基于OsSPL10编辑创制沿黄光叶耐盐水稻新种质
作者:
基金项目:

国家自然科学基金(32201248);河南省重点研发与推广专项(242102111164);河南省科技研发计划联合基金(222301420106)


Creation of new glabrous and salt-tolerant rice germplasm along the Yellow River by CRISPR-Cas9-mediated editing of OsSPL10
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | | | |
  • 文章评论
    摘要:

    OsSPL10基因能够调控水稻表皮毛发育,并与抗盐、耐干旱等性状相关,但该基因是否可用于基因编辑创制光叶耐盐水稻新种质尚不明确。本研究利用CRISPR/Cas9技术,以河南省沿黄稻区3个粳稻品种‘新丰2号’‘新科稻31’和‘新稻25’为材料,对OsSPL10基因进行编辑,经筛选鉴定获得6种spl10突变体。肉眼观察结合扫描电镜检测证实6种spl10突变体的叶片和颖壳均出现无毛性状,光叶标记基因OsHL6OsGL6OsWOX3B的表达量显著低于野生型;剑叶生理特征检测显示,6种spl10突变体的净光合速率、气孔导度和蒸腾速率均极显著高于对应的野生型水稻。苗期耐盐性鉴定结果表明,200 mmol/L NaCl处理7 d后,突变株的存活率远高于野生型。实时荧光定量PCR (quantitative real-time polymerase chain reaction,qRT-PCR)检测结果显示,与野生型相比,盐胁迫相关基因OsGASR1表达量显著降低,OsNHX2OsIDS1的表达量显著升高。农艺学性状分析发现,与野生型相比,突变体的株高显著增加,产量等相关性状均无明显变化。本研究创制的6种spl10突变体不仅具有光叶、光颖壳特征,而且耐盐能力显著提高,为沿黄水稻定向育种提供了新的种质资源。

    Abstract:

    The OsSPL10 gene has previously been reported to positively regulate trichome development and negatively regulate salt and drought stress tolerance in rice. However, it is not clear whether this gene can be used for gene editing to create new germplasm of glabrous leaf and salt-tolerant rice. In this study, we created six rice mutants by CRISPR/Cas9-mediated editing of OsSPL10 from ‘Xinfeng 2’, ‘Xinkedao 31’, and ‘Xindao 25’, the main rice cultivars along the Yellow River. Visual observation and scanning electron microscopy verified that the mutants lacked trichomes on the leaves and glumes, and the expression of glabrous marker genes OsHL6, OsGL6, and OsWOX3B in mutants was down-regulated compared with that in the wild type. The net photosynthetic rate, stomatal conductance, and transpiration rate of flag leaves in the mutants were significantly higher than those in the wild type. In addition, the survival rates of the mutants were much higher than that of the wild type after 7 days of treatment with 200 mmol/L NaCl. The results of quantitative real-time polymerase chain reaction (qRT-PCR) further verified that compared with the wild type, the mutants demonstrated down-regulated expression of the salt stress-related gene OsGASR1 and up-regulated expression of OsNHX2 and OsIDS1. Statistical analysis of agronomic traits showed that the mutants had increased plant height and no significant changes in yield-related traits compared with the wild type. The six spl10 mutants created in this study not only had glabrous leaves and glumes but also demonstrated enhanced tolerance to salt stress, serving as new germplasm resources for directional breeding of rice along the Yellow River.

