智能生物制造之发酵过程优化:在线检测、人工智能与数字孪生技术
作者:
基金项目:

山西省重点研发计划(202202140601018)


Optimization of fermentation processes in intelligent biomanufacturing: on online monitoring, artificial intelligence, and digital twin technologies
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [93]
  • |
  • 相似文献 [7]
  • | | |
  • 文章评论
    摘要:

    生物制造作为新兴产业,其核心挑战在于实现发酵过程的精准优化与高效放大。本文聚焦发酵过程的关键环节——实时感知与智能控制,系统综述了在线检测技术、人工智能驱动的优化策略及数字孪生技术的应用进展。首先,从常规参数(温度、pH、溶解氧)到高级传感技术(在线活细胞传感、光谱分析、尾气监测)的在线检测手段,为实时获取微生物代谢状态提供了数据基础。其次,传统基于专家经验的静态控制逐步向人工智能驱动的动态优化演进,机器学习(如人工神经网络、支持向量机)与遗传算法等技术的整合显著提升了补料策略与工艺参数的调控效率。最后,数字孪生技术通过融合实时传感数据与多尺度模型(细胞代谢动力学与反应器流场模拟),为发酵过程的全生命周期优化与理性放大提供了新范式。未来,基于智能感知与数字孪生的闭环控制系统将加速合成生物学成果的产业化,推动生物制造向高效、智能、可持续方向迈进。

    Abstract:

    As a strategic emerging industry, biomanufacturing faces core challenges in achieving precise optimization and efficient scale-up of fermentation processes. This review focuses on two critical aspects of fermentation—real-time sensing and intelligent control—and systematically summarizes the advancements in online monitoring technologies, artificial intelligence (AI)-driven optimization strategies, and digital twin applications. First, online monitoring technologies, ranging from conventional parameters (e.g., temperature, pH, and dissolved oxygen) to advanced sensing systems (e.g., online viable cell sensors, spectroscopy, and exhaust gas analysis), provide a data foundation for real-time microbial metabolic state characterization. Second, conventional static control relying on expert experience is evolving toward AI-driven dynamic optimization. The integration of machine learning technologies (e.g., artificial neural networks and support vector machines) and genetic algorithms significantly enhances the regulation efficiency of feeding strategies and process parameters. Finally, digital twin technology, integrating real-time sensing data with multi-scale models (e.g., cellular metabolic kinetics and reactor hydrodynamics), offers a novel paradigm for lifecycle optimization and rational scale-up of fermentation. Future advancements in closed-loop control systems based on intelligent sensing and digital twin are expected to accelerate the industrialization of innovative achievements in synthetic biology and drive biomanufacturing toward higher efficiency, intelligence, and sustainability.

    参考文献
    [1] 徐冠华. 生物制造:推动第四次工业革命的关键力量[N]. 学习时报, 2024-07-10.
    [2] 夏建业, 刘晶, 庄英萍. 人工智能时代发酵优化与放大技术的机遇与挑战[J]. 生物工程学报, 2022, 38(11): 4180-4199. XIA JY, LIU J, ZHUANG YP. Opportunities and challenges for fermentation optimization and scale-up technology in the artificial intelligence era[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4180-4199(in Chinese).
    [3] ZHANG SL, CHU J, ZHUANG YP. A multi-scale study of industrial fermentation processes and their optimization[J]. Advances in Biochemical Engineering, 2004, 87: 97-150.
    [4] XIA JY, WANG G, FAN M, CHEN M, WANG ZY, ZHUANG YP. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains[J]. Chinese Journal of Chemical Engineering, 2021, 30: 178-184.
    [5] PETTY MA. Effect of temperature on the coproduction of chlortetracycline and tetracycline by Streptomyces aureofaciens[J]. Applied Microbiology, 1968, 16(9): 1285-1287.
    [6] Industrial platinum resistance thermometers and platinum temperature sensors: EN 60751[S]. The International Electrotechnical Commission, 2009.
