蛋白表达系统的机理模型和人工智能模型研究进展
作者:
基金项目:

中国科学院战略性先导科技专项(XDB0480000)


Research progress in mechanism models and artificial intelligence models for protein expression systems
Author:
  • YANG Yi

    YANG Yi

    Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DU Jun

    DU Jun

    Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Chunhe

    YANG Chunhe

    Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MA Hongwu

    MA Hongwu

    Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [97]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    蛋白质是生命活动的基础,研究蛋白表达机制对于揭示细胞组织规律与促进生物技术发展至关重要。蛋白质表达是一个涵盖转录、翻译、折叠、转运与翻译后修饰等精密调控的复杂过程,结合蛋白表达数据构建其模型对理解蛋白表达的各种细胞因素和调控机制具有重要意义。本文重点评述了近年来蛋白表达过程机理模型构建和通过人工智能方法分析各种因素对蛋白表达的影响。化学反应网络模型可从转录翻译的底层过程对蛋白表达进行数学建模,可分析各种胞内成分如聚合酶、tRNA等对蛋白表达的影响,但模型参数数量巨大,难以直接实验确定,参数拟合是一个需要解决的难题。与之相对,数据驱动的人工智能模型主要研究目标蛋白的氨基酸序列和相应基因及调控区核苷酸序列对蛋白表达的影响,进而指导通过序列设计提高蛋白表达量。将机理模型和人工智能模型相结合,综合考虑胞内因素和表达序列特征的影响,有望进一步加深对蛋白表达系统的理解,为高价值目标蛋白的高效表达和细胞中不同蛋白的协调表达调控提供理论和技术支持。

    Abstract:

    Proteins are the basic building blocks of life. Studying the protein expression mechanism is essential for understanding the cellular organization principles and the development of biotechnology. Protein expression, involving transcription, translation, folding, and post-translational modification, is a complicatedly regulated process affected by various cellular components and sequence features of the expressed protein. Establishing protein expression models based on expression data is of great significance for probing into the regulatory factors and mechanisms of protein expression. Here we review the recent research progress in the mechanism models for quantitatively simulating the protein expression process and the prediction algorithms based on artificial intelligence for analyzing the regulatory factors. Chemical reaction network models have been developed to mathematically describe the elementary processes in protein expression and simulate the influences of various cellular components such as RNA polymerase and tRNA. However, the experimental determination of the huge number of model parameters is a big challenge. The main objective of data-driven AI models is to study the effects of protein/DNA sequences of the target protein on its expression, and subsequently optimize the sequences to improve protein expression. Methods combining mechanism models and AI models have the potential to deepen our understanding of protein expression processes, providing theoretical and technical support for the efficient production of high-value proteins and coordinate the regulation of different proteins.

