微生物细胞代谢与环境适应调控研究进展
作者:
基金项目:

榆林中科洁净能源创新研究院能源革命专项资助(E411040705)


Advances in the regulation of microbial cell metabolism and environmental adaptation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [74]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    感应代谢与环境变化并做出自适应调控是细胞生命活动的关键。近年来,随着合成生物学技术的进步,越来越多的细胞感知代谢和环境差异的机制被揭示,同时相关应用也日益广泛。然而,目前缺乏关于细胞代谢与环境适应调控的研究的系统性综述。本文介绍了细胞感知代谢和环境差异的关键跨膜蛋白及感应蛋白;总结了细胞在应对胞内外代谢差异时的天然自适应调控机制;从动态调控、理性代谢工程改造和适应性进化这3个方面探讨了基于细胞自适应调控的应用场景,并展望未来的发展方向。本文不仅为细胞感知代谢和环境变化的机制研究提供了系统性视角,还为合成生物学领域的进一步创新应用奠定了理论基础。随着未来技术的不断发展,深入理解细胞自适应调控机制有望推动新型生物制造平台的开发与应用。

    Abstract:

    The ability of cells to sense and adapt to metabolic changes and environmental variations is essential for their functions. Recent advances in synthetic biology have uncovered increasing mechanisms through which cells detect changes in metabolism and environmental conditions, leading to broader applications. However, a systematic review on the regulation of cellular metabolism and environmental adaption is currently lacking. This article presents a comprehensive overview of this field from three perspectives. First, it introduces key transmembrane and sensor proteins involved in the cellular perception of metabolic and environmental changes. Next, it summarizes the adaptive regulation mechanisms that natural cells employ when confronted with intracellular and extracellular metabolic changes. Finally, the review explores the application scenarios based on cellular adaptive regulation in three aspects: dynamic control, rational metabolic engineering, and adaptive evolution and makes an outlook on the future development directions in this field. This review not only provides a comprehensive perspective on the mechanisms by which cells sense metabolic and environmental variations, but also lays a theoretical foundation for further innovations in the field of synthetic biology. With the continuous advancement of future technologies, a deeper understanding of cellular adaptive regulation mechanisms holds great potential to drive the development and application of novel biomanufacturing platforms.

    参考文献
    [1] 诸葛健, 李华钟. 微生物学[M]. 2版. 北京: 科学出版社, 2009. ZHUGE J, LI HZ. Microbiology[M]. 2nd ed. Beijing: Science Press, 2009(in Chinese).
    [2] 丁爽. 代谢工程改造大肠杆菌生产l-色氨酸[D]. 无锡: 江南大学, 2023. DING S. Metabolic engineering to transform Escherichia coli to produce l-tryptophan[D]. Wuxi: Jiangnan University, 2023(in Chinese)
    [3] 张丽, 高健, 刘长青, 邓丽娜. 耐受性工程调控微生物细胞工厂胁迫抗性[J]. 生物工程学报, 2022, 38(4): 1373-1389. ZHANG L, GAO J, LIU CQ, DENG LN. Tolerance engineering regulates stress resistance of microbial cell factory[J]. Chinese Journal of Biotechnology, 2022, 38(4): 1373-1389(in Chinese).
    [4] SHIN HY, NIJLAND JG, de WAAL PP, DRIESSEN AJM. The amino-terminal tail of Hxt11 confers membrane stability to the Hxt2 sugar transporter and improves xylose fermentation in the presence of acetic acid[J]. Biotechnology and Bioengineering, 2017, 114(9): 1937-1945.
    [5] 沈观宇, 吴绵斌, 林建平, 杨立荣. 氨基酸生产菌的氨基酸外向转运蛋白研究进展[J]. 高校化学工程学报, 2018, 32(6): 1245-1254. SHEN GY, WU MB, LIN JP, YANG LR. Advances in amino acid exporters of amino acid-producing bacteria[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 1245-1254(in Chinese).
    [6] 聂铭, 杨裕然, 李振轮. 微生物胞内外pH稳态维持机制研究进展[J]. 微生物学报, 2024, 64(1): 1-13. NIE M, YANG YR, LI ZL. Research progress in the mechanisms of maintaining intracellular and extracellular pH homeostasis in microorganisms[J]. Acta Microbiologica Sinica, 2024, 64(1): 1-13(in Chinese).
