阿维链霉菌合成纳米硒的物理化学表征及其对枸杞病原真菌的抑菌活性
作者:
基金项目:

中央引导地方科技发展资金(2023FRD05032);宁夏回族自治区重点研发计划重点项目(2021BEG02003);宁夏大学新华学院科学研究基金(23XHKY04);宁夏大学新华学院大学生创新创业训练项目(2024-81)


Selenium nanoparticles synthesized by Streptomyces avermitilis: physical and chemical characteristics and inhibitory activity on a pathogen of Lycium barbarum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    生物合成的纳米硒(selenium nanoparticles,SeNPs)具有独特的物理、化学和生物学特性,备受研究人员关注。为了开发将硒盐还原为SeNPs的菌种,本研究以阿维链霉菌(Streptomyces avermitilis)为研究对象,通过添加一定量的Na2SeO3,利用光学显微镜、扫描电镜(scanning electron microscope,SEM)、透射电镜(transmission electron microscope,TEM)、能量色散X射线能谱(energy dispersive spectrometer,EDS)分析、X射线衍射(X-ray diffraction,XRD)分析、傅里叶红外变换光谱(Fourier transform infrared spectroscopy,FTIR)技术对菌体及合成的SeNPs进行物理化学表征分析,同时选用枸杞根腐病主要病原真菌-尖孢镰刀菌(Fusarium oxysporium)对其抗菌活性进行研究。结果表明,阿维链霉菌可将Na2SeO3转化成SeNPs,能耐受300 mmol/L的Na2SeO3,耐受性较高;阿维链霉菌可在细胞质中合成球形SeNPs,大部分直径在100 nm左右,并以菌丝断裂的方式释放;阿维链霉菌合成的SeNPs颗粒为非晶态,表面以C、Se为主,同时存在O、N等元素,−OH、C=O、C−N、C−H等官能团与SeNPs稳定性和生物活性密切相关;阿维链霉菌所产的SeNPs对F. oxysporium有显著抑制活性,25.0 μmol/mL处理抑菌率可达77.61%,半数效应浓度(median effective concentration,EC50)为0.556μmol/mL。总之,阿维链霉菌可耐受高Na2SeO3胁迫,同时还可介导合成SeNPs,合成的SeNPs颗粒具有良好的稳定性和抗菌活性,在SeNPs制备和枸杞根腐病防治方面具有潜在的应用价值。

    Abstract:

    Biosynthesized selenium nanoparticles (SeNPs) have attracted much attention because of their unique physical, chemical, and biological properties. The microbial reduction of selenium salts to SeNPs has great potential, while there is a lack of elite strains. In this study, we explored the reduction of Na2SeO3 by Streptomyces avermitilis into SeNPs. The colonies and hyphae of the strain and the synthesized SeNPs were characterized by optical microscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). At the same time, the inhibitory activity of SeNPs on Fusarium oxysporum, the main pathogen causing root rot of Lycium barbarum, was studied. The results showed that S. avermitilis converted Na2SeO3 into SeNPs and tolerated 300 mmol/L Na2SeO3, demonstrating strong tolerance. S. avermitilis synthesized spherical SeNPs in the cytoplasm, and most of SeNPs had a diameter of about 100 nm and were released by hyphal fracture. The SeNPs synthesized by S. avermitilis were amorphous, and their surfaces were dominated by C and Se, with the existence of O, N and other elements. SeNPs had functional groups such as −OH, C=O, C−N, and C−H, which were closely related to the stability and biological activity of SeNPs. The SeNPs synthesized by S. avermitilis showcased significant inhibitory activity on F. oxysporum, and 25.0 μmol/mL SeNPs showcased the inhibition rate of 77.61% and EC50 of 0.556 μmol/mL. In conclusion, S. avermitilis can tolerate high Na2SeO3 stress and mediate the synthesis of SeNPs. The synthesized SeNPs have good stability and strong inhibitory activity, demonstrating the potential application value in the preparation of SeNPs and the control of L. barbarum root rot.

    参考文献
    [1] ANGAMUTHU A, VENKIDUSAMY K, MUTHUSWAMI RR. Synthesis and characterization of nano-selenium and its antibacterial response on some important human pathogens[J]. Current Science, 2019, 116(2): 285-290.
    [2] HARTIKAINEN H. Biogeochemistry of selenium and its impact on food chain quality and human health[J]. Journal of Trace Elements in Medicine and Biology, 2005,18(4): 309-318.
    [3] ZHANG L, ZENG HW, CHENG WH. Beneficial and paradoxical roles of selenium at nutritional levels of intake in healthspan and longevity[J]. Free Radical Biology and Medicine, 2018, 127: 3-13.
