捳礠瑰潬歡楮湴椠湰孲?嵴???湩瑶敥爠湭慯瑬楥潣湵慬汥??潡畦牴湥慲氠?潖映??潤氠敨捩畧汨愠牬?卧捨楴攠湥捸数獯???づ????ㄠ????????????扐牬?孮??嵲?卭?丠??′倱???刷??″天??????唷娴??????奛?吸?匠??吠桄敃?爠潇汕敏?潙晍?焠畁敌牉挠敉琬椠湌?楎渠?灒氬愠湘瑕猠孙?崀??倀氀愀渀琀?倀栀礀猀椀漀氀漀最礀?愀渀搀??椀漀挀栀攀洀椀猀琀爀礀??? ?????????? ????
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高耸,邱梦丽,李晴,赵倩,牛二利. 代谢组与转录组联合分析镉胁迫下浙麦冬黄酮类化合物积累及生物合成途径[J]. 生物工程学报, 2025, 41(2): 588-601

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-14
  • 最后修改日期:2024-11-15
  • 在线发布日期: 2025-02-11
  • 出版日期: 2025-02-25
文章二维码
您是第5944913位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司