    [7] LECLERC NR, DUNNE TM, SHRESTHA S, JOHNSON CP, KELLEY JB. TOR signaling regulates GPCR levels on the plasma membrane and suppresses the Saccharomyces cerevisiae mating pathway[J/OL]. bioRxiv, 2024-05-09. DOI: 10.1101/2024.05.09.593412.
    [8] 姚宁, 鲁重, 王菲, 钟孝俊, 杨梦华. 双组分系统EnvZ/ OmpR促进副溶血弧菌抵抗碱胁迫的作用机制[J]. 微生物学报, 2022, 62(12): 5043-5055. YAO N, LU Z, WANG F, ZHONG XJ, YANG MH. The two-component system EnvZ/OmpR mediates alkaline stress tolerance of Vibrio parahaemolyticus[J]. Acta Microbiologica Sinica, 2022, 62(12): 5043-5055(in Chinese).
    [9] CONRAD M, SCHOTHORST J, KANKIPATI HN, van ZEEBROECK G, RUBIO-TEXEIRA M, THEVELEIN JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae[J]. FEMS Microbiology Reviews, 2014, 38(2): 254-299.
    [10] LYNCH EM, HANSEN H, SALAY L, COOPER M, TIMR S, KOLLMAN JM, WEBB BA. Structural basis for allosteric regulation of human phosphofructokinase-1[J]. Nature Communications, 2024, 15(1): 7323.
    [11] CHAI PW, LAN PF, LI SB, YAO DQ, CHANG CC, CAO M, SHEN YF, GE SF, WU J, LEI M, FAN XQ. Mechanistic insight into allosteric activation of human pyruvate carboxylase by acetyl-CoA[J]. Molecular Cell, 2022, 82(21): 4116-4130.e6.
    [12] YAN NE. Structural advances for the major facilitator superfamily (MFS) transporters[J]. Trends in Biochemical Sciences, 2013, 38(3): 151-159.
    [13] 罗筱萍, 苏卜利, 邓名荣, 徐晓龙, 朱红惠. 代谢工程改造大肠杆菌合成l-苏氨酸研究进展[J]. 微生物学报, 2024, 64(8): 2648-2660. LUO XP, SU BL, DENG MR, XU XL, ZHU HH. Research progress of l-threonine synthesis by metabolic engineering in Escherichia coli[J]. Acta Microbiologica Sinica, 2024, 64(8): 2648-2660(in Chinese).
    [14] ARTIGAS P, GADSBY D C. Ion Channel: like Properties of the Na+/K+ Pump[J]. Annals of the New York Academy of Sciences, 2006, 976(1): 31-40.
    [15] XIA JL, WANG HQ, LI S, WU QH, SUN L, HUANG HX, ZENG M. Ion channels or aquaporins as novel molecular targets in gastric cancer[J]. Molecular Cancer, 2017, 16(1): 54.
    [16] KUMARI M, KHATOON N, SHARMA R, ADUSUMILLI S, AUERBACH A, KASHYAP HK, NAYAK TK. Mechanism of hydrophobic gating in the acetylcholine receptor channel pore[J]. The Journal of General Physiology, 2024, 156(2): e202213189.
    [17] ZHENG, XD, FU, Z, SU, DY, ZHANG, YB, LI, MH, PAN, YP ,LI, H, LI, SF, GRASSUCCI, R, REN, ZN, HU, ZS, LI, XM, ZHOU, MLI, GH, FRANK, J, YANG, J. Mechanism of ligand activation of a eukaryotic cyclic nucleotide: gated channel[J]. Nature Structural & Molecular Biology, 2020, 27(7): 625-634.
    [18] 汪明星. 金黄色葡萄球菌HptA识别G6P的分子机制研究和酿酒酵母TRM6-TRM61的结构生物学研究[D]. 合肥: 中国科学技术大学, 2018. WANG MX. Study on the molecular mechanism of G6P recognition by Staphylococcus aureus HptA and the structural biology of Saccharomyces cerevisiae TRM6-TRM61[D]. Hefei: University of Science and Technology of China, 2018(in Chinese).