    [7] KAFLE SR, CABULONG RB, KIM BS. A novel pH-stat fed-batch strategy to boost the production of nicotinamide mononucleotide by high cell density fermentation[J]. Chemical Engineering Science, 2024, 296: 120240.
    [8] SCHNEIDER K, SCHÜTZ V, JOHN GT, HEINZLE E. Optical device for parallel online measurement of dissolved oxygen and pH in shake flask cultures[J]. Bioprocess and Biosystems Engineering, 2010, 33(5): 541-547.
    [9] GE XD, KOSTOV Y, TOLOSA L, RAO G. Study on low-cost calibration-free pH sensing with disposable optical sensors[J]. Analytica Chimica Acta, 2012, 734: 79-87.
    [10] KUMAR R, NGUYEN H, RENTE B, TAN C, SUN T, GRATTAN KTV. A portable ‘plug-and-play’ fibre optic sensor for in situ measurements of pH values for microfluidic applications[J]. Micromachines, 2022, 13(8): 1224.
    [11] BLESKEN C, OLFERS T, GRIMM A, FRISCHE N. The microfluidic bioreactor for a new era of bioprocess development[J]. Engineering in Life Sciences, 2016, 16(2): 190-193.
    [12] SHINTANI Y, KOBAYASHI M, KAWARADA H. An all-solid-state pH sensor employing fluorine-terminated polycrystalline boron-doped diamond as a pH-insensitive solution-gate field-effect transistor[J]. Sensors, 2017, 17(5): 1040.
    [13] BÄCKER M, BEGING S, BISELLI M, POGHOSSIAN A, WANG J, ZANG W, WAGNER P, SCHÖNING MJ. Concept for a solid-state multi-parameter sensor system for cell-culture monitoring[J]. Electrochimica Acta, 2009, 54(25): 6107-6112.
    [14] LIU SJ. How cells grow[M]//Bioprocess Engineering. Amsterdam: Elsevier, 2017: 629-697.
    [15] LV PJ, QIANG S, LIU L, HU CY, MENG YH. Dissolved-oxygen feedback control fermentation for enhancing β-carotene in engineered Yarrowia lipolytica[J]. Scientific Reports, 2020, 10(1): 17114.
    [16] CLARK LC, KAPLAN S, MATTHEWS EC, EDWARDS PK, HELMSWORTH JA. Monitor and control of blood oxygen tension and pH during total body perfusion[J]. Journal of Thoracic Surgery, 1958, 36(4): 488-496.
    [17] KENSY F, JOHN GT, HOFMANN B, BÜCHS J. Characterisation of operation conditions and online monitoring of physiological culture parameters in Shaken 24-well microtiter plates[J]. Bioprocess and Biosystems Engineering, 2005, 28(2): 75-81.
    [18] XIONG XL, XIAO D, CHOI MMF. Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complex immobilized on silica-Ni-P composite coating[J]. Sensors and Actuators B: Chemical, 2006, 117(1): 172-176.
    [19] U.S. Food and Drug Aministration. Guidance for industry PAT: a framework for innovative pharmaceutical development, manufacturing, and quality assurance[Z]. Washington, D.C.: U.S. Department of Health and Human Services, 2004.
    [20] GERZON G, SHENG Y, KIRKITADZE M. Process analytical technologies–advances in bioprocess integration and future perspectives[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 207: 114379.
    [21] 夏建业, 田锡炜, 刘娟, 庄英萍. 人工智能时代的智能生物制造[J]. 生物加工过程, 2020, 18(1): 13-20. XIA JY, TIAN XW, LIU J, ZHUANG YP. Intelligent biological manufacturing in the age of artificial intelligence[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(1): 13-20(in Chinese).
    [22] HEIJNEN J. Black box models for growth and product formation[M]//The Metabolic Pathway Engineering Handbook. Boca Raton: CRC Press, 2009.
