‘美人’梅在干旱胁迫下的生理响应及相关基因筛选
作者:
基金项目:

国家重点研发计划(2020YFD1000500);北京园林绿化增彩延绿科技创新工程(2019-KJC-02-10);北京市园林绿化局《沙枣培育技术规程》制定标准项目(20211245);北京林业大学建设世界一流学科和特色发展引导专项资金(2019XKJS0324)


Physiological responses and transcriptional regulation of Prunus mume ‘Meiren’ under drought stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • | | | |
  • 文章评论
    摘要:

    梅花(Prunus mume)是药食同源的生态经济型树种,然而,干旱严重限制了梅花在我国北方干旱、半干旱地区的推广栽培。本研究以‘美人’梅为试验材料,采用自然干旱法进行处理,测定渗透调节物质、光合参数和抗氧化酶活性等光合生理指标,并使用转录组测序探究梅花在干旱胁迫下的内在调控机制。结果表明,随着干旱胁迫程度加深,‘美人’梅的叶绿素a (chlorophyll a,Chla)、叶绿素b (chlorophyll b,Chlb)、叶绿素(a+b)[chlorophyll (a+b),Chl (a+b)]含量以及可溶性蛋白(soluble protein,SP)含量呈现先上升后下降的趋势,净光合速率(photosynthetic rate,Pn)、气孔导度(stomatal conductance,Gs)和蒸腾速率(transpiration rate,Tr)以及最大光化学效率(maximum photochemical efficiency,Fv/Fm)、实际光化学电子产量[effective photochemical quantum yield,Y (II)]、光化学猝灭系数(photochemical quenching,qP)、相对电子传递效率(electron transport rate,ETR)均显著下降,而丙二醛含量(malondialdehyde,MDA)、抗氧化酶如超氧化物歧化酶(superoxide dismutase,SOD)活性、过氧化物酶(peroxidase,POD)和渗透调节物质的积累显著增强。转录组测序共获得24 853个高质量基因。GO富集显示重度干旱下差异表达基因(differentially expressed genes,DEGs)富集程度最高。KEGG (Kyoto encylopaedia of genes and genomes,KEGG)分析显示次级代谢物的生物合成(biosynthesis of secondary metabolites)、植物与病原体相互作用(plant-pathogen interaction)、植物激素信号传导(plant hormone signal transduction)、淀粉和蔗糖代谢(starch and sucrose metabolism)、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路是4个干旱时期中最显著富集的代谢通路。此外,还筛选到16个与‘美人’梅抗旱相关的关键基因。本研究发现梅花可能通过MYB、ERF、bHLH、NAC和WRKY等转录因子(transcription factors,TF)调节抗旱相关基因SUSP5CSLEASODPODSOD1TPPDTPPA等的表达,促进蔗糖等渗透调节物质积累,提高SOD、POD等抗氧化酶活性,减弱逆境胁迫下活性氧的危害,保护膜系统的结构和功能以抵御干旱。本研究结果为进一步挖掘梅花响应干旱胁迫的候选基因和抗旱育种提供了理论参考。

    Abstract:

    Prunus mume is an ecologically and economically valuable plant with both medicinal and edible values. However, drought severely limits the promotion and cultivation of P. mume in the arid and semi-arid areas in northern China. In this study, we treated P. mume ‘Meiren’ with natural drought and then assessed photosynthetic and physiological indexes such as osmoregulatory substances, photosynthetic parameters, and antioxidant enzyme activities. Furthermore, we employed transcriptome sequencing to explore the internal regulatory mechanism of P. mume under drought stress. As the drought stress aggravated, the levels of chlorophyll a (Chla), chlorophyll b (Chlb), chlorophyll (a+b)[Chl(a+b)], and soluble protein (SP) in P. mume first elevated and then declined. The net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm), effective photochemical quantum yield [Y(II)], photochemical quenching (qP), and relative electron transport rate (ETR) all kept decreasing, while the levels of malondialdehyde, superoxide dismutase (SOD), peroxidase (POD), and osmoregulatory substances rose. Transcriptome sequencing revealed a total of 24 853 high-quality genes. Gene ontology (GO) enrichment showed that differentially expressed genes (DEGs) were the most under severe drought. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that the DEGs during the four drought periods were mainly involved in the biosynthesis of secondary metabolites, plant-pathogen interaction, plant hormone signal transduction, starch and sucrose metabolism, and mitogen-activated protein kinase signaling pathways. Furthermore, we identified 16 key genes associated with the drought tolerance of P. mume ‘Meiren’. This study discovered that P. mume might up-regulate or down-regulate the expression of drought tolerance-related genes such as SUS, P5CS, LEA, SOD, POD, SOD1, TPPD, and TPPA via transcription factors like MYB, ERF, bHLH, NAC, and WRKY to promote the accumulation of osmoregulatory substances like sucrose and enhance the activities of antioxidant enzymes such as SOD and POD, thus reducing the harm of reactive oxygen species and protecting the structure and function of the membrane system under drought stress. The findings provide theoretical references for further exploration of candidate genes of P. mume in response to drought stress and breeding of drought-tolerant varieties.