    [19] GROISMAN EA, DUPREY A, CHOI J. How the PhoP/PhoQ system controls virulence and Mg2+ homeostasis: lessons in signal transduction, pathogenesis, physiology, and evolution[J]. Microbiology and Molecular Biology Reviews, 2021, 85(3): e0017620.
    [20] 胡彤, 李爽, 钟卫鸿. 基于酸信号转导系统的细菌耐酸机制及其应用[J]. 生物工程学报, 2024, 40(3): 644-664. HU T, LI S, ZHONG WH. Bacterial acid tolerance mechanism based on acid signal transduction system and its applications[J]. Chinese Journal of Biotechnology, 2024, 40(3): 644-664(in Chinese).
    [21] DENG C, WU YK, LV XQ, LI JH, LIU YF, DU GC, CHEN J, LIU L. Refactoring transcription factors for metabolic engineering[J]. Biotechnology Advances, 2022, 57: 107935.
    [22] REXIUS-HALL ML, REHMAN J, EDDINGTON DT. A microfluidic oxygen gradient demonstrates differential activation of the hypoxia-regulated transcription factors HIF-1α and HIF-2α[J]. Integrative Biology, 2017, 9(9): 742-750.
    [23] AIZAZ M, Lubna, JAN R, ASAF S, BILAL S, KIM KM, AL-HARRASI A. Regulatory dynamics of plant hormones and transcription factors under salt stress[J]. Biology, 2024, 13(9): 673.
    [24] WU QH, WU WD, KUCA K. From hypoxia and hypoxia-inducible factors (HIF) to oxidative stress: a new understanding of the toxic mechanism of mycotoxins[J]. Food and Chemical Toxicology, 2020, 135: 110968.
    [25] SCHUMACHER MA, SALINAS R, TRAVIS BA, SINGH RR, LENT N. M. Mazei glutamine synthetase and glutamine synthetase-GlnK1 structures reveal enzyme regulation by oligomer modulation[J]. Nature Communications, 2023, 14(1): 7375.
    [26] HERZIG S, SHAW RJ. AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nature Reviews Molecular Cell Biology, 2018, 19(2): 121-135.
    [27] MacLEAN A, LEGENDRE F, APPANNA VD. The tricarboxylic acid (TCA) cycle: a malleable metabolic network to counter cellular stress[J]. Critical Reviews in Biochemistry and Molecular Biology, 2023, 58(1): 81-97.
    [28] SUGIYAMA M, SASANO Y, HARASHIMA S. Mechanism of yeast adaptation to weak organic acid stress[M]//Stress Biology of Yeasts and Fungi. Tokyo: Springer Japan, 2015: 107-121.
    [29] PRODROMOU C. Mechanisms of Hsp90 regulation[J]. The Biochemical Journal, 2016, 473(16): 2439-2452.
    [30] 雷婷婷, 陈良仲, 陈绍兴, 沈亮. 微生物对低温极端环境适应性的研究进展[J]. 微生物学报, 2022, 62(6): 2150-2164. LEI TT, CHEN LZ, CHEN SX, SHEN L. Progress in research on the adaptability of microorganisms to extremely cold environments[J]. Acta Microbiologica Sinica, 2022, 62(6): 2150-2164(in Chinese).
    [31] TOLLA DA, SAVAGEAU MA. Regulation of aerobic-to-anaerobic transitions by the FNR cycle in Escherichia coli[J]. Journal of Molecular Biology, 2010, 397(4): 893-905.
    [32] EDBEIB MF, WAHAB RA, HUYOP F. Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments[J]. World Journal of Microbiology & Biotechnology, 2016, 32(8): 135.
    [33] ENE IV, WALKER LA, SCHIAVONE M, LEE KK, MARTIN-YKEN H, DAGUE E, GOW NAR, MUNRO CA, BROWN AJP. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance[J]. mBio, 2015, 6(4): e00986.
    [34] 吴迪, 程艺超, 姜娇, 刘延琳. 酵母中葡萄糖阻遏作用机制研究进展[J]. 微生物学报, 2023, 63(9): 3409-3427. WU D, CHENG YC, JIANG J, LIU YL. Mechanism of glucose repression in yeast[J]. Acta Microbiologica Sinica, 2023, 63(9): 3409-3427(in Chinese).