    [23] BAUER I, ABT B, YAP A, LEUCHTLE B, HAAS H. Online biomass monitoring enables characterization of the growth pattern of Aspergillus fumigatus in liquid shake conditions[J]. Journal of Fungi, 2022, 8(10): 1013.
    [24] 罗艳霞, 黄明志, 郭元昕, 王泽建, 储炬. 活细胞传感仪在嗜酸乳酸杆菌培养过程中的应用[J]. 食品工业科技, 2012, 33(21): 152-155, 159. LUO YX, HUANG MZ, GUO YX, WANG ZJ, CHU J. The application of viable cell mass monitoring in Lactobacillus acidophilus cultivation[J]. Science and Technology of Food Industry, 2012, 33(21): 152-155, 159(in Chinese).
    [25] LI L, WANG ZJ, CHEN XJ, CHU J, ZHUANG YP, ZHANG SL. Optimization of polyhydroxyalkanoates fermentations with on-line capacitance measurement[J]. Bioresource Technology, 2014, 156: 216-221.
    [26] FENG Y, TIAN XW, CHEN Y, WANG ZY, XIA JY, QIAN JC, ZHUANG YP, CHU J. Real-time and on-line monitoring of ethanol fermentation process by viable cell sensor and electronic nose[J]. Bioresources and Bioprocessing, 2021, 8(1): 37.
    [27] CERVERA AE, PETERSEN N, LANTZ AE, LARSEN A, GERNAEY KV. Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation[J]. Biotechnology Progress, 2009, 25(6): 1561-1581.
    [28] NAVRÁTIL M, NORBERG A, LEMBRÉN L, MANDENIUS CF. On-line multi-analyzer monitoring of biomass, glucose and acetate for growth rate control of a Vibrio cholerae fed-batch cultivation[J]. Journal of Biotechnology, 2005, 115(1): 67-79.
    [29] ALISON ARNOLD S, GAENSAKOO R, HARVEY LM, McNEIL B. Use of at-line and in situ near-infrared spectroscopy to monitor biomass in an industrial fed-batch Escherichia coli process[J]. Biotechnology and Bioengineering, 2002, 80(4): 405-413.
    [30] SHOPE TB, VICKERS TJ, MANN CK. The direct analysis of fermentation products by Raman spectroscopy[J]. Applied Spectroscopy, 1987, 41(5): 908-912.
    [31] CANNIZZARO C, RHIEL M, MARISON I, von STOCKAR U. On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy[J]. Biotechnology and Bioengineering, 2003, 83(6): 668-680.
    [32] ABU-ABSI NR, KENTY BM, CUELLAR ME, BORYS MC, SAKHAMURI S, STRACHAN DJ, HAUSLADEN MC, LI ZJ. Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe[J]. Biotechnology and Bioengineering, 2011, 108(5): 1215-1221.
    [33] WHELAN J, CRAVEN S, GLENNON B. In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors[J]. Biotechnology Progress, 2012, 28(5): 1355-1362.
    [34] QI YP, HU D, JIANG YC, WU ZP, ZHENG M, CHEN EX, LIANG Y, SADI MA, ZHANG K, CHEN YP. Recent progresses in machine learning assisted Raman spectroscopy[J]. Advanced Optical Materials, 2023, 11(14): 2203104.
    [35] LUO RH, POPP J, BOCKLITZ T. Deep learning for Raman spectroscopy: a review[J]. Analytica, 2022, 3(3): 287-301.
    [36] FORREST EH, JANSEN NB, FLICKINGER MC, TSAO GT. A simple hobby Computer-based off-gas analysis system[J]. Biotechnology and Bioengineering, 1981, 23(2): 455-460.
    [37] FLICKINGER MC, JANSEN NB, FORREST EH. Mobile self-contained off-gas analysis units for fermentation pilot plants[J]. Biotechnology and Bioengineering, 1980, 22(6): 1273-1276.
    [38] GARCIA-OCHOA F, GOMEZ E, SANTOS VE, MERCHUK JC. Oxygen uptake rate in microbial processes: an overview[J]. Biochemical Engineering Journal, 2010, 49(3): 289-307.