    参考文献
    [1] WANG XY, LI XM, ZHAO W, HOU XM, DONG SK. Current views of drought research: experimental methods, adaptation mechanisms and regulatory strategies[J]. Frontiers in Plant Science, 2024, 15: 1371895.
    [2] BASHIR SS, HUSSAIN A, HUSSAIN SJ, ALI WANI O, ZAHID NABI S, DAR NA, BALOCH FS, MANSOOR S. Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms[J]. Biotechnology & Biotechnological Equipment, 2021, 35(1): 1912-1925.
    [3] BANDURSKA H. Drought stress responses: coping strategy and resistance[J]. Plants, 2022, 11(7): 922.
    [4] ZHANG W, WANG SC, LI Y. Molecular mechanism of thiamine in mitigating drought stress in Chinese wingnut (Pterocarya stenoptera): insights from transcriptomics[J]. Ecotoxicology and Environmental Safety, 2023, 263: 115307.
    [5] WANG D, CHEN QY, CHEN WW, GUO QG, XIA Y, WANG SM, JING DL, LIANG GL. Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lindl.) seedlings[J]. Environmental and Experimental Botany, 2021, 181: 104291.
    [6] SUN XZ, HU SM, WANG X, LIU H, ZHOU YW, GUAN QJ. De novo assembly of Amorpha fruticosa L. transcriptome in response to drought stress provides insight into the tolerance mechanisms[J]. PeerJ, 2021, 9: e11044.
    [7] ZHANG XJ, SUN WK, CHEN XY, CHEN LL, LV ZC, HE HJ, YAN WD. Integrated physiological and transcriptomic analysis reveals mechanism of leaf in Phellodendron Chinense Schneid seedlings response to drought stress[J]. Industrial Crops and Products, 2023, 198: 116679.
    [8] LI HE, YAO WJ, FU YR, LI SK, GUO QQ. De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana[J]. PLoS One, 2015, 10(1): e111054.
    [9] YANG YJ, MA KF, ZHANG TX, LI LL, WANG J, CHENG TR, ZHANG QX. Characteristics and expression analyses of trehalose-6-phosphate synthase family in Prunus mume reveal genes involved in trehalose biosynthesis and drought response[J]. Biomolecules, 2020, 10(10): 1358.
    [10] DING AQ, BAO F, CHENG WH, CHENG TR, ZHANG QX. Phylogeny of PmCCD gene family and expression analysis of flower coloration and stress response in Prunus mume[J]. International Journal of Molecular Sciences, 2023, 24(18): 13950.
    [11] BAO F, DU DL, AN Y, YANG WR, WANG J, CHENG TR, ZHANG QX. Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought[J]. Frontiers in Plant Science, 2017, 8: 151.
    [12] 杨永娟. 梅花品种耐旱性差异分析及褪黑素合成基因功能研究[D]. 北京: 北京林业大学, 2021. YANG YJ. Difference analysis of drought tolerance in cultivars of Prunus mume and function study of genes in melatonin biosynthesis[D]. Beijing: Beijing Forestry University, 2021(in Chinese).
    [13] 李合生. 现代植物生理学[M]. 3版. 北京: 高等教育出版社, 2012. Li HS. Modern Plant Physiology[M]. 3rd edition. Beijing: Higher Education Press, 2012(in Chinese).
    [14] 李庆卫. 川、滇、藏、黔野梅种质资源调查和梅花抗寒品种区域试验的研究[D]. 北京: 北京林业大学, 2010. LI QW. Studies on investigation of wild Mei germplasm resources of Sichuan, Yunnan, Xizang and Guizhou as well as regional tests of hardy Mei cultivars in North China[D]. Beijing: Beijing Forestry University, 2010(in Chinese).
