窄食单胞菌对微藻在高浓度甲酸条件下光合生长的促进作用
作者:
基金项目:

国家重点研发计划(2022YFC3401802,2021YFC2103500);国家自然科学基金(21878285,22088102)


Promotion of Stenotrophomonas sp. on the photosynthetic growth of microalgae exposed to high concentrations of formate
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    甲酸是一种重要的太阳燃料,具有很高的生物转化应用前景,尤其是与光合微藻相结合,理论上能最大化人工与生物光合成的优势。然而甲酸对微藻光合电子传递具有明显的抑制,限制了其应用,常规的改造和定向进化策略耗时且普适性不高。本文介绍了一条新的甲酸在光合微藻培养过程中的应用路线,通过将一株分离自微藻高甲酸进化过程的窄食单胞菌或其发酵产物与微藻进行共培养,解除了50 mmol/L甲酸根对莱茵衣藻光合活性的抑制,促进其光合生长,极大提升了胞内蛋白含量(约50%)。初步测试表明,这一策略也同样适用于小球藻和集胞藻,具有普适性。这一策略的提出有望打破甲酸介导的人工-生物杂化光合成技术瓶颈,建立更普适和高效的太阳光能驱动二氧化碳还原制备蛋白质的大宗生物质工艺。

    Abstract:

    Formate is an important solar fuel, with large application potential in bioconversion. Especially, the win-win collaboration is achieved when formate is applied to the cultivation of microalgae, which combines the advantages from both artificial and natural photosynthesis. However, the inhibition of formate on the photosynthetic electron transport hinders the application of formate at high concentrations. The engineering or directed evolution of the regulation pathway is a case-by-case and time-consuming strategy. Here, we developed a new strategy by introducing a Stenotrophomonas sp. strain which was isolated and identified from the long-term self-evolution process of Chlamydomonas reinhardtii for adapting to high concentrations of formate. The co-culture with the strain or the fermentation broth relieved the inhibition of formate (50 mmol/L) on C. reinhardtii and promoted the growth of the microalga. Especially, the protein content increased significantly to nearly 50% of the dried weight. In addition, the co-culture also benefited the growth of both Chlorella pyrenoidesa and Synechocystis sp. PCC 6803 exposed to formate, which indicated broader applicability of this strategy. This strategy provides the opportunity to overcome the bottleneck in the formate-mediated artificial-natural hybrid photosynthesis and to aid the development of technologies for solar energy-driven production of bulk biomass, including proteins, by carbon dioxide reduction.