    参考文献
    [1] 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. WU B, HU W, XING YZ. The history and prospect of rice genetic breeding in China[J]. Hereditas (Beijing), 2018, 40(10): 841-857(in Chinese).
    [2] 占小登, 王凯, 曹立勇. 近年我国水稻遗传育种研究进展与展望[J]. 中国稻米, 2023, 29(6): 1-4. ZHAN XD, WANG K, CAO LY. Advance and prospect of rice genetics and breeding research in 2020-2022 in China[J]. China Rice, 2023, 29(6): 1-4(in Chinese).
    [3] ZHONG H, KONG WL, GONG ZY, FANG XY, DENG XX, LIU C, LI YS. Evolutionary analyses reveal diverged patterns of SQUAMOSA promoter binding protein-like (SPL) gene family in Oryza genus[J]. Frontiers in Plant Science, 2019, 10: 565.
    [4] JIANG MM, HE Y, CHEN XN, ZHANG XH, GUO YR, YANG SH, HUANG J, TRAW MB. CRISPR-based assessment of genomic structure in the conserved SQUAMOSA promoter-binding-like gene clusters in rice[J]. The Plant Journal: for Cell and Molecular Biology, 2020, 104(5): 1301-1314.
    [5] LIAN TX, HUANG YY, XIE XN, HUO X, SHAHID MQ, TIAN L, LAN T, JIN J. Rice SST variation shapes the rhizosphere bacterial community, conferring tolerance to salt stress through regulating soil metabolites[J]. mSystems, 2020, 5(6): e00721-20.
    [6] LAN T, ZHENG YL, SU ZL, YU SB, SONG HB, ZHENG XY, LIN GG, WU WR. OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.)[J]. Genes|Genomes|Genetics, 2019, 9(12): 4107-4114.
    [7] LI L, SHI F, WANG GL, GUAN YB, ZHANG YF, CHEN MJ, CHANG JL, YANG GX, HE GY, WANG YS, LI Y. Conservation and divergence of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family between wheat and rice[J]. International Journal of Molecular Sciences, 2022, 23(4): 2099.
    [8] ZHONG ZF, ZHONG LJ, ZHU X, JIANG YM, ZHENG YH, LAN T, CUI HT. Transcription factor OsSPL10 interacts with OsJAmyb to regulate blast resistance in rice[J]. The Crop Journal, 2024, 12(1): 301-307.
    [9] WANG J, ZHOU L, SHI H, CHERN M, YU H, YI H, HE M, YIN JJ, ZHU XB, LI Y, LI WT, LIU JL, WANG JC, CHEN XQ, QING H, WANG YP, LIU GF, WANG WM, LI P, WU XJ, et al. A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361(6406): 1026-1028.
    [10] WANG SK, LI S, LIU Q, WU K, ZHANG JQ, WANG SS, WANG Y, CHEN XB, ZHANG Y, GAO CX, WANG F, HUANG HX, FU XD. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47: 949-954.
