DGATPDAT基因在调控植物油脂合成中的作用
作者:
基金项目:

国家自然科学基金(32260484);江西省自然科学基金(20232BAB205052);农业农村部科技创新重大项目(2023ZD04035);新疆生产建设兵团第六师科技项目(2306)


Regulatory roles of DGAT and PDAT genes in plant oil synthesis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [94]
  • | | | |
  • 文章评论
    摘要:

    我国植物油料产需缺口大,严重依赖进口。二酰甘油酰基转移酶(diacylglycerol acyltransferase,DGAT)与磷脂:二酰甘油酰基转移酶(phospholipid:diacylglycerol acyltransferase,PDAT)是负责三酰甘油合成并影响植物油脂产量和品质的两个关键酶。本文综述了DGATPDAT基因的国内外研究进展,重点总结了二者在油料植物油脂合成中的生物学功能,在逆境胁迫下影响植物脂质代谢与生长发育的分子机制,以及合成生物学背景下DGATPDAT基因在驱动油脂合成中的重要作用,同时对深入开展DGATPDAT基因的机理研究与应用进行了展望,为深入了解植物油脂合成的分子机制,利用DGATPDAT基因改良油料作物品质、提高油料产能提供了依据。

    Abstract:

    There is a large gap between production and demand of plant oil in China, which leads to the heavy reliance on imports. Diacylglycerol acyltransferase (DGAT) and phospholipid: diacylglycerol acyltransferase (PDAT) are two key enzymes responsible for the synthesis of triacylglycerol, thereby affecting the yield and quality of plant oil. This paper comprehensively reviews the research progress in DGAT and PDAT in terms of their biological functions in plant oil synthesis, the molecular mechanisms of regulating plant lipid metabolism, growth, and development under stress, and their roles in driving oil synthesis under the background of synthetic biology. Furthermore, future research and application of DGAT and PDAT are prospected. This review aims to provide a basis for deeply understanding the molecular mechanism of plant oil synthesis and improving the quality and productivity of oil crops by the utilization of DGAT and PDAT genes.

    参考文献
    [1] 王瑞元. 2022年我国粮油产销和进出口情况[J]. 中国油脂, 2023, 48(6): 1-7. WANG RY. Production, marketing, import and export of grain and oil in China in 2022[J]. China Oils and Fats, 2023, 48(6): 1-7(in Chinese).
    [2] BHATT-WESSEL B, JORDAN TW, MILLER JH, PENG LF. Role of DGAT enzymes in triacylglycerol metabolism[J]. Archives of Biochemistry and Biophysics, 2018, 655: 1-11.
    [3] ZHANG M, FAN JL, TAYLOR DC, OHLROGGE JB. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development[J]. The Plant Cell, 2009, 21(12): 3885-3901.
    [4] TAYLOR D, ZHANG Y, KUMAR A, FRANCIS T, GIBLIN E, BARTON D, FERRIE JR, LAROCHE A, SHAH S, ZHU WM, SNYDER C, HALL L, RAKOW G, HARWOOD J, WESELAKE R. Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions[J]. Botany, 2009, 87: 533-543.
    [5] KIM H, PARK JH, KIM DJ, KIM AY, SUH MC. Functional analysis of diacylglycerol acyltransferase1genes from Camelina sativa and effects of CsDGAT1B overexpression on seed mass and storage oil content in C. sativa[J]. Plant Biotechnology Reports, 2016, 10(3): 141-153.
    [6] ZHANG TT, HE HY, XU CJ, FU QT, TAO YB, XU RH, XU ZF. Overexpression of type 1 and 2 diacylglycerol acyltransferase genes (JcDGAT1 and JcDGAT2) enhances oil production in the woody perennial biofuel plant Jatropha curcas[J]. Plants, 2021, 10(4): 699.
    [7] WU P, XU XL, LI JW, ZHANG J, CHANG SY, YANG XY, GUO XP. Seed-specific overexpression of cotton GhDGAT1 gene leads to increased oil accumulation in cottonseed[J]. The Crop Journal, 2021, 9(2): 487-490.
    [8] 徐扬. 大豆GmDGAT1-2和花生AhDGAT3基因的克隆与功能分析[D]. 长春: 吉林大学, 2021. XU Y. Cloning and functional analysis of soybean GmDGAT1-2 and peanut AhDGAT3[D]. Changchun: Jilin University, 2021(in Chinese).