    参考文献
    [1] KEASLING JD. Manufacturing molecules through metabolic engineering[J]. Science, 2010, 330(6009): 1355-1358.
    [2] ROSANO GL, CECCARELLI EA. Recombinant protein expression in Escherichia coli: advances and challenges[J]. Frontiers in Microbiology, 2014, 5: 172.
    [3] ZHANG XP, AL-DOSSARY A, HUSSAIN M, SETLOW P, LI JH. Applications of Bacillus subtilis spores in biotechnology and advanced materials[J]. Applied and Environmental Microbiology, 2020, 86(17): e01096-20.
    [4] AHMAD M, HIRZ M, PICHLER H, SCHWAB H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production[J]. Applied Microbiology and Biotechnology, 2014, 98(12): 5301-5317.
    [5] YANG S, SONG LY, WANG J, ZHAO JZ, TANG HT, BAO XM. Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins[J]. Engineering Microbiology, 2024, 4(1): 100122.
    [6] KAIPA JM, KRASNOSELSKA G, OWENS RJ, van den HEUVEL J. Screening of membrane protein production by comparison of transient expression in insect and mammalian cells[J]. Biomolecules, 2023, 13(5): 817.
    [7] LEE KH, KIM DM. Recent advances in development of cell-free protein synthesis systems for fast and efficient production of recombinant proteins[J]. FEMS Microbiology Letters, 2018, 365(17).
    [8] HARTMAN MCT, JOSEPHSON K, LIN CW, SZOSTAK JW. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides[J]. PLoS One, 2007, 2(10): e972.
    [9] LU Y, WELSH JP, SWARTZ JR. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1): 125-130.
    [10] HOFFMANN B, LÖHR F, LAGUERRE A, BERNHARD F, DÖTSCH V. Protein labeling strategies for liquid-state NMR spectroscopy using cell-free synthesis[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2018, 105: 1-22.
    [11] ZHOU JW, HUANG L, LIAN JZ, SHENG JY, CAI J, XU ZN. Reconstruction of the UDP-N-acetylglucosamine biosynthetic pathway in cell-free system[J]. Biotechnology Letters, 2010, 32(10): 1481-1486.
    [12] NUMATA K, MOTODA Y, WATANABE S, OSANAI T, KIGAWA T. Co-expression of two polyhydroxyalkanoate synthase subunits from Synechocystis sp. PCC 6803 by cell-free synthesis and their specific activity for polymerization of 3-hydroxybutyryl-coenzyme A[J]. Biochemistry, 2015, 54(6): 1401-1407.
    [13] BROOKWELL A, OZA JP, CASCHERA F. Biotechnology applications of cell-free expression systems[J]. Life, 2021, 11(12): 1367.
    [14] GREGORIO NE, LEVINE MZ, OZA JP. A user’s guide to cell-free protein synthesis[J]. Methods and Protocols, 2019, 2(1): 24.
    [15] SHIMIZU Y, INOUE A, TOMARI Y, SUZUKI T, YOKOGAWA T, NISHIKAWA K, UEDA T. Cell-free translation reconstituted with purified components[J]. Nature Biotechnology, 2001, 19(8): 751-755.
    [16] KURUMA Y, UEDA T. The PURE system for the cell-free synthesis of membrane proteins[J]. Nature Protocols, 2015, 10(9): 1328-1344.
    [17] DOERR A, de REUS E, van NIES P, van der HAAR M, WEI K, KATTAN J, WAHL A, DANELON C. Modelling cell-free RNA and protein synthesis with minimal systems[J]. Physical Biology, 2019, 16(2): 025001.
    [18] TAGUCHI H, NIWA T. Reconstituted cell-free translation systems for exploring protein folding and aggregation[J]. Journal of Molecular Biology, 2024, 436(19): 168726.
    [19] GANESH RB, MAERKL SJ. Towards self-regeneration: exploring the limits of protein synthesis in the protein synthesis using recombinant elements (PURE) cell-free transcription-translation system[J]. ACS Synthetic Biology, 2024, 13(8): 2555-2566.
    [20] CUI Y, CHEN XJ, WANG Z, LU Y. Cell-free PURE system: evolution and achievements[J]. BioDesign Research, 2022, 2022: 9847014.