    [15] TRAPNELL C, WILLIAMS BA, PERTEA G, MORTAZAVI A, KWAN G, van BAREN MJ, SALZBERG SL, WOLD BJ, PACHTER L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5): 511-515.
    [16] ZHANG M, WANG LF, ZHANG K, LIU FZ, WAN YS. Drought-induced responses of organic osmolytes and proline metabolism during pre-flowering stage in leaves of peanut (Arachis hypogaea L.)[J]. Journal of Integrative Agriculture, 2017, 16(10): 2197-2205.
    [17] HOEKSTRA FA, GOLOVINA EA, BUITINK J. Mechanisms of plant desiccation tolerance[J]. Trends in Plant Science, 2001, 6(9): 431-438.
    [18] 牛欣益, 马瑞. 红砂幼苗叶片生理特性对干旱胁迫的响应[J]. 草业科学, 2023, 40(10): 2483-2492. NIU XY, MA R. Effects of drought stress on leaf physiology of Reaumuria soongorica seedlings during the growing season[J]. Pratacultural Science, 2023, 40(10): 2483-2492(in Chinese).
    [19] BALDONI E, GENGA A, COMINELLI E. Plant MYB transcription factors: their role in drought response mechanisms[J]. International Journal of Molecular Sciences, 2015, 16(7): 15811-15851.
    [20] YANG J, HE RQ, QU ZP, GU JB, JIANG LY, ZHAN XQ, GAO Y, ADELSON DL, LI SS, WANG ZY, ZHU YL, WANG D. Long noncoding RNA ARTA controls ABA response through MYB7 nuclear trafficking in Arabidopsis[J]. Developmental Cell, 2023, 58(13): 1206-1217.
    [21] MASE K, MIZUNO H, NAKAMICHI N, SUZUKI T, KOJIMA T, KAMIYA S, TAKEUCHI T, KONDO C, YAMASHITA H, SAKAOKA S, MORIKAMI A, TSUKAGOSHI H. AtMYB50 regulates root cell elongation by upregulating PECTIN METHYLESTERASE INHIBITOR 8 in Arabidopsis thaliana[J]. PLoS One, 2023, 18(12): e0285241.
    [22] MONDAL SK, ROY S. Genome-wide sequential, evolutionary, organizational and expression analyses of phenylpropanoid biosynthesis associated MYB domain transcription factors in Arabidopsis[J]. Journal of Biomolecular Structure & Dynamics, 2018, 36(6): 1577-1601.
    [23] USADEL B, POREE F, NAGEL A, LOHSE M, CZEDIK-EYSENBERG A, STITT M. A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize[J]. Plant, Cell & Environment, 2009, 32(9): 1211-1229.
    [24] DÉJARDIN A, SOKOLOV LN, KLECZKOWSKI LA. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis[J]. The Biochemical Journal, 1999, 344(Pt 2): 503-509.
    [25] LIU ZY, WANG CF, YANG JJ, LIU X, LI LJ, CHENG LB, LI SY. Molecular cloning and functional analysis of lotus salt-induced NnDREB2C, NnPIP1-2 and NnPIP2-1 in Arabidopsis thaliana[J]. Molecular Biology Reports, 2020, 47(1): 497-506.
    [26] RAMON M, De SMET I, VANDESTEENE L, NAUDTS M, LEYMAN B, Van DIJCK P, ROLLAND F, BEECKMAN T, THEVELEIN JM. Extensive expression regulation and lack of heterologous enzymatic activity of the Class II trehalose metabolism proteins from Arabidopsis thaliana[J]. Plant, Cell & Environment, 2009, 32(8): 1015-1032.
    [27] YAMADA M, MORISHITA H, URANO K, SHIOZAKI N, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K, YOSHIBA Y. Effects of free proline accumulation in petunias under drought stress[J]. Journal of Experimental Botany, 2005, 417(56): 1975-1981.
    [28] KIZIS D, LUMBRERAS V, PAGÈS M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress[J]. FEBS Letters, 2001, 498(2/3): 187-189.
    [29] ABDEL-GHANY SE, ULLAH F, BEN-HUR A, REDDY ASN. Transcriptome analysis of drought-resistant and drought-sensitive Sorghum (Sorghum bicolor) genotypes in response to PEG-induced drought stress[J]. International Journal of Molecular Sciences, 2020, 21(3): 772.