    参考文献
    [1] 冯迪凡. 联合国呼吁更强硬减排措施以控温[N]. 第一财经日报, 2023-11-23(A05).
    [2] 张梦楠, 曹楠楠, 朱雪莲. 典型国家“双碳” 目标实现路径解析及中国借鉴[J]. 河北地质大学学报, 2024, 47(1): 119-126. ZHANG MN, CAO NN, ZHU XL. Analysis of the realization path of the “dual carbon” target in typical countries and China’s reference[J]. Journal of Hebei GEO University, 2024, 47(1): 119-126(in Chinese).
    [3] 2024政府工作报告[EB/OL]. [2024-03-18]. https://www. gov.cn/yaowen/liebiao/202403/content_6939153.htm
    [4] 杨晓秋, 吴寅嵩, 闫金定, 宋海刚, 范建华, 李元广. 基于文献计量学的微藻生物技术发展趋势[J]. 生物工程学报, 2015, 31(10): 1415-1436. YANG XQ, WU YS, YAN JD, SONG HG, FAN JH, LI YG. Trends of microalgal biotechnology: a view from bibliometrics[J]. Chinese Journal of Biotechnology, 2015, 31(10): 1415-1436(in Chinese).
    [5] 高嘉玮, 朱晓飞, 孙韬, 陈磊, 张卫文. 实验室适应性进化技术在光合蓝细菌底盘工程中的研究进展[J]. 生物工程学报, 2023, 39(8): 3075-3094. GAO JW, ZHU XF, SUN T, CHEN L, ZHANG WW. Advances in using adaptive laboratory evolution technology for engineering of photosynthetic cyanobacteria[J]. Chinese Journal of Biotechnology, 2023, 39(8): 3075-3094(in Chinese).
    [6] WÁGNER DS, VALVERDE-PÉREZ B, PLÓSZ BG. Light attenuation in photobioreactors and algal pigmentation under different growth conditions-model identification and complexity assessment[J]. Algal Research, 2018, 35: 488-499.
    [7] YAMANO T, SATO E, IGUCHI H, FUKUDA Y, FUKUZAWA H. Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(23): 7315-7320.
    [8] ZEEBE RE. On the molecular diffusion coefficients of dissolved CO2, HCO3 and CO32− and their dependence on isotopic mass[J]. Geochimica et Cosmochimica Acta, 2011, 75(9): 2483-2498.
    [9] ZHAI SL, JIANG SC, LIU CC, LI Z, YU T, SUN L, REN GQ, DENG WQ. Liquid sunshine: formic acid[J]. The Journal of Physical Chemistry Letters, 2022, 13(36): 8586-8600.
    [10] JIANG J, LI XW, YANG KG, WANG Y, YE ML, WANG WY, CAO XP, LI C. Formate for enhancing the growth of microalgae and accumulating high-value products[J]. Algal Research, 2023, 75: 103261.
    [11] YAO SY, CAO XP, WANG YC, LI DY, WANG WY, CHEN RY, LI C. Enhancing overall carbon fixation and energy conversion with formate in green microalga Chlamydomonas reinhardtii[J]. Algal Research, 2023, 72: 103108.
    [12] SHIRAISHI T, FUKUSAKI E, MIYAKE C, YOKOTA A, KOBAYASHI A. Formate protects photosynthetic machinery from photoinhibition[J]. Journal of Bioscience and Bioengineering, 2000, 89(6): 564-568.
    [13] JAJOO A, BHARTI S, KAWAMORI A. Interactions of chloride and formate at the donor and the acceptor side of photosystem II[J]. Journal of Bioenergetics and Biomembranes, 2005, 37(1): 49-54.
    [14] ALLAKHVERDIEV SI, YRUELA I, PICOREL R, KLIMOV VV. Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 5050-5054.
    [15] SHEVELA D, KLIMOV V, MESSINGER J. Interactions of photosystem II with bicarbonate, formate and acetate[J]. Photosynthesis Research, 2007, 94(2): 247-264.
    [16] PETROULEAS V, DELIGIANNAKIS Y, DINER B A. Binding of carboxylate anions at the nonheme Fe(II)of PS-II. 2. competition with bicarbonate and effects on the QA/QB electron-transfer rate[J]. Biochimica Et Biophysica Acta-Bioenergetics, 1994, 1188(3): 271-277.
    [17] SAITO K, RUTHERFORD AW, ISHIKITA H. Mechanism of proton-coupled quinone reduction in photosystem II[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): 954-959.
    [18] KLIMOV VV, BARANOV SV. Bicarbonate requirement for the water-oxidizing complex of photosystem II[J]. Biochimica et Biophysica Acta, 2001, 1503(1/2): 187-196.
    [19] STEMLER A, MURPHY JB. Bicarbonate-reversible and irreversible inhibition of photosystem II by monovalent anions[J]. Plant Physiology, 1985, 77(4): 974-977.
    [20] JAJOO A, KATSUTA N, KAWAMORI A. An EPR study of the pH dependence of form捡?敥渠来楦湦敥散牴楳渠杯?漠晰?浯楴捯牳潹扳楴慥汭?晉潉牛浊慝琮攠?慬獡獮楴洠楐汨慹瑳楩潯湬孯?嵹???灤瀠求楩敯摣??業捩牳潴扲楹漬氠漲朰礰?愬渠搴??椴漩琺攠挱核渶漭氱漹朲礮????????ㄠ???ㄠ??????み????ㄇ???找爬?嬰??崠????件??型????力丱??懇捨疾瓹敶?份??娟?嚄?????伮删????倧?书?????????丠′?????唴??????刵?吭伵匸?嘠??????匠??????刬传?剕???敇瑚愬戠潌汉楕挠?攬渠杘楕湅攠敓爬椠湔杉?獎琠牊愮琠敓杴極敤獩?瑳漠?敮渠慴扨汥攠?浦楦捥牣潴戠楯慦氠?當瑥楲汥楸穰慲瑥楳潳湥?漠晣????景数敬摡獳瑴漠捧歬獹季?嵲??乤慥瑨畹牤敥??栭数浨楯捳慰汨??楥漠汤潥杨祹???で?????????????????rate and fatty acid contents of Chlamydomonas reinhardtii[J]. Periodical of Ocean University of China, 2019, 49(9): 50-58(in Chinese).
    [22] LI DY, DONG H, CAO XP, WANG WY, LI C. Enhancing photosynthetic CO2 fixation by assembling metal-organic frameworks on Chlorella pyrenoidosa[J]. Nature Communications, 2023, 14: 5337.
    [23] NAZ I, BANO A. Assessment of phytohormones producing capacity of Stenotrophomonas maltophilia SSA and its interaction with zea mays L[J]. Pakistan Journal of Botany, 2012, 44(1): 465-469.
    [24] FRANK JA, REICH CI, SHARMA S, WEISBAUM JS, WILSON BA, OLSEN GJ. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes[J]. Applied and Environmental Microbiology, 2008, 74(8): 2461-2470.
    [25] 李昱龙, 韩正敏. 嗜麦芽窄食单胞菌在环保和农业生产上的应用[J]. 生物技术通报, 2015, 31(8): 35-43. LI YL, HAN ZM. The applicatioin of Stenotrophomonas maltophilia in environmental remediation and agriculture[J]. Biotechnology Bulletin, 2015, 31(8): 35-43(in Chinese).
    [26] JIA YT, ZHOU MM, CHEN YC, LUO J, HU YY. Carbon selection for nitrogen degradation pathway by Stenotrophomonas maltophilia: based on the balances of nitrogen, carbon and electron[J]. Bioresource Technology, 2019, 294: 122114.
    [27] STEMLER A. Absence of a formate-induced release of bicarbonate from photosystem II[J]. Plant Physiology, 1989, 91(1): 287-290.
    [28] STEMLER A. Inhibition of photosystem II by formate-possible evidence for a direct role of bicarbonate in photosynthetic oxygen evolution[J]. Biochimica et Biophysica Acta, 1980, 593(1): 103-112.
    [29] MAO W, YUAN QQ, QI HG, WANG ZW, MA HW, CHEN T. Recent progress in metaboli
    相似文献
    引证文献
引用本文

邢蒙蒙,郑伟杰,王旺银,曹旭鹏,李灿. 窄食单胞菌对微藻在高浓度甲酸条件下光合生长的促进作用[J]. 生物工程学报, 2025, 41(1): 230-241

复制
分享
文章指标
  • 点击次数:71
  • 下载次数: 213
  • HTML阅读次数: 222
  • 引用次数: 0
历史
  • 收稿日期:2024-03-19
  • 最后修改日期:2024-04-24
  • 在线发布日期: 2025-01-24
  • 出版日期: 2025-01-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司