    [39] WANG ZJ, WANG HY, LI YL, CHU J, HUANG MZ, ZHUANG YP, ZHANG SL. Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process[J]. Bioresource Technology, 2010, 101(8): 2845-2852.
    [40] ZOU X, XIA JY, CHU J, ZHUANG YP, ZHANG SL. Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50 L to 132 m3 fermenter[J]. Bioprocess and Biosystems Engineering, 2012, 35(5): 789-800.
    [41] 庄英萍, 陈斌, 晏秋鸿, 储炬, 郭美锦, 张嗣良. 梅岭霉素发酵过程参数相关分析和优化[J]. 中国抗生素杂志, 2004, 29(1): 1-3, 43. ZHUANG YP, CHEN B, YAN QH, CHU J, GUO MJ, ZHANG SL. Optimization of meilinmycin fermentation process by parameter correlation analysis[J]. Chinese Journal of Antibiotics, 2004, 29(1): 1-3, 43(in Chinese).
    [42] LI X, HUANG C, XU CQ, TAN YL, LUO YD, ZOU K, LI JH, DENG ZS, ZHENG Z, YE H, ZHANG XL, ZHENG N. High cell density culture of baker’s yeast FX-2 based on pH-stat coupling with respiratory quotient[J]. Biotechnology and Applied Biochemistry, 2019, 66(3): 389-397.
    [43] LI XY, YU C, YAO JM, WANG ZM, LU SH. An online respiratory quotient-feedback strategy of feeding yeast extract for efficient arachidonic acid production by Mortierella alpina[J]. Frontiers in Bioengineering and Biotechnology, 2018, 5: 83.
    [44] JENZSCH M, SIMUTIS R, EISBRENNER G, STÜCKRATH I, LÜBBERT A. Estimation of biomass concentrations in fermentation processes for recombinant protein production[J]. Bioprocess and Biosystems Engineering, 2006, 29(1): 19-27.
    [45] JENZSCH M, GNOTH S, KLEINSCHMIDT M, SIMUTIS R, LÜBBERT A. Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile[J]. Bioprocess and Biosystems Engineering, 2006, 29(5/6): 315-321.
    [46] VILLADSEN J, NIELSEN J, LIDÉN G. Bioreaction engineering principles[M]. 3rd edition. New York: Springer, 2011.
    [47] 刘仲汇, 史建国, 朱思荣, 扬艳, 高广恒, 李雪梅. 尾气在线检测分析在发酵中的应用[J]. 发酵科技通讯, 2012, 41(4): 32-35. LIU ZH, SHI JG, ZHU SR, YANG Y, GAO GH, LI XM. Application of on-line detection and analysis of tail gas in fermentation[J]. Bulletin of Fermentation Science and Technology, 2012, 41(4): 32-35(in Chinese).
    [48] AUSTIN GD, SANKHE SK, TSAO GT. Monitoring and control of methanol concentration during polysaccharide fermentation using an on-line methanol sensor[J]. Bioprocess Engineering, 1992, 7(6): 241-247.
    [49] RAMON R, FELIU JX, COS O, MONTESINOS JL, BERTHET FX, VALERO F. Improving the monitoring of methanol concentration during high cell density fermentation of Pichia pastoris[J]. Biotechnology Letters, 2004, 26(18): 1447-1452.
    [50] 施慧琳, 孙靖淳, 张荣凯, 高大启, 王泽建, 郭美锦, 周礼勤, 庄英萍. 电子嗅在线反馈控制毕赤酵母糖化酶发酵过程中甲醇浓度新方法的应用[J]. 中国生物工程杂志, 2016, 36(3): 68-76. SHI HL, SUN JC, ZHANG RK, GAO DQ, WANG ZJ, GUO MJ, ZHOU LQ, ZHUANG YP. Application of the electronic nose on the online feedback control of methanol concentration during glucoamylase fermentation optimization by Pichia pastoris[J]. China Biotechnology, 2016, 36(3): 68-76(in Chinese).