    [9] XU Y, YAN F, LIU YJ, WANG Y, GAO H, ZHAO SH, ZHU YC, WANG QY, LI JW. Quantitative proteomic and lipidomics analyses of high oil content GmDGAT1-2 transgenic soybean illustrate the regulatory mechanism of lipoxygenase and oleosin[J]. Plant Cell Reports, 2021, 40(12): 2303-2323.
    [10] AL-AMERY M, BATTAGLIA M, SERSON W, SADEGHPOUR A, LEE CD, KNOT C, SWIGGART E, SAFARI-KATESARI H, HILDEBRAND D. Yield and growth characteristics of a high oil-protein soybean with enhanced diacylglycerol acyltransferase[J]. Agronomy Journal, 2022, 114(2): 1146-1154.
    [11] HATANAKA T, TOMITA Y, MATSUOKA D, SASAYAMA D, FUKAYAMA H, AZUMA T, SOLTANI GISHINI MF, HILDEBRAND D. Different acyl-CoA: diacylglycerol acyltransferases vary widely in function, and a targeted amino acid substitution enhances oil accumulation[J]. Journal of Experimental Botany, 2022, 73(9): 3030-3043.
    [12] 刘铭宇. 过表达与三酰甘油有关的几个基因提高拟南芥种子的含油量[D]. 武汉: 华中农业大学, 2020. LIU MY. Enhanced Arabidopsis seed oil content by overexpressing several genes related to triacylglyceride synthesis[D]. Wuhan: Huazhong Agricultural University, 2020(in Chinese).
    [13] 孙英楠. 种子特异表达SiDGAT1转基因大豆新种质的创制[D]. 哈尔滨: 东北农业大学, 2020. SUN YN. Creation of new genetically modified soybean germplasm with seed-specific expression of SiDGAT1 gene[D]. Harbin: Northeast Agricultural University, 2020(in Chinese).
    [14] 赵思阳, 阮成江, 丁健, 卢顺光, 温秀凤, 胡建忠. 沙棘油脂合成关键基因GPD1DGAT的克隆及功能验证[J]. 中南林业科技大学学报, 2023, 43(8): 149-158, 168. ZHAO SY, RUAN CJ, DING J, LU SG, WEN XF, HU JZ. Cloning and functional validation of key genes GPD1 and DGAT involving in seed oil biosynthesis in sea buckthorn[J]. Journal of Central South University of Forestry & Technology, 2023, 43(8): 149-158, 168(in Chinese).
    [15] WANG ZK, YANG MM, SUN YN, YANG Q, WEI LN, SHAO YP, BAO GG, LI WB. Overexpressing Sesamum indicum L.’s DGAT1 increases the seed oil content of transgenic soybean[J]. Molecular Breeding, 2019, 39: 101.
    [16] ZHAO JZ, BI RR, LI SX, ZHOU D, BAI Y, JING GQ, ZHANG KW, ZHANG WH. Genome-wide analysis and functional characterization of acyl-CoA: diacylglycerol acyltransferase from soybean identify GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds[J]. Journal of Plant Physiology, 2019, 242: 153019.
    [17] MARAVI DK, KUMAR S, SHARMA PK, KOBAYASHI Y, GOUD VV, SAKURAI N, KOYAMA H, SAHOO L. Ectopic expression of AtDGAT1, encoding diacylglycerol O-acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha[J]. Biotechnology for Biofuels and Bioproducts, 2016, 9: 226.
    [18] MARMON S, STURTEVANT D, HERRFURTH C, CHAPMAN K, STYMNE S, FEUSSNER I. Two acyltransferases contribute differently to linolenic acid levels in seed oil[J]. Plant Physiology, 2017, 173(4): 2081-2095.
    [19] TORABI S, SUKUMARAN A, DHAUBHADEL S, JOHNSON SE, LaFAYETTE P, PARROTT WA, RAJCAN I, ESKANDARI M. Effects of type I diacylglycerol O-acyltransferase (DGAT1) genes on soybean (Glycine max L.) seed composition[J]. Scientific Reports, 2021, 11: 2556.