    [30] WANG SZ, CHEN WY, YANG CD, YAO J, XIAO WF, XIN Y, QIU JR, HU WM, YAO HG, YING W, FU YP, TONG JX, CHEN ZZ, RUAN SL, MA HS. Comparative proteomic analysis reveals alterations in development and photosynthesis-related proteins in diploid and triploid rice[J]. BMC Plant Biology, 2016, 16(1): 199.
    [31] 赵雷, 靳海笛, 曹晓云, 邓文辉, 杜灵娟. 六个东方铁筷子品种对干旱胁迫的生理响应及抗旱性评价[J]. 应用生态学报, 2023, 34(10): 2644-2654. ZHAO L, JIN HD, CAO XY, DENG WH, DU LJ. Physiological response to drought stress and drought resistance of six Helleborus orientlis cultivars[J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2644-2654(in Chinese).
    [32] ZHANG JM, JIANG H, SONG XZ, JIN JX, ZHANG XY. The responses of plant leaf CO2/H2O exchange and water use efficiency to drought: a meta-analysis[J]. Sustainability, 2018, 10(2): 551.
    [33] McDOWELL N, POCKMAN WT, ALLEN CD, BRESHEARS DD, COBB N, KOLB T, PLAUT J, SPERRY J, WEST A, WILLIAMS DG, YEPEZ EA. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. The New Phytologist, 2008, 178(4): 719-739.
    [34] LI QM, LIU BB, WU Y, ZOU ZR. Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1307-1317.
    [35] LAXA M, LIEBTHAL M, TELMAN W, CHIBANI K, DIETZ KJ. The role of the plant antioxidant system in drought tolerance[J]. Antioxidants, 2019, 8(4): 94.
    [36] 祁伟亮, 任迎虹, 杨财容, 乔岩, 曾睿, 黄仁维, 乔义林. 干旱胁迫下桑树活性氧信号传导及转录组分析[J]. 干旱地区农业研究, 2023, 41(2): 50-60. QI WL, REN YH, YANG CL, QIAO Y, ZENG R, HUANG RW, QIAO YL. Signal transduction and transcriptome analysis of reactive oxygen species in mulberry under drought stress[J]. Agricultural Research in the Arid Areas, 2023, 41(2): 50-60(in Chinese).
    [37] 双王, 鹏亮, 钟顺清. 汞胁迫对不同品种有色水稻根系生长及汞积累的影响[J/OL]. 生态学杂志. [2025-01-21]. http://kns.cnki.net/kcms/detail/21.1148.Q.20240605.1636.008.html. SHUANG W, PENG L, ZHONG SQ. Effect of mercury stress on root growth and mercury accumulation in different color rice cultivars.[J/OL]. Chinese Journal of Ecology. [2025-01-21]. http://kns.cnki.net/kcms/detail/ 21.1148.Q.20240605.1636.008.html (in Chinese).
    [38] ABBAS K, LI JR, GONG BB, LU YS, WU XL, LÜ GY, GAO HB. Drought stress tolerance in vegetables: the functional role of structural features, key gene pathways, and exogenous hormones[J]. International Journal of Molecular Sciences, 2023, 24(18): 13876.
    [39] PERVAIZ T, LIU SW, UDDIN S, AMJID MW, NIU SH, WU HX. The transcriptional landscape and hub genes associated with physiological responses to drought stress in Pinus tabuliformis[J]. International Journal of Molecular Sciences, 2021, 22(17): 9604.
    [40] 崔思宇, 张志芬, 付晓峰, 刘俊青, 杨海顺. 燕麦植物激素信号转导通路中响应干旱胁迫的关键基因[J]. 麦类作物学报, 2023, 43(11): 1384-1393. CUI SY, ZHANG ZF, FU XF, LIU JQ, YANG HS. Key genes in response to drought stress in plant hormone signal transduction pathway of oat[J]. Journal of Triticeae Crops, 2023, 43(11): 1384-1393(in Chinese).
    [41] CAO MJ, ZHANG YL, LIU X, HUANG H, ZHOU XE, WANG WL, ZENG A, ZHAO CZ, SI T, DU JM, WU WW, WANG FX, XU HE, ZHU JK. Combining chemical and genetic approaches to increase drought resistance in plants[J]. Nature Communications, 2017, 8(1): 1183.