    [51] KENSY F, ZANG E, FAULHAMMER C, TAN RK, BÜCHS J. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates[J]. Microbial Cell Factories, 2009, 8: 31.
    [52] CHEN Y, LIN YM, TIAN XW, LI QH, CHU J. Real-time dynamic analysis with low-field nuclear magnetic resonance of residual oil and sophorolipids concentrations in the fermentation process of Starmerella bombicola[J]. Journal of Microbiological Methods, 2019, 157: 9-15.
    [53] BELINI VL, SUHR H, WIEDEMANN P. Online monitoring of the morphology of an industrial sugarcane biofuel yeast strain via in situ microscopy[J]. Journal of Microbiological Methods, 2020, 175: 105973.
    [54] 丁健, 罗洪镇, 史仲平. 典型工业发酵过程环境变化下的细胞自适应行为与系统优化[J]. 生物工程学报, 2019, 35(10): 1986-2002. DING J, LUO HZ, SHI ZP. Fermentation optimization based on cell self-adaptation to environmental stress-a review[J]. Chinese Journal of Biotechnology, 2019, 35(10): 1986-2002(in Chinese).
    [55] ZHANG HW. Software sensors and their applications in bioprocess[M]//Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 25-56.
    [56] KRAUSE D, HUSSEIN MA, BECKER T. Online monitoring of bioprocesses via multivariate sensor prediction within swarm intelligence decision making[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 145: 48-59.
    [57] WOLD S, KETTANEH N, FRIDÉN H, HOLMBERG A. Modelling and diagnostics of batch processes and analogous kinetic experiments[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1/2): 331-340.
    [58] BRUNNER V, SIEGL M, GEIER D, BECKER T. Challenges in the development of soft sensors for bioprocesses: a critical review[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 722202.
    [59] SIEGL M, KÄMPF M, GEIER D, ANDREEßEN B, MAX S, ZAVREL M, BECKER T. Generalizability of soft sensors for bioprocesses through similarity analysis and phase-dependent recalibration[J]. Sensors, 2023, 23(4): 2178.
    [60] BAYER B, von STOSCH M, MELCHER M, DUERKOP M, STRIEDNER G. Soft sensor based on 2D-fluorescence and process data enabling real-time estimation of biomass in Escherichia coli cultivations[J]. Engineering in Life Sciences, 2019, 20(1/2): 26-35.
    [61] RANDEK J, MANDENIUS CF. On-line soft sensing in upstream bioprocessing[J]. Critical Reviews in Biotechnology, 2018, 38(1): 106-121.
    [62] LÓPEZ-TRUJILLO J, MELLADO-BOSQUE M, ASCACIO-VALDÉS JA, PRADO-BARRAGÁN LA, HERNÁNDEZ-HERRERA JA, AGUILERA-CARBÓ AF. Temperature and pH optimization for protease production fermented by Yarrowia lipolytica from agro-industrial waste[J]. Fermentation, 2023, 9(9): 819.
    [63] YU GH, PENG HF, CAO J, LIAO AM, LONG P, HUANG JH, HUI M. Avilamycin production enhancement by mutagenesis and fermentation optimization in Streptomyces viridochromogenes[J]. World Journal of Microbiology & Biotechnology, 2022, 38(3): 50.
    [64] COMBET-BLANC Y, KALAMBA KK, KERGOAT PY. Effect of pH on Bacillus thermoamylovorans growth and glucose fermentation[J]. Applied and Environmental Microbiology, 1995, 61(2): 656-659.
    [65] GROTHE E, MOO-YOUNG M, CHISTI Y. Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic[J]. Enzyme and Microbial Technology, 1999, 25(1/2): 132-141.
    [66] LIU YC, I YP, WU WT. Effect of setpoint on l-lysine fermentation[J]. Bioprocess Engineering, 1998, 19(6): 415-418.