    [21] LERMAN JA, HYDUKE DR, LATIF H, PORTNOY VA, LEWIS NE, ORTH JD, SCHRIMPE-RUTLEDGE AC, SMITH RD, ADKINS JN, ZENGLER K, PALSSON BO. In silico method for modelling metabolism and gene product expression at genome scale[J]. Nature Communications, 2012, 3: 929.
    [22] O’BRIEN EJ, LERMAN JA, CHANG RL, HYDUKE DR, PALSSON BØ. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction[J]. Molecular Systems Biology, 2013, 9: 693.
    [23] LIU JK, LLOYD C, AL-BASSAM MM, EBRAHIM A, KIM JN, OLSON C, AKSENOV A, DORRESTEIN P, ZENGLER K. Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen[J]. PLoS Computational Biology, 2019, 15(3): e1006848.
    [24] KARR JR, SANGHVI JC, MACKLIN DN, GUTSCHOW MV, JACOBS JM, BOLIVAL B Jr, ASSAD-GARCIA N, GLASS JI, COVERT MW. A whole-cell computational model predicts phenotype from genotype[J]. Cell, 2012, 150(2): 389-401.
    [25] MACKLIN DN, AHN-HORST TA, CHOI H, RUGGERO NA, CARRERA J, MASON JC, SUN G, AGMON E, DeFELICE MM, MAAYAN I, LANE K, SPANGLER RK, GILLIES TE, PAULL ML, AKHTER S, BRAY SR, WEAVER DS, KESELER IM, KARP PD, MORRISON JH, COVERT MW. Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation[J]. Science, 2020, 369(6502): eaav3751.
    [26] STRICKER J, COOKSON S, BENNETT MR, MATHER WH, TSIMRING LS, HASTY J. A fast, robust and tunable synthetic gene oscillator[J]. Nature, 2008, 456(7221): 516-519.
    [27] GARDNER TS, CANTOR CR, COLLINS JJ. Construction of a genetic toggle switch in Escherichia coli[J]. Nature, 2000, 403(6767): 339-342.
    [28] MOON TS, LOU CB, TAMSIR A, STANTON BC, VOIGT CA. Genetic programs constructed from layered logic gates in single cells[J]. Nature, 2012, 491(7423): 249-253.
    [29] BASU S, GERCHMAN Y, COLLINS CH, ARNOLD FH, WEISS R. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434(7037): 1130-1134.
    [30] GOODWIN BC. Oscillatory behavior in enzymatic control processes[J]. Advances in Enzyme Regulation, 1965, 3: 425-437.
    [31] FEINBERG M. Complex balancing in general kinetic systems[J]. Archive for Rational Mechanics and Analysis, 1972, 49(3): 187-194.
    [32] HORN F, JACKSON R. General mass action kinetics[J]. Archive for Rational Mechanics and Analysis, 1972, 47(2): 81-116.
    [33] KRAMBECK FJ. The mathematical structure of chemical kinetics in homogeneous single-phase systems[J]. Archive for Rational Mechanics and Analysis, 1970, 38(5): 317-347.
    [34] KLIPP E, NORDLANDER B, KRÜGER R, GENNEMARK P, HOHMANN S. Integrative model of the response of yeast to osmotic shock[J]. Nature Biotechnology, 2005, 23(8): 975-982.
    [35] ELOWITZ MB, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338.
    [36] GUPTA A, KHAMMASH M. Sensitivity analysis for stochastic chemical reaction networks with multiple time-scales[J]. Electronic Journal of Probability, 2014, 19: 1-53.
    [37] RAO CV, ARKIN AP. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm[J]. The Journal of Chemical Physics, 2003, 118(11): 4999-5010.
    [38] BARKAI N, LEIBLER S. Robustness in simple biochemical networks[J]. Nature, 1997, 387(6636): 913-917.
    [39] THATTAI M, van OUDENAARDEN A. Intrinsic noise in gene regulatory networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(15): 8614-8619.
    [40] ZOURIDIS H, HATZIMANIKATIS V. A model for protein translation: polysome self-organization leads to maximum protein synthesis rates[J]. Biophysical Journal, 2007, 92(3): 717-730.
    [41] MEHRA A, HATZIMANIKATIS V. An algorithmic framework for genome-wide modeling and analysis of translation networks[J]. Biophysical Journal, 2006, 90(4): 1136-1146.