    [4] ZHANG T, QI M, WU Q, XIANG P, TANG DJ, LI Q. Recent research progress on the synthesis and biological effects of selenium nanoparticles[J]. Frontiers in Nutrition, 2023, 10: 1183487.
    [5] 苏华华, 王艳华. 纳米硒的制备及生物医学应用研究进展[J]. 生物技术通讯, 2020, 31(5): 621-626. SU HH, WANG YH. Progress in synthesis and biomedical application of selenium nanomaterials[J]. Letters in Biotechnology, 2020, 31(5): 621-626(in Chinese).
    [6] XU MM, ZHU S, LI YR, XU S, SHI GY, DING ZY. Effect of selenium on mushroom growth and metabolism: a review[J]. Trends in Food Science & Technology, 2021, 118: 328-340.
    [7] NIE XL, YANG XR, HE JY, LIU P, SHI H, WANG T, ZHANG DH. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: a review[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1167123.
    [8] AVENDAÑO R, CHAVES N, FUENTES P, SÁNCHEZ E, JIMÉNEZ JI, CHAVARRÍA M. Production of selenium nanoparticles in Pseudomonas putida KT2440[J]. Scientific Reports, 2016, 6: 37155.
    [9] 李严, 杨婧, 吴炜泽, 龚静熙, 戴春晓, 曲媛媛. 细菌共培养体系合成纳米硒特性[J]. 应用与环境生物学报, 2022, 28(2): 379-386. LI Y, YANG J, WU WZ, GONG JX, DAI CX, QU YY. Biosynthesis of selenium nanoparticles by a bacteria co-culture system[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(2): 379-386(in Chinese).
    [10] HASHEM AH, ABDELAZIZ AM, ASKAR AA, FOUDA HM, KHALIL AMA, ABD-ELSALAM KA, KHALEIL MM. Bacillus megaterium-mediated synthesis of selenium nanoparticles and their antifungal activity against Rhizoctonia solani in faba bean plants[J]. Journal of Fungi, 2021, 7(3): 195.
    [11] KHOEI NS, LAMPIS S, ZONARO E, YRJÄLÄ K, BERNARDI P, VALLINI G. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum[J]. New Biotechnology, 2017, 34: 1-11.
    [12] AMERI A, SHAKIBAIE M, AMERI A, ALI FARAMARZI M, AMIR-HEIDARI B, FOROOTANFAR H. Photocatalytic decolorization of bromothymol blue using biogenic selenium nanoparticles synthesized by terrestrial actinomycete Streptomyces griseobrunneus strain FSHH12[J]. Desalination and Water Treatment, 2016, 57(45): 21552-21563.
    [13] 昌青青, 张园园, 曹圆圆, 卢存龙, 陆鹏, 刘爱民. 富硒链霉菌wh63的鉴定及富硒特性研究[J]. 湖北农业科学, 2016, 55(4): 867-871. CHANG QQ, ZHANG YY, CAO YY, LU CL, LU P, LIU AM. Identification and Se-enriched characteristics of A strain Se-enriched Streptomyces wh63[J]. Hubei Agricultural Sciences, 2016, 55(4): 867-871(in Chinese).
    [14] AHMAD MS, YASSER MM, SHOLKAMY EN, ALI AM, MEHANNI MM. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1[J]. International Journal of Nanomedicine, 2015, 10: 3389-3401.
    [15] GOLINSKA P, WYPIJ M, INGLE AP, GUPTA I, DAHM H, RAI M. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity[J]. Applied Microbiology and Biotechnology, 2014, 98(19): 8083-8097.
    [16] ZHOU JY, ZHAO XY, DAI CC. Antagonistic mechanisms of endophytic Pseudomonas fluorescens against Athelia rolfsii[J]. Journal of Applied Microbiology, 2014, 117(4): 1144-1158.
    [17] 霍宏丽, 席先梅, 白全江, 妥德宝, 宋雪峰, 彭敏, 邱廷艳, 刘丽茹. BGF生物有机肥对辣椒疫霉和茄病镰孢菌的抑菌效果[J]. 北方农业学报, 2022, 50(1): 101-106. HUO HL, XI XM, BAI QJ, TUO DB, SONG XF, PENG M, QIU TY, LIU LR. Antimicrobial activity of BGF bio-organic fertilizer against Phytophthora capsici and Fusarium solani[J]. Journal of Northern Agriculture, 2022, 50(1): 101-106(in Chinese).
    [18] WANG YT, SHU X, ZHOU Q, FAN T, WANG TC, CHEN X, LI MH, MA YH, NI J, HOU JY, ZHAO WW, LI RX, HUANG SW, WU LF. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenesfaecalis Se03 isolated from the gut of Monochamus alternatus (Coleoptera: Cerambycidae)[J]. International Journal of Molecular Sciences, 2018, 19(9): 2799.
