硝酸盐诱导的GARP类转录因子AhNIGT1.2调控花生结瘤的功能分析
作者:
基金项目:

山西省自然科学基金面上项目(20210302123365);国家重点研发计划(2021YFD1600600);山西农业大学高层次人才启动经费(2021xG003,2022xG0014);山西省后稷实验室自主研发项目(202105D121010-23,202204010910001-33)


Functional analysis of a nitrate-induced GARP transcription factor AhNIGT1.2 in peanut nodulation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • | | | |
  • 文章评论
    摘要:

    花生是重要的经济及油料作物,富含丰富的蛋白质和油脂等,在我国广泛种植。花生能与根瘤菌共生形成根瘤,根瘤的固氮酶能将空气中N2转化为自身可吸收利用的氨态氮。解析结瘤固氮对避免化肥过度施用、发展可持续农业具有积极意义。本研究通过生物信息学分析鉴定到一个主要在花生根瘤中表达的NIGT家族成员AhNIGT1.2。进一步的时空表达分析表明AhNIGT1.2在根瘤中高表达,且显著响应高氮、低氮、高磷、低磷和根瘤菌处理,组化染色表明该基因主要在发育的根瘤中表达,并在成熟根瘤中和花生根系连接处表达。亚细胞定位表明35S::AhNIGT1.2-GFP融合蛋白定位于烟草表皮细胞的细胞核中。进一步的功能研究发现AhNIGT1.2-OE显著提高了花生的结瘤数量,AhNIGT1.2-RNAi显著抑制花生根瘤数量,表明AhNIGT1.2正向调控花生结瘤。对AhNIGT1.2-OE根中硝酸盐转运和信号通路中的基因表达进行分析发现,NRT1.2NRT2.4NLP1NLP7的表达量显著降低,表明AhNIGT1.2可能通过影响硝酸盐转运和NLP1相关基因的表达进而调控花生的结瘤。对转化的AhNIGT1.2-OE和对照根进行转录组分析,发现过表达AhNIGT1.2会显著富集硝酸盐响应、结瘤因子信号通路、四萜类生物合成酶和类胡萝卜素生物合成等途径的差异表达基因。综上所述,AhNIGT1.2可能通过影响硝酸盐转运、硝酸盐响应等通路调控花生的结瘤过程。本研究对解析氮磷营养调控豆科植物结瘤固氮的分子机制和创制在高氮环境高效结瘤固氮的豆科作物具有重要意义。

    Abstract:

    Peanut, a major economic and oil crop known for the high protein and oil content, is extensively cultivated in China. Peanut plants have the ability to form nodules with rhizobia, where the nitrogenase converts atmospheric nitrogen into ammonia nitrogen that can be utilized by the plants. Analysis of nodule fixation is of positive significance for avoiding overapplication of chemical fertilizer and developing sustainable agriculture. In this study, AhNIGT1.2, a member of the NIGT family predominantly expressed in peanut nodules, was identified by bioinformatics analysis. Subsequent spatiotemporal expression analysis revealed that AhNIGT1.2 was highly expressed in nodules and showed significant responses to high nitrogen, low nitrogen, high phosphorus, low phosphorus, and rhizobia treatments. Histochemical staining indicated that the gene was primarily expressed in developing nodules and at the connection region between mature nodules and peanut roots. The fusion protein AhNIGT1.2-GFP was located in the nucleus of tobacco epidermal cells. The AhNIGT1.2-OE significantly increased the number of peanut nodules, while AhNIGT1.2-RNAi reduced the number of nodules, which suggested a positive regulatory role of AhNIGT1.2 in peanut nodulation. The AhNIGT1.2-OE in roots down-regulated the expression levels of NRT1.2, NRT2.4, NLP1, and NLP7, which indicated that AhNIGT1.2 influenced peanut nodulation by modulating nitrate transport and the expression of NLP genes. The transcriptome analysis of AhNIGT1.2-OE and control roots revealed that overexpressing AhNIGT1.2 significantly enriched the differentially expressed genes associated with nitrate response, nodulation factor pathway, enzymes for triterpene biosynthesis, and carotenoid biosynthesis. These findings suggest that AhNIGT1.2 play a key role in peanut nodulation by regulating nitrate transport and response and other related pathways. This study gives insights into the molecular mechanisms of nitrogen and phosphorus in regulating legume nodulation and nitrogen fixation, and sheds light on the development of legume crops that can efficiently fix nitrogen in high nitrogen environments.