    [42] STÖGBAUER T, WINDHAGER L, ZIMMER R, RÄDLER JO. Experiment and mathematical modeling of gene expression dynamics in a cell-free system[J]. Integrative Biology, 2012, 4(5): 494-501.
    [43] TUZA ZA, SIEGAL-GASKINS D, KIM J, SZEDERKÉNYI G. Analysis-based parameter estimation of an in vitro transcription-translation system[C]. 2015 European Control Conference (ECC). July 15-17, 2015, Linz, Austria. IEEE, 2015: 1560-1566.
    [44] MARSHALL R, NOIREAUX V. Quantitative modeling of transcription and translation of an all-E. coli cell-free system[J]. Scientific Reports, 2019, 9(1): 11980.
    [45] MATSUBAYASHI H, UEDA T. Purified cell-free systems as standard parts for synthetic biology[J]. Current Opinion in Chemical Biology, 2014, 22: 158-162.
    [46] MAVELLI F, MARANGONI R, STANO P. A simple protein synthesis model for the PURE system operation[J]. Bulletin of Mathematical Biology, 2015, 77(6): 1185-1212.
    [47] MATSUURA T, TANIMURA N, HOSODA K, YOMO T, SHIMIZU Y. Reaction dynamics analysis of a reconstituted Escherichia coli protein translation system by computational modeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8): E1336-E1344.
    [48] MATSUURA T, HOSODA K, SHIMIZU Y. Robustness of a reconstituted Escherichia coli protein translation system analyzed by computational modeling[J]. ACS Synthetic Biology, 2018, 7(8): 1964-1972.
    [49] JURADO Z, PANDEY A, MURRAY RM. A chemical reaction network model of PURE[J]. bioRxiv, 2023: 1-16.
    [50] RICHARD P, MANLEY JL. Transcription termination by nuclear RNA polymerases[J]. Genes & Development, 2009, 23(11): 1247-1269.
    [51] MOORE MJ, PROUDFOOT NJ. Pre-mRNA processing reaches back to transcription and ahead to translation[J]. Cell, 2009, 136(4): 688-700.
    [52] KOZAK M. Initiation of translation in prokaryotes and eukaryotes[J]. Gene, 1999, 234(2): 187-208.
    [53] NOLLER HF, YUSUPOV MM, YUSUPOVA GZ, BAUCOM A, CATE JHD. Translocation of tRNA during protein synthesis[J]. FEBS Letters, 2002, 514(1): 11-16.
    [54] RODNINA MV, WINTERMEYER W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms[J]. Annual Review of Biochemistry, 2001, 70: 415-435.
    [55] KISSELEV LL, BUCKINGHAM RH. Translational termination comes of age[J]. Trends in Biochemical Sciences, 2000, 25(11): 561-566.
    [56] POOLE W, PANDEY A, SHUR A, TUZA ZA, MURRAY RM. BioCRNpyler: Compiling chemical reaction networks from biomolecular parts in diverse contexts[J]. PLoS Computational Biology, 2022, 18(4): e1009987.
    [57] PANDEY A, POOLE W, SWAMINATHAN A, HSIAO V, MURRAY RM. Fast and flexible simulation and parameter estimation for synthetic biology using bioscrape[J]. Journal of Open Source Software, 2023, 8(83): 5057.
    [58] DOBSON CM. Experimental investigation of protein folding and misfolding[J]. Methods, 2004, 34(1): 4-14.
    [59] ENGLANDER SW, MAYNE L, KRISHNA MMG. Protein folding and misfolding: mechanism and principles[J]. Quarterly Reviews of Biophysics, 2007, 40(4): 287-326.
    [60] YE HQ, HAN Y, LI P, SU ZD, HUANG YQ. The role of post-translational modifications on the structure and function of tau protein[J]. Journal of Molecular Neuroscience, 2022, 72(8): 1557-1571.
    [61] OWJI H, NEZAFAT N, NEGAHDARIPOUR M, HAJIEBRAHIMI A, GHASEMI Y. A comprehensive review of signal peptides: structure, roles, and applications[J]. European Journal of Cell Biology, 2018, 97(6): 422-441.
    [62] AKOPIAN D, SHEN K, ZHANG X, SHAN SO. Signal recognition particle: an essential protein-targeting machine[J]. Annual Review of Biochemistry, 2013, 82: 693-721.
    [63] BONIFACINO JS, GLICK BS. The mechanisms of vesicle budding and fusion[J]. Cell, 2004, 116(2): 153-166.