    [19] 徐孝楠, 马浩迪, 续炎, 李璇, 覃智, 权春善, 张丽影. 耐硒海洋菌株的筛选、鉴定及其产纳米硒的抗菌活性[J]. 食品工业科技, 2023, 44(24): 152-158. XU XN, MA HD, XU Y, LI X, QIN Z, QUAN CS, ZHANG LY. Screening and identification of selenium-tolerant marine strain and the antibacterial activity of Se nanoparticles it synthesized[J]. Science and Technology of Food Industry, 2023, 44(24): 152-158(in Chinese).
    [20] 朱燕云, 吴文良, 赵桂慎, 郭岩彬. 硒在动植物及微生物体中的转化规律研究进展[J]. 农业资源与环境学报, 2018, 35(3): 189-198. ZHU YY, WU WL, ZHAO GS, GUO YB. Progress of selenium biological transformation in animals, plants, and microorganisms[J]. Journal of Agricultural Resources and Environment, 2018, 35(3): 189-198(in Chinese).
    [21] TAN YQ, YAO R, WANG R, WANG D, WANG GJ, ZHENG SX. Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil[J]. Microbial Cell Factories, 2016, 15(1): 157.
    [22] BUTLER CS, DEBIEUX CM, DRIDGE EJ, SPLATT P, WRIGHT M. Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis[J]. Biochemical Society Transactions, 2012, 40(6): 1239-1243.
    [23] PIACENZA E, PRESENTATO A, BARDELLI M, LAMPIS S, VALLINI G, TURNER RJ. Influence of bacterial physiology on processing of selenite, biogenesis of nanomaterials and their thermodynamic stability[J]. Molecules, 2019, 24(14): 2532.
    [24] SCHRÖDER I, RECH S, KRAFFT T, MACY JM. Purification and characterization of the selenate reductase from Thauera selenatis[J]. Journal of Biological Chemistry, 1997, 272(38): 23765-23768.
    [25] 冯明菊, 熊华, 王晓雅, 孙永. 富硒糙米蛋白理化特性及抗氧化活性的研究[J]. 食品工业科技, 2020, 41(15): 34-42. FENG MJ, XIONG H, WANG XY, SUN Y. Physicochemical properties and antioxidant activity of protein in selenium-enriched brown rice[J]. Science and Technology of Food Industry, 2020, 41(15): 34-42(in Chinese).
    [26] 谢孟峡, 刘媛. 红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J]. 高等学校化学学报, 2003, 24(2): 226-231. XIE MX, LIU Y. Studies on amide Ⅲ infrared bands for the secondary structure determination of proteins[J]. Chemical Research in Chinese Universities, 2003, 24(2): 226-231(in Chinese).
    [27] 李磊, 李忠佩, 刘明, 吴萌, 马晓焉, 唐晓雪. 基于FTIR分析猪场废水有机物分解过程中组成结构变化[J]. 光谱学与光谱分析, 2016, 36(11): 3517-3522. LI L, LI ZP, LIU M, WU M, MA XY, TANG XX. Structural analysis of organic matter composition in piggery wastewater during the process of organic degradation based on FTIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2016, 36(11): 3517-3522(in Chinese).
    [28] LAMPIS S, ZONARO E, BERTOLINI C, CECCONI D, MONTI F, MICARONI M, TURNER RJ, BUTLER CS, VALLINI G. Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: novel clues on the route to bacterial biogenesis of selenium nanoparticles[J]. Journal of Hazardous Materials, 2017, 324: 3-14.
    [29] 朱燕云, 孔祥平, 吴娥娇, 朱宁, 梁栋, 娄梦函, 周朱梦, 靳红梅. 耐高盐枯草芽孢杆菌XP合成球形纳米硒及其抑制草莓病原真菌生物活性[J]. 生物工程学报, 2021, 37(8): 2825-2835. ZHU YY, KONG XP, WU EJ, ZHU N, LIANG D, LOU MH, ZHOU ZM, JIN HM. Biosynthesis of spherical selenium nanoparticles with halophilic Bacillus subtilis subspecies stercoris strain XP for inhibition of strawberry pathogens[J]. Chinese Journal of Biotechnology, 2021, 37(8): 2825-2835(in Chinese).
    [30] 石宝霞, 车会莲, 赵利霞, 谭军, 潘思轶, 汪兴平, 柳玉. 碎米荠硒多糖的分离纯化及光谱分析[J]. 食品科学, 2007, 28(6): 298-302. SHI BX, CHE HL, ZHAO LX, TAN J, PAN SY, WANG XP, LIU Y. Study on purification and spectra analysis of Cardamine urbaniana O.E. schlz-selenium polysaccharide[J]. Food Science, 2007, 28(6): 298-302(in Chinese).