    [67] 刘枣, 付相敏, 潘海亮, 王金华, 王永泽. 玉米浆对大肠杆菌JH-B22发酵产l-丙氨酸的影响[J]. 化学与生物工程, 2017, 34(11): 11-14. LIU Z, FU XM, PAN HL, WANG JH, WANG YZ. Effect of corn steep liquor on l-alanine fermentation by Escherichia coli JH-B22[J]. Chemistry & Bioengineering, 2017, 34(11): 11-14(in Chinese).
    [68] MONTEAGUDO JM, RODRÍGUEZ L, RINCÓN J, FUERTES J. Optimization of the conditions of the fermentation of beet molasses to lactic acid by Lactobacillus delbrueckii[J]. Acta Biotechnologica, 1994, 14(3): 251-260.
    [69] MODAK JM, LIM HC. Feedback optimization of fed-batch fermentation[J]. Biotechnology and Bioengineering, 1987, 30(4): 528-540.
    [70] MODAK JM, LIM HC. Simple nonsingular control approach to fed-batch fermentation optimization[J]. Biotechnology and Bioengineering, 1989, 33(1): 11-15.
    [71] 熊强, 徐晴, 顾帅, 李霜. 丝状真菌形态控制及其在发酵过程优化中的应用[J]. 生物工程学报, 2012, 28(2): 178-190. XIONG Q, XU Q, GU S, LI S. Controlling the morphology of filamentous fungi for optimization of fermentation process[J]. Chinese Journal of Biotechnology, 2012, 28(2): 178-190(in Chinese).
    [72] BAYER B, STRIEDNER G. DUERKOP M. Hybrid modeling and intensified DoE: an approach to accelerate upstream process characterization[J]. Biotechnology Journal, 2020, 15(9): e2000121.
    [73] von STOSCH M, WILLIS MJ. Intensified design of experiments for upstream bioreactors[J]. Engineering in Life Sciences, 2016, 17(11): 1173-1184.
    [74] 张嗣良, 储炬. 多尺度微生物过程优化[M]. 北京: 化学工业出版社, 2003. ZHANG SL, CHU J. Multi-scale Microbial Process Optimization[M]. Beijing: Chemical Industry Press, 2003(in Chinese).
    [75] 魏洪波, 石拓, 崔毅, 张权威, 杜丽红, 陈启欣, 谢希贤, 陈宁. 基于近红外光谱结合代谢流分析的l-缬氨酸发酵过程监控[J]. 中国食品学报, 2019, 19(11): 79-87. WEI HB, SHI T, CUI Y, ZHANG QW, DU LH, CHEN QX, XIE XX, CHEN N. Fermentation process monitoring of l-valine based on near infrared spectroscopy combined with metabolic flow analysis[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(11): 79-87(in Chinese).
    [76] KWONG SC, RAO G. Utility of culture redox potential for identifying metabolic state changes in amino acid fermentation[J]. Biotechnology and Bioengineering, 1991, 38(9): 1034-1040.
    [77] XU ZX, ZHU XF, MOHSIN A, GUO JF, ZHUANG YP, CHU J, GUO MJ, WANG G. A machine learning- based approach for improving plasmid DNA production in Escherichia coli fed-batch fermentations[J]. Biotechnology Journal, 2024, 19(6): e2400140.
    [78] URNIEZIUS R, SURVYLA A, PAULAUSKAS D, BUMELIS VA, GALVANAUSKAS V. Generic estimator of biomass concentration for Escherichia coli and Saccharomyces cerevisiae fed-batch cultures based on cumulative oxygen consumption rate[J]. Microbial Cell Factories, 2019, 18(1): 190.
    [79] URNIEZIUS R, MASAITIS D, LEVISAUSKAS D, SURVYLA A, BABILIUS P, GODOLADZE D. Adaptive control of the E. coli-specific growth rate in fed-batch cultivation based on oxygen uptake rate[J]. Computational and Structural Biotechnology Journal, 2023, 21: 5785-5795.