    [64] LI FR, CHEN Y, QI Q, WANG YY, YUAN L, HUANG MT, ELSEMMAN IE, FEIZI A, KERKHOVEN EJ, NIELSEN J. Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints[J]. Nature Communications, 2022, 13(1): 2969.
    [65] ZHAO M, YUAN ZQ, WU LT, ZHOU SH, DENG Y. Precise prediction of promoter strength based on a de novo synthetic promoter library coupled with machine learning[J]. ACS Synthetic Biology, 2022, 11(1): 92-102.
    [66] PAUL S, OLYMON K, MARTINEZ GS, SARKAR S, YELLA VR, KUMAR A. MLDSPP: bacterial promoter prediction tool using DNA structural properties with machine learning and explainable AI[J]. Journal of Chemical Information and Modeling, 2024, 64(7): 2705-2719.
    [67] WANG Y, TAI SW, ZHANG SQ, SHENG N, XIE XP. PromGER: promoter prediction based on graph embedding and ensemble learning for eukaryotic sequence[J]. Genes, 2023, 14(7): 1441.
    [68] UMAROV RK, SOLOVYEV VV. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks[J]. PLoS One, 2017, 12(2): e0171410.
    [69] OUBOUNYT M, LOUADI Z, TAYARA H, CHONG KT. DeePromoter: robust promoter predictor using deep learning[J]. Frontiers in Genetics, 2019, 10: 286.
    [70] MA ZW, ZHAO JP, TIAN J, ZHENG CH. DeeProPre: a promoter predictor based on deep learning[J]. Computational Biology and Chemistry, 2022, 101: 107770.
    [71] WANG Y, WANG HC, WEI L, LI SL, LIU LY, WANG XW. Synthetic promoter design in Escherichia coli based on a deep generative network[J]. Nucleic Acids Research, 2020, 48(12): 6403-6412.
    [72] PIPOLI V, CAPPELLI M, PALLADINI A, PELUSO C, LOVINO M, FICARRA E. Predicting gene expression levels from DNA sequences and post-transcriptional information with transformers[J]. Computer Methods and Programs in Biomedicine, 2022, 225: 107035.
    [73] ZENG M, WU YF, LU CQ, ZHANG FH, WU FX, LI M. DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding[J]. Briefings in Bioinformatics, 2022, 23(1): bbab360.
    [74] DEVLIN J, CHANG MW, LEE K, TOUTANOVA K, ASSOC COMPUTAT L. BERT: pre-training of deep bidirectional transformers for language understanding[C]. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2019), 2019: 4171-4186.
    [75] JI YR, ZHOU ZH, LIU H, DAVULURI RV. DNABERT: pre-trained bidirectional encoder representations from transformers model for DNA-language in genome[J]. Bioinformatics, 2021, 37(15): 2112-2120.
    [76] LE NQK, HO QT, NGUYEN VN, CHANG JS. BERT-Promoter: an improved sequence-based predictor of DNA promoter using BERT pre-trained model and SHAP feature selection[J]. Computational Biology and Chemistry, 2022, 99: 107732.
    [77] XIAO X, XU ZC, QIU WR, WANG P, GE HT, CHOU KC. iPSW(2L)-PseKNC: a two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition[J]. Genomics, 2019, 111(6): 1785-1793.
    [78] LI YZ, WEI XM, YANG QL, XIONG A, LI XF, ZOU Q, CUI FF, ZHANG ZL. msBERT-Promoter: a multi-scale ensemble predictor based on BERT pre-trained model for the two-stage prediction of DNA promoters and their strengths[J]. BMC Biology, 2024, 22(1): 126.
    [79] SHINE J, DALGARNO L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites[J]. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(4): 1342-1346.
    [80] GILLIOT PA, GOROCHOWSKI TE. Transfer learning for cross-context prediction of protein expression from 5′UTR sequence[J]. Nucleic Acids Research, 2024, 52(13): e58.
    [81] CHU YY, YU D, LI YP, HUANG KX, SHEN Y, CONG L, ZHANG J, WANG MD. A 5′UTR language model for decoding untranslated regions of mRNA and function predictions[J]. Nature Machine Intelligence, 2024, 6(4): 449-460.