    [31] YE XG, CHEN ZZ, ZHANG YY, MU JJ, CHEN LY, LI B, LIN XR. Construction, characterization, and bioactive evaluation of nano-selenium stabilized by green tea nano-aggregates[J]. LWT, 2020, 129: 109475.
    [32] 王丽红, 杨辉, 毛建丽, 耿懿璠, 苏文, 贺博. 微生物还原法合成纳米硒益生菌的筛选及其培养条件优化[J]. 陕西科技大学学报, 2019, 37(4): 29-34. WANG LH, YANG H, MAO JL, GENG YF, SU W, HE B. Screening of probiotics strain for nano-selenium synthesis by microbial reduction and optimization of the culture conditions[J]. Journal of Shaanxi University of Science & Technology, 2019, 37(4): 29-34(in Chinese).
    [33] 王国琴, 杜雪倩, 马聪, 朱滕滕, 郑蕊, 岳思君. 枸杞根腐病病原菌鉴定及其拮抗菌的筛选[J]. 干旱地区农业研究, 2023, 41(6): 245-253. WANG GQ, DU XQ, MA C, ZHU TT, ZHENG R, YUE SJ. Identification of the pathogen causing root rot of Lycium barbarum and screening of antagonists[J]. Agricultural Research in the Arid Areas, 2023, 41(6): 245-253(in Chinese).
    [34] LOSI ME, FRANKENBERGER WT. Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles[J]. Applied and Environmental Microbiology, 1997, 63(8): 3079-3084.
    [35] HUANG SW, WANG YT, TANG CG, JIA HL, WU LF. Speeding up selenite bioremediation using the highly selenite-tolerant strain Providencia rettgeri HF16-a novel mechanism of selenite reduction based on proteomic analysis[J]. Journal of Hazardous Materials, 2021, 406: 124690.
    [36] RAJASREE SRR, GAYATHRI S. Extracellular biosynthesis of Selenium nanoparticles using some species of Lactobacillus[J]. Indian Journal of Geo-Marine Sciences, 2015, 44(5): 766-775.
    [37] LIU HL, LIAN B. Quantitative evaluation of different fractions of extracellular polymeric substances derived from Paenibacillus mucilaginosus against the toxicity of gold ions[J]. Colloids and Surfaces B: Biointerfaces, 2019, 175: 195-201.
    [38] WADHWANI SA, SHEDBALKAR UU, SINGH R, CHOPADE BA. Biogenic selenium nanoparticles: current status and future prospects[J]. Applied Microbiology and Biotechnology, 2016, 100(6): 2555-2566.
    [39] WANG TT, YANG LB, ZHANG BC, LIU JH. Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor[J]. Colloids and Surfaces B: Biointerfaces, 2010, 80(1): 94-102.
    [40] DOMOKOS-SZABOLCSY E, MARTON L, SZTRIK A, BABKA B, PROKISCH J, FARI M. Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum[J]. Plant Growth Regulation, 2012, 68(3): 525-531.
    [41] CRUZ-LUNA AR, CRUZ-MARTÍNEZ H, VÁSQUEZ-LÓPEZ A, MEDINA DI. Metal nanoparticles as novel antifungal agents for sustainable agriculture: current advances and future directions[J]. Journal of Fungi, 2021, 7(12): 1033.
    [42] 王丽红. 益生菌转化合成纳米硒及其抑菌机制研究[D]. 西安: 陕西科技大学, 2022. WANG LH. Synthesis of nano-selenium by probiotics and its antibacterial mechanism[D]. Xi’an: Shaanxi University of Science & Technology, 2022(in Chinese).
    [43] WANG Q, LARESE-CASANOVA P, WEBSTER TJ. Inhibition of various Gram-positive and Gram-negative bacteria growth on selenium nanoparticle coated paper towels[J]. International Journal of Nanomedicine, 2015, 10: 2885-2894.
    [44] 周驰. 纳米硒的生物合成及其抑菌活性的研究[D]. 合肥: 安徽农业大学, 2018. ZHOU C. Study on biosynthesis and antibacterial activity of nano-selenium[D]. Hefei: Anhui Agricultural University, 2018(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张琪,李亚妮,周荣娟,秦佳圆,岳思君. 阿维链霉菌合成纳米硒的物理化学表征及其对枸杞病原真菌的抑菌活性[J]. 生物工程学报, 2025, 41(2): 693-705

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-29
  • 最后修改日期:2024-12-30
  • 在线发布日期: 2025-02-11
  • 出版日期: 2025-02-25
文章二维码
您是第5996633位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司