    [11] LI JJ, TANG B, LI YX, LI CG, GUO MJ, CHEN HY, HAN SC, LI J, LOU QJ, SUN WQ, WANG P, GUO HF, YE W, ZHANG ZY, ZHANG HL, YU SB, ZHANG L, LI ZC. Rice SPL10 positively regulates trichome development through expression of HL6 and auxin-related genes[J]. Journal of Integrative Plant Biology, 2021, 63(8): 1521-1537.
    [12] LIAO QL, CHENG XL, LAN T, GUO XK, SU ZL, AN XX, ZHENG YL, CUI HT, WU WR, LAN T. OsSPL10 controls trichome development by interacting with OsWOX3B at both transcription and protein levels in rice (Oryza sativa L.)[J]. The Crop Journal, 2023, 11(6): 1711-1718.
    [13] LI YX, HAN SC, SUN XM, KHAN NU, ZHONG Q, ZHANG ZY, ZHANG HL, MING F, LI ZC, LI JJ. Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice[J]. Journal of Integrative Plant Biology, 2023, 65(4): 918-933.
    [14] LU L, SUN ZX, WANG RM, DU YF, ZHANG ZL, LAN T, SONG YY, ZENG RS. Integration of transcriptome and metabolome analyses reveals the role of OsSPL10 in rice defense against brown planthopper[J]. Plant Cell Reports, 2023, 42(12): 2023-2038.
    [15] XIA JQ, LIANG QY, HE DY, ZHANG ZY, WU J, ZHANG J, ZHAO PX, ZHANG ZS, XIANG CB. Knockout of OsSPL10 confers enhanced glufosinate resistance in rice[J]. Plant Communications, 2024, 5(2): 100731.
    [16] 牛淑琳, 鞠培娜, 周冠华, 戴南平, 周晋军, 谢先芝, 郑崇珂. 利用CRISPR/Cas9技术编辑OsRR22基因创制耐盐水稻种质资源[J]. 山东农业科学, 2023, 55(2): 30-35. NIU SL, JU PN, ZHOU GH, DAI NP, ZHOU JJ, XIE XZ, ZHENG CK. Creation of salt-tolerant rice germplasm by editing OsRR22 gene via CRISPR/Cas9 technique[J]. Shandong Agricultural Sciences, 2023, 55(2): 30-35(in Chinese).
    [17] ZHOU YB, XU SC, JIANG N, ZHAO XH, BAI ZN, LIU JL, YAO W, TANG QY, XIAO G, LV C, WANG K, HU XC, TAN JJ, YANG YZ. Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9[J]. Plant Biotechnology Journal, 2022, 20(5): 876-885.
    [18] HUI SZ, LI HJ, MAWIA AM, ZHOU L, CAI JY, AHMAD S, LAI CK, WANG JX, JIAO GA, XIE LH, SHAO GN, SHENG ZH, TANG SQ, WANG JL, WEI XJ, HU SK, HU PS. Production of aromatic three-line hybrid rice using novel alleles of BADH2[J]. Plant Biotechnology Journal, 2022, 20(1): 59-74.
    [19] LIU Q, WANG C, JIAO XZ, ZHANG HW, SONG LL, LI YX, GAO CX, WANG KJ. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems[J]. Science China Life Sciences, 2019, 62(1): 1-7.
    [20] HU BL, WAN Y, LI X, ZHANG FT, YAN WG, XIE JK. Phenotypic characterization and genetic analysis of rice with pubescent leaves and glabrous hulls (PLgh)[J]. Crop Science, 2013, 53(5): 1878-1886.