    [35] SUKUMARAN A, CHOI K, DASGUPTA B. Insight on transcriptional regulation of the energy sensing AMPK and biosynthetic mTOR pathway genes[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 671.
    [36] 陈雷. AMP激活的蛋白质激酶(AMPK)调控机制的研究[D]. 北京: 清华大学, 2010. CHEN L. Study on the regulatory mechanism of AMP-activated protein kinase (AMPK)[D]. Beijing: Tsinghua University, 2010(in Chinese)
    [37] LIU Y, FU TL, LI GR, LI BY, LUO GQ, LI N, GENG Q. Mitochondrial transfer between cell crosstalk - An emerging role in mitochondrial quality control[J]. Ageing Research Reviews, 2023, 91: 102038.
    [38] 程万琪, 侯骞尧, 刘春凤, 钮成拓, 郑飞云, 李崎, 王金晶. 线粒体自噬基因对酿酒酵母抗氧化性能的影响[J]. 生物工程学报, 2023, 39(8): 3464-3480. CHENG WQ, HOU QY, LIU CF, NIU CT, ZHENG FY, LI Q, WANG JJ. Effect of mitophagy related genes on the antioxidant properties of Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2023, 39(8): 3464-3480(in Chinese).
    [39] XI YY, XU HT, ZHAN T, QIN Y, FAN FY, ZHANG XL. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH[J]. Metabolic Engineering, 2023, 75: 170-180.
    [40] SONG JY, PARK JS, KANG CD, CHO HY, YANG D, LEE S, CHO KM. Introduction of a bacterial acetyl-CoA synthesis pathway improvenii[J]. Biotechnology and Bioengineering, 2016, 113(6): 1294-1304.
    [76] WANG JY, WANG WS, WANG HZ, YUAN F, XU Z, YANG KQ, LI ZL, CHEN YH, FAN KQ. Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic <鹩嘾噂ac豩汬酬桵牳朼茯i> strains乛J]簮氠酁呰扰遬彩癥卤餠才剩杣割襯杢卩兯乬豯嵧穹攠遡nd Bi幯嵴ec卨卮瑯嵬奯孧y, 2019, 103(11): 4455-4465.
    [77] ZHAN CJ, LI XW, LAN GX, BAIDOO EEK, YANG YK, LIU YZ, SUN Y, WANG SJ, WANG YY, WANG GK, NIELSEN J, KEASLING JD, CHEN Y, BAI ZH. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthet歩婣 m鹥晴靨驹乬杯橴酲杯剰卨乛豊豝挮砠穎ature攠镃at污卬她孳is, 2023, 6: 435-450.
    [78] REITER MA, BRADLEY T, BÜCHEL LA, KELLER P, HEGEDIS E, GASSLER T, VORHOLT JA. A synthetic methylotrophic Escherichia coli as a chassis for bioproduction from methanol[J]. Nature Catalysis, 2024, 7(5): 560-573.
    [79] CHEN CH, GAO C, HU GP, WEI WQ, WANG XG, WEN J, CHEN XL, LIU LM, SONG W, WU J. Rational and semirational approaches for engineering salicylate production in Escherichia coli[J]. ACS Synthetic Biology, 2024, 13(11): 3563-3575.
    [80] WANG XG, QIU C, CHEN CH, GAO C, WEI WQ, SONG W, WU J, LIU LM, CHEN XL. Metabolic engineering of Escherichia coli for high-level production of l-phenylalanine[J]. Journal of Agricultural and Food Chemistry, 2024, 72(19): 11029-11040.
    [81] GONG XY, ZHANG JL, GAN Q, TENG YX, HOU JX, LYU YJ, LIU ZL, WU ZH, DAI RP, ZOU YS, WANG XQ, ZHU DJ, ZHU HT, LIU TM, YAN YJ. Advancing microbial production through artificial intelligence-aided biology[J]. Biotechnology Advances, 2024, 74: 108399.
