代谢工程改造大肠杆菌生产O-乙酰-l-高丝氨酸
作者:
基金项目:

国家重点研发计划(2018YFA0901400)


Metabolic engineering of Escherichia coli for the biosynthesis of O-acetyl-l-homoserine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    O-乙酰-l-高丝氨酸(O-acetyl-l-homoserine,OAH)是一种平台化合物,可用于生产l-蛋氨酸和其他有价值的化合物,但产量低和转化率低等问题限制了其工业化生产和应用。为了解决这一问题,本研究以前期构建的l-高丝氨酸宿主大肠杆菌HS33为底盘,采用系统代谢工程策略构建了一株高产OAH的菌株。首先,强化磷酸烯醇式丙酮酸(phosphoenolpyruvate,PEP)积累、丙酮酸利用以及OAH合成途径(过表达aspBaspAthrAC1034T),获得积累13.37 g/L OAH的初始菌株;随后,整合筛选的辅因子供应基因解决还原力和能量供应问题,将产量提升至15.79 g/L;之后,进一步强化乙酸回用途径,改善乙酰辅酶A供应,结合多源乙酰基转移酶MetX表达使得改造获得的工程菌株OAH28的OAH产量提升至17.49 g/L。最终,在5 L发酵罐中进行生产性能测试,工程菌株OAH产量达到47.12 g/L,葡萄糖转化率为32%,生产强度为0.59 g/(L·h)。上述研究结果为OAH的代谢工程改造实现产量提升提供了一定的理论基础,也为工业化生产提供了有效的借鉴和参考。

    Abstract:

    O-acetyl-l-homoserine (OAH) is a promising platform compound for the production of l-methionine and other valuable compounds, while its low yield and low conversion rate limit the industrial application. To solve these problems, we constructed a strain for high OAH production with the previously constructed l-homoserine producer Escherichia coli HS33 as the chassis by systematic metabolic engineering. Firstly, PEP accumulation, pyruvate utilization, and OAH synthesis pathway (overexpressing aspB, aspA, and thrAC1034T) were enhanced to obtain an initial strain accumulating 13.37 g/L OAH. Subsequently, the co-factor synthesis genes were integrated to supply reducing power and energy, which increased the yield to 15.79 g/L. The OAH yield of the engineered strain OAH28 was further increased to 17.49 g/L by strengthening the acetic acid reuse pathway, improving the supply of acetyl-CoA, and regulating the expression of MetX from different sources. Finally, in a 5 L fermenter, OAH28 achieved an OAH titer of 47.12 g/L, with a glucose conversion rate of 32% and productivity of 0.59 g/(L·h). The results lay a foundation for increasing the OAH production by metabolic engineering and give insights into the industrial production of OAH.