    [20] 高晗. 拟南芥DGAT1基因调控花粉发育过程中脂类合成与积累机制研究[D]. 广州: 华南农业大学, 2019. GAO H. Study on the lipid synthesis and accumulation regulated by DGAT1 gene during pollen development in Arabidopsis thaliana[D]. Guangzhou: South China Agricultural University, 2019(in Chinese).
    [21] 高宇. 块茎富油作物油莎豆CeDGAT基因的克隆及功能分析[D]. 太谷: 山西农业大学, 2020. GAO Y. Cloning and functional analysis of CeDGAT genes from oil-rich tubers of Cyperus esculentus[D]. Taigu: Shanxi Agricultural University, 2020(in Chinese).
    [22] 杨伟宗. 牡丹DGATPDAT基因在种子α-亚麻酸积累中的作用研究[D]. 杨凌: 西北农林科技大学, 2020. YANG WZ. The role of DGAT and PDAT genes involved in α-linolenic acid accumulation of tree peony seeds[D]. Yangling: Northwest A&F University, 2020(in Chinese).
    [23] 杨涔, 陈丽玉, 廖春梅, 孔凡江. 大豆DGAT1/2基因表达分析和敲除靶点设计[J]. 大豆科学, 2022, 41(4): 438-447. YANG C, CHEN LY, LIAO CM, KONG FJ. Gene target design and functional analysis of soybean DGAT1/2 genes[J]. Soybean Science, 2022, 41(4): 438-447(in Chinese).
    [24] ANDRIANOV V, BORISJUK N, POGREBNYAK N, BRINKER A, DIXON J, SPITSIN S, FLYNN J, MATYSZCZUK P, ANDRYSZAK K, LAURELLI M, GOLOVKIN M, KOPROWSKI H. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass[J]. Plant Biotechnology Journal, 2010, 8(3): 277-287.
    [25] 刘祾悦, 阮成江, 王莉, 张莞晨, 吴波, 闫蕊. 文冠果种仁发育期油脂合成积累的源汇基因协同表达[J]. 分子植物育种, 2018, 16(19): 6326-6331. LIU LY, RUAN CJ, WANG L, ZHANG WC, WU B, YAN R. Coordinated expression of source and sink genes involved in lipid biosynthesis and accumulation during kernel development of Xanthoceras sorbifolium[J]. Molecular Plant Breeding, 2018, 16(19): 6326-6331(in Chinese).
    [26] 韩平, 阮成江, 丁健, 张莞晨, 吴波, 阮东, 刘文浩, 王国辉. 紫斑牡丹种子发育期油脂合成积累的源汇基因协同表达[J]. 分子植物育种, 2019, 17(3): 713-718. HAN P, RUAN CJ, DING J, ZHANG WC, WU B, RUAN D, LIU WH, WANG GH. Coordinate expression of source and sink genes involved in lipid biosynthesis and accumulation during seed development of Paeonia suffruticosa[J]. Molecular Plant Breeding, 2019, 17(3): 713-718(in Chinese).
    [27] PAN X, CHEN GQ, KAZACHKOV M, GREER MS, CALDO KMP, ZOU JT, WESELAKE RJ. In vivo and in vitro evidence for biochemical coupling of reactions catalyzed by lysophosphatidylcholine acyltransferase and diacylglycerol acyltransferase[J]. The Journal of Biological Chemistry, 2015, 290(29): 18068-18078.
    [28] ISKANDAROV U, SILVA JE, KIM HJ, ANDERSSON M, CAHOON RE, MOCKAITIS K, CAHOON EB. A specialized diacylglycerol acyltransferase contributes to the extreme medium-chain fatty acid content of Cuphea seed oil[J]. Plant Physiology, 2017, 174(1): 97-109.
    [29] VANHERCKE T, EL TAHCHY A, SHRESTHA P, ZHOU XR, SINGH SP, PETRIE JR. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants[J]. FEBS Letters, 2013, 587(4): 364-369.
    [30] ARIAS CL, QUACH T, HUYNH T, NGUYEN H, MORETTI A, SHI Y, GUO M, RASOUL A, VAN K, McHALE L, CLEMENTE TE, ALONSO AP, ZHANG C. Expression of AtWRI1 and AtDGAT1 during soybean embryo development influences oil and carbohydrate metabolism[J]. Plant Biotechnology Journal, 2022, 20(7): 1327-1345.