    参考文献
    [1] ZHAO BY, JIA XQ, YU N, MURRAY JD, YI KK, WANG ET. Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants[J]. The New Phytologist, 2024, 242(4): 1507-1522.
    [2] OHYAMA T, FUJIKAKE H, YASHIMA H, TANABATA S, ISHIKAWA S, SATO T, NISHIWAKI T, OHTAKE N, SUEYOSHI K, ISHII S, FUJIMAKI S. Effect of nitrate on nodulation and nitrogen fixation of soybean[J]. Soybean Physiology and Biochemistry, 2011, 10: 333-364.
    [3] SUZAKI T, YORO E, KAWAGUCHI M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria[J]. International Review of Cell and Molecular Biology, 2015, 316: 111-158.
    [4] HERRIDGE DF, PEOPLES MB, BODDEY RM. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant and Soil, 2008, 311(1): 1-18.
    [5] WANG X, QIU ZM, ZHU WJ, WANG N, BAI MY, KUANG HQ, CAI CL, ZHONG XB, KONG FJ, LÜ PT, GUAN YF. The NAC transcription factors SNAP1/2/3/4 are central regulators mediating high nitrogen responses in mature nodules of soybean[J]. Nature Communications, 2023, 14: 4711.
    [6] LIN JS, ROSWANJAYA YP, KOHLEN W, STOUGAARD J, REID D. Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus[J]. Nature Communications, 2021, 12(1): 6544.
    [7] FU MD, YAO XL, LI XL, LIU J, BAI MY, FANG ZJ, GONG JM, GUAN YF, XIE F. GmNLP1 and GmNLP4 activate nitrate-induced CLE peptides NIC1a/b to mediate nitrate-regulated root nodulation[J]. The Plant Journal, 2024, 119(2): 783-795.
    [8] LIN JS, LI XL, LUO ZP, MYSORE KS, WEN JQ, XIE F. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nature Plants, 2018, 4(11): 942-952.
    [9] WANG Q, HUANG YG, REN ZJ, ZHANG XX, REN J, SU JQ, ZHANG C, TIAN J, YU YJ, GAO GF, LI LG, KONG ZS. Transfer cells mediate nitrate uptake to control root nodule symbiosis[J]. Nature Plants, 2020, 6(7): 800-808.
    [10] YE JY, TIAN WH, JIN CW. A reevaluation of the contribution of NRT1.1 to nitrate uptake in Arabidopsis under low-nitrate supply[J]. FEBS Letters, 2019, 593(15): 2051-2059.
    [11] YONG Z, KOTUR Z, GLASS ADM. Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots[J]. The Plant Journal, 2010, 63(5): 739-748.
    [12] ZHENG XJ, HE K, KLEIST T, CHEN F, LUAN S. Anion channel SLAH3 functions in nitrate-dependent alleviation of ammonium toxicity in Arabidopsis[J]. Plant, Cell & Environment, 2015, 38(3): 474-486.
    [13] RIVERAS E, ALVAREZ JM, VIDAL EA, OSES C, VEGA A, GUTIÉRREZ RA. The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis[J]. Plant Physiology, 2015, 169(2): 1397-1404.
    [14] LUO ZP, WANG J, LI FY, LU YT, FANG ZJ, FU MD, MYSORE KS, WEN JQ, GONG JM, MURRAY JD, XIE F. The small peptide CEP1 and the NIN-like protein NLP1 regulate NRT2.1 to mediate root nodule formation across nitrate concentrations[J]. The Plant Cell, 2023, 35(2): 776-794.
    [15] ZHUANG QL, XUE YB, YAO ZF, ZHU SN, LIANG CY, LIAO H, TIAN J. Phosphate starvation responsive GmSPX5 mediates nodule growth through interaction with GmNF-YC4 in soybean[J]. The Plant Journal, 2021, 108(5): 1422-1438.
    [16] XING XZ, DU H, YANG ZW, LI XH, KONG YB, LI WL, ZHANG CY. GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean[J]. BMC Plant Biology, 2022, 22(1): 161.
    [17] CHEN LY, QIN L, ZHOU LL, LI XX, CHEN ZC, SUN LL, WANG WF, LIN ZH, ZHAO J, YAMAJI N, MA JF, GU M, XU GH, LIAO H. A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean[J]. The New Phytologist, 2019, 221(4): 2013-2025.
    [18] QIN L, ZHAO J, TIAN J, CHEN LY, SUN ZA, GUO YX, LU X, GU M, XU GH, LIAO H. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean[J]. Plant Physiology, 2012, 159(4): 1634-1643.
    [19] CHAN C. Coordinating phosphorus and jasmonate signaling: PHR1 partners with transcriptional regulators[J]. The Plant Cell, 2023, 35(6): 1960-1961.