    [82] ZHANG PC, WANG HC, XU HW, WEI L, LIU LY, HU ZR, WANG XW. Deep flanking sequence engineering for efficient promoter design using DeepSEED[J]. Nature Communications, 2023, 14(1): 6309.
    [83] WANG HC, DU QX, WANG Y, XU HW, WEI Z, WANG XW. GPro: generative AI-empowered toolkit for promoter design[J]. Bioinformatics, 2024, 40(3): btae123.
    [84] PAN SC, WANG HY, ZHANG H, TANG Z, XU LQ, YAN ZX, HU Y. UTR-Insight: integrating deep learning for efficient 5′UTR discovery and design[J]. BMC Genomics, 2025, 26(1): 107.
    [85] KOMAR AA. A code within a code: how codons fine-tune protein folding in the cell[J]. Biochemistry Biokhimiia, 2021, 86(8): 976-991.
    [86] SHARP PM, LI WH. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications[J]. Nucleic Acids Research, 1987, 15(3): 1281-1295.
    [87] dos REIS M, SAVVA R, WERNISCH L. Solving the riddle of codon usage preferences: a test for translational selection[J]. Nucleic Acids Research, 2004, 32(17): 5036-5044.
    [88] DAS S, ROYMONDAL U, SAHOO S. Analyzing gene expression from relative codon usage bias in yeast genome: a statistical significance and biological relevance[J]. Gene, 2009, 443(1/2): 121-131.
    [89] ZAYTSEV K, BOGATYREVA N, FEDOROV A. Link between individual codon frequencies and protein expression: going beyond codon adaptation index[J]. International Journal of Molecular Sciences, 2024, 25(21): 11622.
    [90] BOËL G, LETSO R, NEELY H, PRICE WN, WONG KH, SU M, LUFF J, VALECHA M, EVERETT JK, ACTON TB, XIAO R, MONTELIONE GT, AALBERTS DP, HUNT JF. Codon influence on protein expression in E. coli correlates with mRNA levels[J]. Nature, 2016, 529(7586): 358-363.
    [91] VERMA M, CHOI J, COTTRELL KA, LAVAGNINO Z, THOMAS EN, PAVLOVIC-DJURANOVIC S, SZCZESNY P, PISTON DW, ZAHER HS, PUGLISI JD, DJURANOVIC S. A short translational ramp determines the efficiency of protein synthesis[J]. Nature Communications, 2019, 10(1): 5774.
    [92] KIM DJ, KIM J, LEE DH, LEE J, WOO HM. DeepTESR: a deep learning framework to predict the degree of translational elongation short ramp for gene expression control[J]. ACS Synthetic Biology, 2022, 11(5): 1719-1726.
    [93] CAMBRAY G, GUIMARAES JC, ARKIN AP. Evaluation of 244, 000 synthetic sequences reveals design principles to optimize translation in Escherichia coli[J]. Nature Biotechnology, 2018, 36(10): 1005-1015.
    [94] LIU TY, ZHANG YY, LI YJ, XU GS, GAO H, WANG PT, TU T, LUO HY, WU NF, YAO B, LIU B, GUAN FF, HUANG HQ, TIAN J. Effective gene expression prediction and optimization from protein sequences[J]. Advanced Science, 2025: e2407664.
    [95] DING ZD, GUAN FF, XU GS, WANG YC, YAN YR, ZHANG W, WU NF, YAO B, HUANG HQ, TULLER T, TIAN J. MPEPE, a predictive approach to improve protein expression in E. coli based on deep learning[J]. Computational and Structural Biotechnology Journal, 2022, 20: 1142-1153.
    [96] JAIN R, JAIN A, MAURO E, LESHANE K, DENSMORE D. ICOR: improving codon optimization with recurrent neural networks[J]. BMC Bioinformatics, 2023, 24(1): 132.
    [97] NIKOLADOS EM, WONGPROMMOON A, AODHA OM, CAMBRAY G, OYARZÚN DA. Accuracy and data efficiency in deep learning models of protein expression[J]. Nature Communications, 2022, 13(1): 7755.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨毅,杜军,杨春贺,马红武. 蛋白表达系统的机理模型和人工智能模型研究进展[J]. 生物工程学报, 2025, 41(3): 1079-1097

复制
分享
文章指标
  • 点击次数:0
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-11-26
  • 最后修改日期:2025-03-06
  • 在线发布日期: 2025-03-29
  • 出版日期: 2025-03-25
文章二维码
您是第5968812位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司