    [42] KLEIN T, HOCH G, YAKIR D, KÖRNER C. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest[J]. Tree Physiology, 2014, 34(9): 981-992.
    [43] LIN QF, WANG S, DAO YH, WANG JY, WANG K. Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures[J]. Journal of Experimental Botany, 2020, 71(14): 4285-4297.
    [44] XU YJ, GAO S, YANG YJ, HUANG MY, CHENG LN, WEI Q, FEI ZJ, GAO JP, HONG B. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress[J]. BMC Genomics, 2013, 14: 662.
    [45] 刘声传. 茶树对干旱胁迫和复水响应的生理、分子机理[D]. 北京: 中国农业科学院, 2015. LIU SC. Physiological and molecular mechanisms of tea plants’ response to drought stress and rehydration[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015(in Chinese).
    [46] 尚孟笛, 王秋霞. 蛋白激酶在药用植物非生物胁迫中的作用机制研究[J]. 中药材, 2024, 6: 1583-1592. SHANG MD, WANG QX. Studies on the mechanism of protein kinase action in abiotic stress of medicinal plants[J]. Journal of Chinese Medicinal Materials, 2024, 6: 1583-1592(in Chinese).
    [47] 李媛媛. AtMAPKKK18调节干旱胁迫抗性的分子机理研究[D]. 泰安: 山东农业大学, 2016. LI YY. Study on molecular mechanism of AtMAPKKK18 regulating drought stress resistance[D]. Tai’an: Shandong Agricultural University, 2016(in Chinese).
    [48] 李燕, 李良良, 丁贵杰. 植物水通道蛋白对高温干旱胁迫的响应[J/OL]. 分子植物育种. [2025-01-21]. http://kns.cnki.net/kcms/detail/46.1068.S.20240422.1440.007.html. LI Y, LI LL, DING GJ. Research progress on the response of plant aquaporin to high temperature and drought stress[J/OL]. Molecular Plant Breeding. [2025-01-21]. http://kns.cnki.net/kcms/detail/46.1068. S.20240422.1440.007.html (in Chinese).
    [49] ZUPIN M, SEDLAR A, KIDRIC M, MEGLIC V. Drought-induced expression of aquaporin genes in leaves of two common bean cultivars differing in tolerance to drought stress[J]. Journal of Plant Research, 2017, 130(4): 735-745.
    [50] 杨芳, 乔岩, 王永强, 李茜, 李丹, 王亚士, 柴薇薇. 马铃薯HSP90基因家族的全基因组鉴定及高温干旱胁迫下的表达分析[J]. 西北农业学报, 2022, 31(6): 690-702. YANG F, QIAO Y, WANG YQ, LI Q, LI D, WANG YS, CHAI WW. Genome-wide identification of HSP90 genes and expression analysis under high temperature and drought stresses in potato[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(6): 690-702(in Chinese).
    [51] SONG HM, ZHAO RM, FAN PX, WANG XC, CHEN XY, LI YX. Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses[J]. Planta, 2009, 229(4): 955-964.
    [52] 桑璐曼, 汤沙, 张仁梁, 贾小平, 刁现民. 谷子热激蛋白HSP90基因家族鉴定及分析[J]. 植物遗传资源学报, 2022, 23(4): 1085-1097. SAN LM, TANG S, ZHANG RL, JIA XP, DIAO XM. Identification and analysis of heat shock protein HSP90 family genes in foxtail millet[J]. Journal of Plant Genetic Resources, 2022, 23(4): 1085-1097(in Chinese).
    [53] 徐文艺. 金莲花幼苗对干旱-复水的生理响应及转录组分析[D]. 哈尔滨: 东北农业大学, 2024. XU WY. Physiological and transcriptome analysis of Trollius chinensis seedlings in response to drought and rehydration[D]. Harbin: Northeast Agricultural University, 2024(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王梓煦,罗春燕,童宇航,郑为军,李庆卫. ‘美人’梅在干旱胁迫下的生理响应及相关基因筛选[J]. 生物工程学报, 2025, 41(2): 618-638

复制
分享
文章指标
  • 点击次数:86
  • 下载次数: 132
  • HTML阅读次数: 54
  • 引用次数: 0
历史
  • 收稿日期:2024-07-01
  • 最后修改日期:2024-11-14
  • 在线发布日期: 2025-02-11
  • 出版日期: 2025-02-25
文章二维码
您是第5943428位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司