    [82] LIU JQ, HAN X, TAO F, XU P. Metabolic engineering of Geobacillus thermoglucosidasius for朠祰药ly彭乥桲-g獲卡除e 孬彡ct杩婣娠ac剩幤茠pr顯湤恵繣荴佩湯遮帠癡剴嬠杨剩硧穨輠屴emper顡呴乵卲酥嵛乊]. Bioresource Technology, 2024, 393: 130164.
    [83] CUI ZY, ZHONG YT, SUN ZJ, JIANG ZN, DENG JY, WANG Q, NIELSEN J, HOU J, QI QS. Reconfiguration of the reductive TCA cycle enables high-level succinic acid production b驹映阼i>呙獡湲ro杷孩卡 l獩轰卯ly聴歩奣a<启幩匾[J虝瘮贠剎恡年衵署繥縠穃杯剭癭硵穮轩屣ation畳爬崠稲嬰戲3, 14(1): 8480.
    [84] GAO JQ, LI YX, YU W, ZHOU YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol[J]. Nature Metabolism, 2022, 4(7): 932-943.ogy, 2024, 40(2): 434-445(in Chinese).
    [51] RIKHVANOV EG, LUKINA EA, VARAKINA NN, RUSALEVA TM, GAMBURG KZ, KNORRE DA, BOROVSKII GB, VOINIKOV VK. Mitochondria as a critical element of heat shock response in yeasts with different types of energy metabolism[J]. Russian Journal of Plant Physiology, 2006, 53(5): 615-621.
    [52] CACACE G, MAZZEO MF, SORRENTINO A, SPADA V, MALORNI A, SICILIANO RA. Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes[J]. Journal of Proteomics, 2010, 73(10): 2021-2030.
    [53] ZHANG J, WEI YH, YUE YB, JIAO HK, WU Y, FU W, LIN KM, LU C, MOU S, ZHONG Q. RIPK4 promotes oxidative stress and ferroptotic death through the downregulation of ACSM1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(40): e2410628121.
    [54] HOU S, GAO C, LIU J, CHEN XL, WEI WQ, SONG W, HU GP, LI XM, WU J, LIU LM. Med3-mediated NADPH generation to help Saccharomyces cerevisiae tolerate hyperosmotic stress[J]. Applied and Environmental Microbiology, 2024, 90(8): e0096824.
    [55] Zhao CR, You ZL, Chen DD, Hang J, Wang ZB, Ji M, Wang LX, Zhao P, Qiao J, Yun CH, Bai, L. Structure of a fungal 1,3-β-glucan synthase[J]. Science Advances, 2023, 9(37): eadh7820.
    [56] BLOMBERG A. Yeast osmoregulation - glycerol still in pole position[J]. FEMS Yeast Research, 2022, 22(1): foac035.
    [57] BROACH JR. Nutritional control of growth and development in yeast[J]. Genetics, 2012, 192(1): 73-105.
    [58] BEOPOULOS A, DESFOUGERES T, SABIROVA J, ZINJARDE S, NEUVÉGLISE C, NICAUD JM. The hydrocarbon-degrading oleaginous yeast Yarrowia lipolytica[M]//Handbook of Hydrocarbon and Lipid Microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 2111-2121.
    [59] BAE JH, KIM HJ, KIM MJ, SUNG BH, JEON JH, KIM HS, JIN YS, KWEON DH, SOHN JH. Direct fermentation of Jerusalem artichoke Tuber powder for production of l-lactic acid and d-lactic acid by metabolically engineered Kluyveromyces marxianus[J]. Journal of Biotechnology, 2018, 266: 27-33.
    [60] KHAN A, SINGH P, SRIVASTAVA A. Iron: Key player in cancer and cell cycle?[J]. Journal of Trace Elements in Medicine and Biology, 2020, 62: 126582.
    [61] 于政, 申晓林, 孙新晓, 王佳, 袁其朋. 动态调控策略在代谢工程中的应用研究进展[J]. 合成生物学, 2020, 1(4): 440-453. YU Z, SHEN XL, SUN XX, WANG J, YUAN QP. Application of dynamic regulation strategies in metabolic engineering[J]. Synthetic Biology Journal, 2020, 1(4): 440-453(in Chinese).