    [31] AYMÉ L, BAUD S, DUBREUCQ B, JOFFRE F, CHARDOT T. Function and localization of the Arabidopsis thaliana diacylglycerol acyltransferase DGAT2 expressed in yeast[J]. PLoS One, 2014, 9(3): e92237.
    [32] ZHOU XR, SHRESTHA P, YIN F, PETRIE JR, SINGH SP. AtDGAT2 is a functional acyl-CoA: diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1[J]. FEBS Letters, 2013, 587(15): 2371-2376.
    [33] 陈贝贝. 大豆二酰甘油酰基转移酶(DGAT)和转录因子WRINKLED1(WRI1)功能研究[D]. 武汉: 华中农业大学, 2019. CHEN BB. Functional characterization of diacylglycerol acyltransferase and WRINKLED1 in soybean[D]. Wuhan: Huazhong Agricultural University, 2019(in Chinese).
    [34] DEMSKI K, JEPPSON S, LAGER I, MISZTAK A, JASIENIECKA-GAZARKIEWICZ K, WALERON M, STYMNE S, BANAŚ A. Isoforms of acyl-CoA: diacylglycerol acyltransferase2 differ substantially in their specificities toward erucic acid[J]. Plant Physiology, 2019, 181(4): 1468-1479.
    [35] LAGER I, JEPPSON S, GIPPERT AL, FEUSSNER I, STYMNE S, MARMON S. Acyltransferases regulate oil quality in Camelina sativa through both acyl donor and acyl acceptor specificities[J]. Frontiers in Plant Science, 2020, 11: 1144.
    [36] REGMI A, SHOCKEY J, KOTAPATI HK, BATES PD. Oil-producing metabolons containing DGAT1 use separate substrate pools from those containing DGAT2 or PDAT[J]. Plant Physiology, 2020, 184(2): 720-737.
    [37] LI RZ, YU KS, HILDEBRAND DF. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants[J]. Lipids, 2010, 45(2): 145-157.
    [38] 李晓东. YlDGAT2AtDGAT2对拟南芥JA生物合成的影响及其机理研究[D]. 重庆: 西南大学, 2019. LI XD. Effects of YlDGAT2 and AtDGAT2on JA biosynthesis in Arabidopsis and its mechanism[D]. Chongqing: Southwest University, 2019(in Chinese).
    [39] JING GQ, TANG DP, YAO Y, SU YK, SHEN Y, BAI Y, JING W, ZHANG Q, LIN F, GUO DQ, ZHANG WH. Seed specifically over-expressing DGAT2A enhances oil and linoleic acid contents in soybean seeds[J]. Biochemical and Biophysical Research Communications, 2021, 568: 143-150.
    [40] ABDELGHANY AMA. 大豆油脂组分的自然变异分析和相关候选基因鉴定[D]. 北京: 中国农业科学院研究生院, 2020. ABDELGHANY AMA. Natural variation analysis and candidate gene identification of oil compositions in soybean[D]. Beijing: Graduate School of Chinese Academy of Agricultural Sciences, 2020(in Chinese).
    [41] 陈莹. 烟草碳分配重构与富油烟叶种质的创制[D]. 太谷: 山西农业大学, 2022. CHEN Y. Reconstruction of carbon pathway and development of oil-rich tobacco germplasm[D]. Taigu: Shanxi Agricultural University, 2022(in Chinese).
    [42] 鲁庚, 唐鑫, 陆俊杏, 李丹, 胡秋芸, 胡田, 张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究[J]. 作物学报, 2020, 46(8): 1283-1290. LU G, TANG X, LU JX, LI D, HU QY, HU T, ZHANG T. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens[J]. Acta Agronomica Sinica, 2020, 46(8): 1283-1290(in Chinese).
    [43] LI RZ, YU KS, HATANAKA T, HILDEBRAND DF. Vernonia DGATs increase accumulation of epoxy fatty acids in oil[J]. Plant Biotechnology Journal, 2010, 8(2): 184-195.
    [44] YURCHENKO O, SHOCKEY JM, GIDDA SK, SILVER MI, CHAPMAN KD, MULLEN RT, DYER JM. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves[J]. Plant Biotechnology Journal, 2017, 15(8): 1010-1023.