    参考文献
    [1] HUANG JF, LIU ZQ, JIN LQ, TANG XL, SHEN ZY, YIN HH, ZHENG YG. Metabolic engineering of Escherichia coli for microbial production of l-methionine[J]. Biotechnology and Bioengineering, 2017, 114(4): 843-851.
    [2] HONG KK, KIM JH, YOON JH, PARK HM, CHOI SJ, SONG GH, LEE JC, YANG YL, SHIN HK, KIM JN, CHO KH, LEE JH. O-succinyl-l-homoserine-based C4-chemical production: succinic acid, homoserine lactone, γ-butyrolactone, γ-butyrolactone derivatives, and 1,4-butanediol[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(10): 1517-1524.
    [3] LI YJ, WEI HB, WANG T, XU QY, ZHANG CL, FAN XG, MA Q, CHEN N, XIE XX. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives[J]. Bioresource Technology, 2017, 245(Pt B): 1588-1602.
    [4] LI B, HUANG LG, YANG YF, CHEN YY, ZHOU XJ, LIU ZQ, ZHENG YG. Metabolic engineering and pathway construction for O-acetyl-l-homoserine production in Escherichia coli[J]. 3 Biotech, 2023, 13(6): 173.
    [5] LIU P, ZHANG B, YAO ZH, LIU ZQ, ZHENG YG. Multiplex design of the metabolic network for production of l-homoserine in Escherichia coli[J]. Applied and Environmental Microbiology, 2020, 86(20): e01477-20.
    [6] KAWANO Y, SUZUKI K, OHTSU I. Current understanding of sulfur assimilation metabolism to biosynthesize l-cysteine and recent progress of its fermentative overproduction in microorganisms[J]. Applied Microbiology and Biotechnology, 2018, 102(19): 8203-8211.
    [7] WEI L, WANG Q, XU N, CHENG J, ZHOU W, HAN GQ, JIANG HF, LIU J, MA YH. Combining protein and metabolic engineering strategies for high-level production of O-acetylhomoserine in Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(5): 1153-1167.
    [8] YUAN SF, NAIR PH, BORBON D, COLEMAN SM, FAN PH, LIN WL, ALPER HS. Metabolic engineering of E. coli for β-alanine production using a multi-biosensor enabled approach[J]. Metabolic Engineering, 2022, 74: 24-35.
    [9] SU YW, GUO QQ, WANG S, ZHANG X, WANG J. Effects of betaine supplementation on l-threonine fed-batch fermentation by Escherichia coli[J]. Bioprocess and Biosystems Engineering, 2018, 41(10): 1509-1518.
    [10] LI H, WANG BS, ZHU LH, CHENG S, LI YR, ZHANG L, DING ZY, GU ZH, SHI GY. Metabolic engineering of Escherichia coli W3110 for l-homoserine production[J]. Process Biochemistry, 2016, 51(12): 1973-1983.
    [11] LIN H, CASTRO NM, BENNETT GN, SAN KY. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering[J]. Applied Microbiology and Biotechnology, 2006, 71(6): 870-874.
    [12] XU JM, LI JQ, ZHANG B, LIU ZQ, ZHENG YG. Fermentative production of the unnatural amino acid l-2-aminobutyric acid based on metabolic engineering[J]. Microbial Cell Factories, 2019, 18(1): 43.
    [13] MU QX, ZHANG SS, MAO XJ, TAO Y, YU B. Highly efficient production of l-homoserine in Escherichia coli by engineering a redox balance route[J]. Metabolic Engineering, 2021, 67: 321-329.
    [14] SHEN YP, LIAO YL, LU Q, HE X, YAN ZB, LIU JZ. ATP and NADPH engineering of Escherichia coli to improve the production of 4-hydroxyphenylacetic acid using CRISPRi[J]. Biotechnology for Biofuels, 2021, 14(1): 100.
    [15] GECSE G, LABUNSKAITE R, PEDERSEN M, KILSTRUP M, JOHANSON T. Minimizing acetate formation from overflow metabolism in Escherichia coli: comparison of genetic engineering strategies to improve robustness toward sugar gradients in large-scale fermentation processes[J]. Frontiers in Bioengineering and Biotechnology, 2024, 12: 1339054.
    [16] SEONG W, HAN GH, LIM HS, BAEK JI, KIM SJ, KIM D, KIM SK, LEE H, KIM H, LEE SG, LEE DH. Adaptive laboratory evolution of Escherichia coli lacking cellular byproduct formation for enhanced acetate utilization through compensatory ATP consumption[J]. Metabolic Engineering, 2020, 62: 249-259.
    [17] LONG CP, AU J, SANDOVAL NR, GEBRESELASSIE NA, ANTONIEWICZ MR. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli[J]. Nature Communications, 2017, 8: 14316.
    [18] SUNDARA SEKAR B, SEOL E, PARK S. Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd)[J]. Biotechnology for Biofuels, 2017, 10: 85.
    [19] PINHAL S, ROPERS D, GEISELMANN J, de JONG H. Acetate metabolism and the inhibition of bacterial growth by acetate[J]. Journal of Bacteriology, 2019, 201(13): e00147-e00119.
    [20] ENJALBERT B, MILLARD P, DINCLAUX M, PORTAIS JC, LÉTISSE F. Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway[J]. Scientific Reports, 2017, 7: 42135.
    [21] PHADTARE S, INOUYE M. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli[J]. Journal of Bacteriology, 2001, 183(4): 1205-1214.
    [22] DE DIEGO PUENTE T, GALLEGO-JARA J, CASTAÑO-CEREZO S, BERNAL SÁNCHEZ V, FERNÁNDEZ ESPÍN V, GARCÍA DELA TORRE J, MANJÓN RUBIO A, CÁNOVAS DÍAZ M. The protein acetyltransferase PatZ from Escherichia coli is regulated by autoacetylation-induced oligomerization[J]. The Journal of Biological Chemistry, 2015, 290(38): 23077-23093.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄良刚,高峰,许诺然,周俊平,牛坤,张博,柳志强,郑裕国. 代谢工程改造大肠杆菌生产O-乙酰-l-高丝氨酸[J]. 生物工程学报, 2025, 41(1): 256-270

复制
分享
文章指标
  • 点击次数:143
  • 下载次数: 455
  • HTML阅读次数: 242
  • 引用次数: 0
历史
  • 收稿日期:2024-03-08
  • 最后修改日期:2024-05-07
  • 在线发布日期: 2025-01-24
  • 出版日期: 2025-01-25
文章二维码
您是第6035316位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司