    [62] 叶健文, 陈江楠, 张旭, 吴赴清, 陈国强. 动态调控: 一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. YE JW, CHEN JN, ZHANG X, WU FQ, CHEN GQ. Dynamic control: an efficient strategy for metabolically engineering microbial cell factories[J]. Biotechnology Bulletin, 2020, 36(6): 1-12(in Chinese).
    [63] XU P, LI LY, ZHANG FM, STEPHANOPOULOS G, KOFFAS M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31): 11299-11304.
    [64] WANG M, WANG HM, GAO C, WEI WQ, LIU J, CHEN XL, HU GP, SONG W, WU J, ZHANG F, LIU LM. Efficient production of protocatechuic acid using systems engineering of Escherichia coli[J]. Metabolic Engineering, 2024, 82: 134-146.
    [65] WANG X, HAN JN, ZHANG X, MA YY, LIN YN, WANG H, LI DJ, ZHENG TR, WU FQ, YE JW, CHEN GQ. Reversible thermal regulation for bifunctional dynamic control of gene expression in Escherichia coli[J]. Nature Communications, 2021, 12(1): 1411.
    [66] BAÑARES AB, VALDEHUESA KNG, RAMOS KRM, NISOLA GM, LEE WK, CHUNG WJ. A pH-responsive genetic sensor for the dynamic regulation of d-xylonic acid accumulation in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2020, 104(5): 2097-2108.
    [67] SALINAS F, ROJAS V, DELGADO V, AGOSIN E, LARRONDO LF. Optogenetic switches for light-controlled gene expression in yeast[J]. Applied Microbiology and Biotechnology, 2017, 101(7): 2629-2640.
    [68] HWANG HJ, KIM JW, JU SY, PARK JH, LEE PC. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli[J]. Biotechnology and Bioengineering, 2017, 114(2): 468-473.
    [69] HARDER BJ, BETTENBROCK K, KLAMT S. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli[J]. Biotechnology and Bioengineering, 2018, 115(1): 156-164.
    [70] HE XY, CHEN Y, LIANG QF, QI QS. Autoinduced AND gate controls metabolic pathway dynamically in response to microbial communities and cell physiological state[J]. ACS Synthetic Biology, 2017, 6(3): 463-470.
    [71] LIANG GJ, LIU CP, LIU J, XU XC, WU J, SONG W, HU GP, WEI WQ, LI XM, ZHAO JX, LIU LM, GAO C. Designing autonomous biological switches to rewire carbon flux for chemical production in Escherichia coli[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(39): 14492-14504.
    [72] LIU TT, SUN L, ZHANG C, LIU YF, LI JH, DU GC, LV XQ, LIU L. Combinatorial metabolic engineering and process optimization enables highly efficient production of l-lactic acid by acid-tolerant Saccharomyces cerevisiae[J]. Bioresource Technology, 2023, 379: 129023.
    [73] TRAN VG, MISHRA S, BHAGWAT SS, SHAFAEI S, SHEN YH, ALLEN JL, CROSLY BA, TAN SI, FATMA Z, RABINOWITZ JD, GUEST JS, SINGH V, ZHAO HM. An end-to-end pipeline for succinic acid production at an industrially relevant scale using Issatchenkia Orientalis[J]. Nature Communications, 2023, 14(1): 6152.
    [74] SINGH A, SOH KC, HATZIMANIKATIS V, GILL RT. Manipulating redox and ATP balancing for improved production of succinate in E. coli[J]. Metabolic Engineering, 2011, 13(1): 76-81.
    [75] GUAN NZ, LI JH, SHIN HD, DU GC, CHEN J, LIU L. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jens
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘源,胡贵鹏,李晓敏,刘佳,高聪,刘立明. 微生物细胞代谢与环境适应调控研究进展[J]. 生物工程学报, 2025, 41(3): 1133-1151

复制
分享
文章指标
  • 点击次数:46
  • 下载次数: 57
  • HTML阅读次数: 66
  • 引用次数: 0
历史
  • 收稿日期:2024-11-29
  • 最后修改日期:2025-02-25
  • 在线发布日期: 2025-03-29
  • 出版日期: 2025-03-25
文章二维码
您是第5996522位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司