    [45] PAN X, SILOTO RMP, WICKRAMARATHNA AD, MIETKIEWSKA E, WESELAKE RJ. Identification of a pair of phospholipid: diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin[J]. The Journal of Biological Chemistry, 2013, 288(33): 24173-24188.
    [46] XU Y, HOLIC R, LI D, PAN X, MIETKIEWSKA E, CHEN GQ, OZGA J, WESELAKE RJ. Substrate preferences of long-chain acyl-CoA synthetase and diacylglycerol acyltransferase contribute to enrichment of flax seed oil with α-linolenic acid[J]. The Biochemical Journal, 2018, 475(8): 1473-1489.
    [47] 周雅莉. 紫苏二酰甘油酰基转移酶基因(PfDGAT)克隆与功能分析[D]. 太谷: 山西农业大学, 2019. ZHOU YL. Cloning and functional analysis of diacylglycerol acyltransferase gene (PfDGAT) in Perilla frutescens[D]. Taigu: Shanxi Agricultural University, 2019(in Chinese).
    [48] 马世杰. 十字花科油料植物种子中影响超长链脂肪酸积累的因素研究[D]. 杨凌: 西北农林科技大学, 2021. MA SJ. Stud production[J]. Microbial Cell Factories, 2018, 17(1): 11.
    [95] LIU XX, LI ZY, YING JZ, SHU YZ, LIU WN, LI GH, CHEN LJ, LUO JJ, WANG SY, WANG YF, TONG XH, HUANG J, DU H, ZHANG J. Multi-gene engineering boosts oil content in rice grains[J]. Plant Communications, 2024, 5(2): 100736.
    [96] LUNN D, WALLIS JG, BROWSE J. Tri-hydroxy- triacylglycerol is efficiently produced by position-specific castor acyltransferases[J]. Plant P潨乹婳io譬靯gy猬礠贲01夹騬 1阷娹(3猩逺 1欰礵贰-1朰伶弳. 迟晓元. 不同含油量花生品种中二酰甘油酰基转移酶基因的表达分析[J]. 山东农业科学, 2023, 55(6): 1-6. PAN LJ, XU J, WANG XZ, JIANG X, CHEN N, WANG T, YIN XZ, YANG WQ, CHI XY. Expression analysis of diacylglycerol acyltransferase genes in peanut varieties with different oil contents[J]. Shandong Agricultural Sciences, 2023, 55(6): 1-6(in Chinese).
    [51] 郑玲, 单雷, 李新国, 郭峰, 孟静静, 万书波, 彭振英. 花生DGAT基因家族的生物信息学分析[J]. 山东农业科学, 2018, 50(6): 10-18. ZHENG L, SHAN L, LI XG, GUO F, MENG JJ, WAN SB, PENG ZY. Bioinformatics analysis of peanut DGAT gene family[J]. Shandong Agricultural Sciences, 2018, 50(6): 10-18(in Chinese).
    [52] 唐桂英, 柳展基, 徐平丽, 彭振英, 单雷. 花生AhDGAT3基因在花生种子油脂积累过程中的功能研究[J]. 农业生物技术学报, 2018, 26(11): 1834-1845. TANG GY, LIU ZJ, XU PL, PENG ZY, SHAN L. Function analysis of AhDGAT3 gene involved in the accumulation of seed oil in peanut (Arachis hypogaea)[J]. Journal of Agricultural Biotechnology, 2018, 26(11): 1834-1845(in Chinese).
    [53] AYMÉ L, ARRAGAIN S, CANONGE M, BAUD S, TOUATI N, BIMAI O, JAGIC F, LOUIS-MONDÉSIR C, BRIOZZO P, FONTECAVE M, CHARDOT T. Arabidopsis thaliana DGAT3 is a [2Fe-2S] protein involved in TAG biosynthesis[J]. Scientific Reports, 2018, 8: 17254.
    [54] 赵广. 油茶DGAT家族基因功能比较研究[D]. 长沙: 中南林业科技大学, 2018. ZHAO G. Comparative study on gene function of Camellia DGAT family[D]. Changsha: Central South University of Forestry & Technology, 2018(in Chinese).