    [21] 郭龙彪, 罗利军, 钟代彬, 余新桥, 梅捍卫, 王一平, 应存山. 美国光壳稻品种农艺性状评价及其改良和利用[J]. 浙江农业科学, 1999, 40(5): 201-206. GUO LB, LUO LJ, ZHONG DB, YU XQ, MEI HW, WANG YP,YING CS. Evaluation, improvement an??畵湴捩瑬楩潺湡慴汩?慮渠慯汮礠獳楯獭?漠晳?獬慥汣瑴?瑤漠汁敭牥慲湩瑣?湮愠歲敩摣?朠散湵敬??楶?佲獳卛偊?????極??慡湬搠?楦琠獚?牥敪汩慡瑮敧搠?杧敲湩散獵?楴湵?牡楬挠敓季?嵥???畳稬栠漱甹???甠樴椰愨渵??朠爲椰挱甭氲琰甶爨敩?愠湃摨??潥牳敥猩琮爼祢?唾湛椲瘲敝爠猠槺環礬????水??槺渎??棡椌滉攬猠攋???戠牉?嬻?〩嵏??咲哻??????伉亲????匠???伻刬??‰匰??匠?丱????倠???唱??删???????佘匬??呕??則传奊????????削???午??????坃????????传乂????卩?????吠呮????剐奔??卓??????啇?????匱倵?剓匠?乮?????浛灊慝挮琠獈?潢晲?獤愠汒楩湣楥琬礠′猰琰父攬猠猲?漨渶?挺爠漱瀱?瀱氳愨湩瑮猠??楩浮灥牳潥瘩椮渼杢?猾慛氲琳?琠濘汣救爬愠湆揑改?琠桎牏漬甠李棑?朮攠湉斫瑯榙捳?懁滍搘?洵漸氙敹掁畹氧懊爽?撀椯獛獊敝挮琠椭濽渻孳?崠?‰?爴漬渠琲椰攨爲猩?椠渷?倭氷愵渮琠?十捏椠敒湃挬攠??㈠お????????ㄠ??ㄠ?????扨牡?孡??嵥???啴??味????传?????奶啡?乩??夠????啮??????啯?丠?????卬慡汢瑲?瑵潳氠敳牣慥湮捴敥?椠湲?牣楥挠敶??灩桥祴獹椘潊汩潡朠椵挸愙汛?牝攮猠灃潨湩獮敡猠?慩湣摥?洠漲氰攱挴甬氠愲爰?洲攩挺栠愷渴椭猷洵猨孩?崠??呩桮敥??爩漮瀼??漾畛爲渴慝氠????㈠?????????????水???戬爠?寠?㈠巾??唬?唱??????主????喊剉???????劔??乊??吠伭???匬?′吰?临???‰夨???漠氱攰挸甭氱愱爱?愠湘摕?晙畆測挠瑙楁潎湇愠汘?愬渠慘汕礠獊敆猬?潚晈?爠楂捈攬?乚?塁?瑇礠灑攬?乓慈?猠畈瀬????獇甠灑????獈畕瀠????獂畲灥??慩湮瑧椠灡潮牤琠敡牰?杬敩湣敡獴孩?嵮??偦氠慧湬瑡慢???びㄠ???㈠????????????????批爠?孵??嵵????‵匱?????丠?卨???????卥刬?′匰愲水琬?″愰渨搲?????椸渭搱由挱椨扩汮攠?佨獩??即剥ㄩ?椼獢?椾湛瘲漵汝瘠旡擹?椬渠‐珍愅氬琠?璬漬氠旄狑慾渮挠斎寽?嶫???澄甩爨渎憅泘?濁曍?倉沲慛湊瑝??楜潩汦澥本礠??代????‵???呼??′????????扐牓?嬠??嵎????丬??塕???娬??乕??升堠??吮?何?坩???婡??乯??塯塦????啲????匠啧乬??兲??婳??乩???坡??倠啢?????啮?丠??删??????乨?呧???乩??吭?剩??丠?呡??卥側?????呝??牁散捴牡甠楁瑧獲?桮楯獭瑩潣湡攠?摩敮慩捣敡琬礠氱愹猹改?愠渲搵?愱?琺爠愳渲猭挳爸椨灩瑮椠潃湨慩汮?牳敥瀩爮攼獢獲椾潛渲?捝漠淑炚沉攬砠?璗濯?爠斉枖疖氬愠琋旃?爬椠揻攽?猬愠泏瑐?琬漠泑攏狅愬渠捰斛嬮?崀??倻氼慩渾瑏?偗桏祘猳楂漼氯潩朾秺???め????乙???金????学??????21, 35(2): 112-120. ZHENG YL, YU LC, AN XX, CHENG XL, REN LJ, SU ZL, ZHENG XY, LAN T. Identification of a knockout mutant of OsWOX3B gene in rice (Oryza sativa L.)[J]. Chinese Journal of Rice Science, 2021, 35(2): 112-120(in Chinese).
    [27] 冯连杰, 安文静, 刘迪, 刘亚菲, 王凯婕, 梁卫红. 水稻表皮毛发育相关基因研究进展[J]. 生物技术通报, 2021, 37(6): 236-243. FENG LJ, AN WJ, LIU D, LIU YF, WANG KJ, LIANG WH. Progress in research of rice trichome related genes[J]. Biotechnology Bulletin, 2021, 37(6): 236-243(in Chinese).
    [28] LAN T, ZHANG SJ, LIU TT, WANG B, GUAN HZ, ZHOU YC, DUAN YL, WU WR. Fine mapping and candidate identification of SST, a gene controlling seedling salt tolerance in rice (Oryza sativa L.)[J]. Euphytica, 2015, 205(1): 269-274.
    [29] 郑亚莉. 水稻耐盐光身基因OsSPL10及其相关基因的功能分析[D]. 福州: 福建农林大学, 2020. ZHENG YL.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

轩强兵,周慧岗,朱明兰,王俊杰,梁卫红. 基于OsSPL10编辑创制沿黄光叶耐盐水稻新种质[J]. 生物工程学报, 2025, 41(2): 706-718

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-08
  • 最后修改日期:2024-07-24
  • 在线发布日期: 2025-02-11
  • 出版日期: 2025-02-25
文章二维码
您是第5950309位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司