    [80] CIMANDER C, MANDENIUS CF. Bioprocess control from a multivariate process trajectory[J]. Bioprocess and Biosystems Engineering, 2004, 26(6): 401-411.
    [81] WANG Y, CHU J, ZHUANG YP, WANG YH, XIA JY, ZHANG SL. Industrial bioprocess control and optimization in the context of systems biotechnology[J]. Biotechnology Advances, 2009, 27(6): 989-995.
    [82] NELOFER R, RAMANAN RN, RAHMAN RN, BASRI M, ARIFF AB. Comparison of the estimation capabilities of response surface methodology and artificial neural network for the optimization of recombinant lipase production by E. coli BL21[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(2): 243-254.
    [83] WANG YS, YANG G, SAGE V, XU J, SUN GZ, HE J, SUN Y. Optimization of dark fermentation for biohydrogen production using a hybrid artificial neural network (ANN) and response surface methodology (RSM) approach[J]. Environmental Progress & Sustainable Energy, 2021, 40(1): e13485.
    [84] UNNI S, PRABHU AA, PANDEY R, HANDE R, VEERANKI VD. Artificial neural network-genetic algorithm (ANN-GA) based medium optimization for the production of human interferon gamma (hIFN-γ) in Kluyveromyces lactis cell factory[J]. The Canadian Journal of Chemical Engineering, 2019, 97(4): 843-858.
    [85] BEIROTI A, HOSSEINI SN, AGHASADEGHI MR, NOROUZIAN D. Comparative study of μ-stat methanol feeding control in fed-batch fermentation of Pichia pastoris producing HBsAg: an open-loop control versus recurrent artificial neural network-based feedback control[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(12): 3924-3931.
    [86] ZHANG LH, CHAO B, ZHANG X. Modeling and optimization of microbial lipid fermentation from cellulosic ethanol wastewater by Rhodotorula glutinis based on the support vector machine[J]. Bioresource Technology, 2020, 301: 122781.
    [87] DONG CY, CHEN J. Optimization of process parameters for anaerobic fermentation of corn stalk based on least squares support vector machine[J]. Bioresource Technology, 2019, 271: 174-181.
    [88] GRIEVES MW. Product lifecycle management: the new paradigm for enterprises[J]. International Journal of Product Development, 2005, 2(1/2): 71.
    [89] SCOLES S. Digital twins are helping scientists run the world’s most complex experiments[Z]. MIT Technology Review, 2024.
    [90] LAPIN A, MÜLLER D, REUSS M. Dynamic behavior of microbial populations in stirred bioreactors simulated with Euler-Lagrange methods:  traveling along the lifelines of single cells[J]. Industrial & Engineering Chemistry Research, 2004, 43(16): 4647-4656.
    [91] LAPIN A, SCHMID J, REUSS M. Modeling the dynamics of E. coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor: a structured-segregated approach[J]. Chemical Engineering Science, 2006, 61(14): 4783-4797.
    [92] HARINGA C, TANG WJ, DESHMUKH AT, XIA JY, REUSS M, HEIJNEN JJ, MUDDE RF, NOORMAN HJ. Euler-Lagrange computational fluid dynamics for (bio)reactor scale down: an analysis of organism lifelines[J]. Engineering in Life Sciences, 2016, 16(7): 652-663.
    [93] MARKARIAN J. Opportunities for digital twins[J]. BioPharm International, 2021, 34(9): 30-33.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏建业,龙东娇,陈敏,陈安祥. 智能生物制造之发酵过程优化:在线检测、人工智能与数字孪生技术[J]. 生物工程学报, 2025, 41(3): 1179-1196

复制
分享
文章指标
  • 点击次数:29
  • 下载次数: 55
  • HTML阅读次数: 86
  • 引用次数: 0
历史
  • 收稿日期:2025-01-12
  • 最后修改日期:2025-02-24
  • 在线发布日期: 2025-03-29
  • 出版日期: 2025-03-25
文章二维码
您是第5996522位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司