    [55] 张飞. 大豆GmPDAT1-BGmDGAT3-2基因的克隆及功能分析[D]. 太谷: 山西农业大学, 2019. ZHANG F. Cloning and functional characterization of GmPDAT1-B and GmDGAT3-2 genes in Glycine max[D]. Taigu: Shanxi Agricultural University, 2019(in Chinese).
    [56] ZHAO YP, WU N, LI WJ, SHEN JL, CHEN C, LI FG, HOU YX. Evolution and characterization of acetyl coenzyme A: diacylglycerol acyltransferase genes in cotton identify the roles of GhDGAT3D in oil biosynthesis and fatty acid composition[J]. Genes, 2021, 12(7): 1045.
    [57] 田雨. 基于转录组和脂质组联合分析油莎豆三酰甘油合成机制[D]. 长春: 吉林大学, 2023. TIAN Y. Transcriptome analysis combined with lipid metabolome analysis reveals the triacylglycerol synthesis mechanism in Cyperus esculentus[D]. Changchun: Jilin University, 2023(in Chinese).
    [58] DAHLQVIST A, STÅHL U, LENMAN M, BANAS A, LEE M, SANDAGER L, RONNE H, STYMNE S. Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6487-6492.
    [59] STÅHL U, CARLSSON AS, LENMAN M, DAHLQVIST A, HUANG BQ, BANAŚ W, BANAŚ A, STYMNE S. Cloning and functional characterization of a phospholipid: diacylglycerol acyltransferase from Arabidopsis[J]. Plant Physiology, 2004, 135(3): 1324-1335.
    [60] AULAKH K, DURRETT TP. The plastid lipase PLIP1 is critical for seed viability in diacylglycerol acyltransferase1 mutant seed[J]. Plant Physiology, 2019, 180(4): 1962-1974.
    [61] FAN JL, YAN CS, XU CC. Phospholipid: diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis[J]. The Plant Journal, 2013, 76(6): 930-942.
    [62] BANAŚ W, CARLSSON AS, BANAŚ A. Effect of overexpression of PDAT gene on Arabidopsis growth rate and seed oil content[J]. Journal of Agricultural Science, 2014, 6(5): 65.
    [63] WOODFIELD HK, CAZENAVE-GASSIOT A, HASLAM RP, GUSCHINA IA, WENK MR, HARWOOD JL. Using lipidomics to reveal details of lipid accumulation in developing seeds from oilseed rape (Brassica napus L.)[J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2018, 1863(3): 339-348.
    [64] 虢慧, 贺慧, 吴宁柔, 官梅. 不同关键酶基因在油菜种子发育进程中的表达[J]. 分子植物育种, 2017, 15(8): 3030-3035. GUO H, HE H, WU NR, GUAN M. Expression of different key enzyme gene during seeds development in rapeseed (Brassica napus L.)[J]. Molecular Plant Breeding, 2017, 15(8): 3030-3035(in Chinese).
    [65] 谭太龙, 冯韬, 罗海燕, 彭烨, 刘睿洋, 官春云. 甘蓝型油菜磷脂二酰甘油酰基转移酶(BnPDAT1)表达特性研究[J]. 华北农学报, 2019, 34(1): 12-18. TAN TL, FENG T, LUO HY, PENG Y, LIU RY, GUAN CY. Studies on the expression of phosphodiacylglycerol acyltransferase (BnPDAT1) in Brassica napus[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 12-18(in Chinese).
    [66] FENYK S, WOODFIELD HK, ROMSDAHL TB, WALLINGTON EJ, BATES RE, FELL DA, CHAPMAN KD, FAWCETT T, HARWOOD JL. Overexpression of phospholipid: diacylglycerol acyltransferase in Brassica napus results in changes in lipid metabolism and oil accumulation[J]. The Biochemical Journal, 2022, 479(6): 805-823.
    [67] 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. MIAO SN, GAO Y, LI XR, CAI GP, ZHANG F, XUE JA, JI CL, LI RZ. Functional analysis of soybean GmPDAT1 genes in the oil biosynthesis and response to abiotic stresses[J]. Biotechnology Bulletin, 2023, 39(2): 96-106(in Chinese).
    [68] BANAŚ W, SANCHEZ GARCIA A, BANAŚ A, STYMNE S. Activities of acyl-CoA: diacylglycerol acyltransferase (DGAT) and phospholipid: diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds[J]. Planta, 2013, 237(6): 1627-1636.