    [20] KLEMPNAUER KH, GONDA TJ, BISHOP JM. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene[J]. Cell, 1982, 31(2 Pt 1): 453-463.
    [21] PEOPLES MB, GILLER KE, JENSEN ES, HERRIDGE DF. Quantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulses[J]. Plant and Soil, 2021, 469(1): 1-14.
    [22] MORGANTE C, ANGELINI J, CASTRO S, FABRA A. Role of rhizobial exopolysaccharides in crack entry/intercellular infection of peanut[J]. Soil Biology and Biochemistry, 2005, 37(8): 1436-1444.
    [23] MAEDA Y, KONISHI M, KIBA T, SAKURABA Y, SAWAKI N, KURAI T, UEDA Y, SAKAKIBARA H, YANAGISAWA S. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis[J]. Nature Communications, 2018, 9: 1376.
    [24] KIBA T, INABA J, KUDO T, UEDA N, KONISHI M, MITSUDA N, TAKIGUCHI Y, KONDOU Y, YOSHIZUMI T, OHME-TAKAGI M, MATSUI M, YANO K, YANAGISAWA S, SAKAKIBARA H. Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily[J]. The Plant Cell, 2018, 30(4): 925-945.
    [25] LI YH, PEI Y, SHEN YT, ZHANG R, KANG MM, MA YL, LI DY, CHEN YH. Progress in the self-regulation system in legume nodule development-AON (autoregulation of nodulation)[J]. International Journal of Molecular Sciences, 2022, 23(12): 6676.
    [26] LAWS MT, GRAVES WR. Nitrogen inhibits nodulation and reversibly suppresses nitrogen fixation in nodules of Alnus maritima[J]. Journal of the American Society for Horticultural Science, 2005, 130(4): 496-499.
    [27] KATO K, KANAHAMA K, KANAYAMA Y. Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules[J]. Journal of Plant Physiology, 2010, 167(3): 238-241.
    [28] BACANAMWO M, HARPER JE. Regulation of nitrogenase activity in Bradyrhizobium japonicum/soybean symbiosis by plant N status as determined by shoot C: N ratio[J]. Physiologia Plantarum, 1996, 98(3): 529-538.
    [29] ZHUO MN, SAKURABA Y, YANAGISAWA S. Dof1.7 and NIGT1 transcription factors mediate multilayered transcriptional regulation for different expression patterns of NITRATE TRANSPORTER2 genes under nitrogen deficiency stress[J]. The New Phytologist, 2024, 242(5): 2132-2147.
    [30] LUO ZP, MOREAU C, WANG J, FRUGIER F, XIE F. NLP1 binds the CEP1 signalling peptide promoter to repress its expression in response to nitrate[J]. The New Phytologist, 2022, 234(5): 1547-1552.
    [31] NISHIDA H, TANAKA S, HANDA Y, ITO M, SAKAMOTO Y, MATSUNAGA S, BETSUYAKU S, MIURA K, SOYANO T, KAWAGUCHI M, SUZAKI T. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nature Communications, 2018, 9(1): 499.
    [32] XU N, WANG RC, ZHAO LF, ZHANG CF, LI ZH, LEI Z, LIU F, GUAN PZ, CHU ZH, CRAWFORD NM, WANG Y. The Arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators[J]. The Plant Cell, 2016, 28(2): 485-504.
    [33] WANG X, WANG HF, CHEN Y, SUN MM, WANG Y, CHEN YF. The transcription factor NIGT1.2 modulates both phosphate uptake and nitrate influx during phosphate starvation in Arabidopsis and maize[J]. The Plant Cell, 2020, 32(11): 3519-3534.
    [34] UEDA Y, KIBA T, YANAGISAWA S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of SPX genes[J]. The Plant Journal: for Cell and Molecular Biology, 2020, 102(3): 448-466.
    [35] ZHANG YX, ZHANG QQ, GUO MN, WANG XQ, LI TJ, WU QY, LI LH, YI KK, RUAN WY. NIGT1 represses plant growth and mitigates phosphate starvation signaling to balance the growth response tradeoff in rice[J]. Journal of Integrative Plant Biology, 2023, 65(8): 1874-1889.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李晓亮,何海通,何苏秦,王路瑶,张威,孔照胜,王利祥. 硝酸盐诱导的GARP类转录因子AhNIGT1.2调控花生结瘤的功能分析[J]. 生物工程学报, 2025, 41(2): 657-669

复制
分享
文章指标
  • 点击次数:107
  • 下载次数: 168
  • HTML阅读次数: 84
  • 引用次数: 0
历史
  • 收稿日期:2024-05-17
  • 最后修改日期:2024-06-03
  • 在线发布日期: 2025-02-11
  • 出版日期: 2025-02-25
文章二维码
您是第5996633位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司