    [69] BATES PD, JOHNSON SR, CAO X, LI J, NAM JW, JAWORSKI JG, OHLROGGE JB, BROWSE J. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(3): 1204-1209.
    [70] SUN Y, LIU BL, XUE JA, WANG XD, CUI HL, LI RZ, JIA XY. Critical metabolic pathways and genes cooperate for epoxy fatty acid-enriched oil production in developing seeds of Vernonia galamensis, an industrial oleaginous plant[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 21.
    [71] ZHOU B, FEI WJ, YANG SQ, YANG F, QU GY, TANG WW, OU JP, PENG D. Alteration of the fatty acid composition of Brassica napus L. via overexpression of phospholipid: diacylglycerol acyltransferase1 from Sapium sebiferum (L.) Roxb[J]. Plant Science, 2020, 298: 110562.
    [72] YUAN LX, MAO X, ZHAO K, JI XJ, JI CL, XUE JA, LI RZ. Characterisation of phospholipid: diacylglycerol acyltransferases (PDATs) from Camelina sativa and their roles in stress responses[J]. Biology Open, 2017, 6(7): 1024-1034.
    [73] XU L, WU J, ZHAO YC, LIU HQ, ZHANG WY, XU YH. Salicylic acid-mediated diacylglycerol/triacylglycerol conversion affects the freezing tolerance of Arabidopsis[J]. Plant Growth Regulation, 2022, 98: 249-258.
    [74] WANG S, WANG HY, XU ZH, JIANG SS, SHI YC, XIE HR, WANG S, HUA J, WU YF. m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis[J]. Plant Physiology, 2023, 192(2): 1466-1482.
    [75] SHOMO ZD, MAHBOUB S, VANVIRATIKUL H, McCORMICK M, TULYANANDA T, ROSTON RL, WARAKANONT J. All members of the Arabidopsis DGAT and PDAT acyltransferase families operate during high and low temperatures[J]. Plant Physiology, 2024, 195(1): 685-697.
    [76] 高军平, 李晓旭, 文利超, 蒲文宣, 李伟, 郭永峰, 孙圣娜, 杨爱国, 文柳璎. 烟草DGAT3基因响应冷胁迫应答的功能研究[J]. 中国烟草科学, 2022, 43(5): 1-8. GAO JP, LI XX, WEN LC, PU WX, LI W, GUO YF, SUN SN, YANG AG, WEN LY. Functional study of DGAT3 gene in response to cold stress in tobacco[J]. Chinese Tobacco Science, 2022, 43(5): 1-8(in Chinese).
    [77] DEMSKI K, ŁOSIEWSKA A, JASIENIECKA- GAZARKIEWICZ K, KLIŃSKA S, BANAŚ A. Phospholipid: diacylglycerol acyltransferase1 overexpression delays senescence and enhances post-heat and cold exposure fitness[J]. Frontiers in Plant Science, 2020, 11: 611897.
    [78] KLIŃSKA-BĄCHOR S, KĘDZIERSKA S, DEMSKI K, BANAŚ A. Phospholipid: diacylglycerol acyltransferase1-overexpression stimulates lipid turnover, oil production and fitness in cold-grown plants[J]. BMC Plant Biology, 2023, 23: 370.
    [79] FAN JL, ZHOU C, YU LH, LI P, SHANKLIN J, XU CC. Diversion of carbon flux from sugars to lipids improves the growth of an Arabidopsis starchless mutant[J]. Plants, 2019, 8(7): 229.
    [80] LU CL, de NOYER SB, HOBBS DH, KANG JL, WEN YC, KRACHTUS D, HILLS MJ. Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana[J]. Plant Molecular Biology, 2003, 52: 31-41.
    [81] KONG YF, CHEN SB, YANG Y, AN CC. ABA-insensitive (ABI) 4 and ABI5 synergistically regulate DGAT1 expression in Arabidopsis seedlings under stress[J]. FEBS Letters, 2013, 587(18): 3076-3082.
    [82] YANG Y, YU XC, SONG LF, AN CC. ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency[J]. Plant Physiology, 2011, 156(2): 873-883.
    [83] ARISZ SA, HEO JY, KOEVOETS IT, ZHAO T, van EGMOND P, MEYER AJ, ZENG WQ, NIU XM, WANG BS, MITCHELL-OLDS T, SCHRANZ ME, TESTERINK C. Diacylglycerol acyltransferase1 contributes to freezing tolerance[J]. Plant Physiology, 2018, 177(4): 1410-1424.
    [84] TAN WJ, YANG YC, ZHOU Y, HUANG LP, XU L, CHEN QF, YU LJ, XIAO S. Diacylglycerol acyltransferase and diacylglycerol kinase modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress[J]. Plant Physiology, 2018, 177(3): 1303-1318.
    [85] 张小琴. CO2浓度和温度升高对大豆糖代谢和脂肪代谢的影响[D]. 太谷: 山西农业大学, 2022. ZHANG XQ. Effects of elevated CO2 concentration and increased temperature on the metabolism of sugar and lipid in soybean[D]. Taigu: Shanxi Agricultural University, 2022(in Chinese).
    [86] YANG TQ, NIU Q, DAI H, TIAN XL, MA JC, PRITCHARD HW, LIN L, YANG XY. The transcription factor MYB1 activates DGAT2 transcription to promote triacylglycerol accumulation in sacha inchi (Plukenetia volubilis L.) leaves under heat stress[J]. Plant Physiology and Biochemistry, 2024, 208: 108517.
    [87] HERNÁNDEZ ML, MORETTI S, SICARDO MD, GARCÍA Ú, PÉREZ A, SEBASTIANI L, MARTÍNEZ-RIVAS JM. Distinct physiological roles of three phospholipid: diacylglycerol acyltransferase genes in olive fruit with respect to oil accumulation and the response to abiotic stress[J]. Frontiers in Plant Science, 2021, 12: 751959.
    [88] 张程, 董帅飞, 朱艺, 孟晚秋, 王晓阳, 孙黎. 向日葵PDAT基因家族鉴定及其对油脂积累和非生物胁迫的响应[J]. 植物生理学报, 2022, 58(5): 844-856. ZHANG C, DONG SF, ZHU Y, MENG WQ, WANG XY, SUN L. Identification of sunflower PDAT gene family and their roles in TAG accumulation and abiotic stress responses[J]. Plant Physiology Journal, 2022, 58(5): 844-856(in Chinese).
    [89] ZHONG J, QING J, LIU CL, WANG Q, DU HY, LIU PF, DU LY, WANG L, DU QX. Characteristics of oil body development and the cloning and expression analysis of PDAT genes in Eucommia ulmoides[J]. Agronomy, 2022, 12(9): 2197.
    [90] LEE HG, PARK ME, PARK BY, KIM HU, SEO PJ. The Arabidopsis MYB96 transcription factor mediates ABA-dependent triacylglycerol accumulation in vegetative tissues under drought stress conditions[J]. Plants, 2019, 8(9): 296.
    [91] WU Y, ZHANG LS, ZHANG Y, ZHOU HW, MA L. Roles of antioxidant enzymes, secondary metabolites, and lipids in light adaption of tea-oil plant (Camellia oleifera Abel)[J]. Journal of Plant Growth Regulation, 2024(published online in advance).
    [92] ZHOU XR, LIU Q, SINGH S. Engineering nutritionally improved edible plant oils[J]. Annual Review of Food Science and Technology, 2023, 14: 247-269.
    [93] AZNAR-MORENO JA, DURRETT TP. Review: metabolic engineering of unusual lipids in the synthetic biology era[J]. Plant Science, 2017, 263: 126-131.
    [94] WEI YJ, BERGENHOLM D, GOSSING M, SIEWERS V, NIELSEN J. Expression of cocoa genes in Saccharomyces cerevisiae improves cocoa butter
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴杨,刘萌娟,王幼宁,李得孝,杨玉花,张庭军,周会汶. DGATPDAT基因在调控植物油脂合成中的作用[J]. 生物工程学报, 2025, 41(1): 216-229

复制
分享
文章指标
  • 点击次数:121
  • 下载次数: 383
  • HTML阅读次数: 219
  • 引用次数: 0
历史
  • 收稿日期:2024-05-07
  • 最后修改日期:2024-07-05
  • 在线发布日期: 2025-01-24
  • 出版日期: 2025-01-25
文章二维码
您是第5896718位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司