基于定向进化提高漆酶的催化活性及其在造纸制浆中的应用
作者:
基金项目:

国家重点研发计划(2020YFA0908400);国家自然科学基金(22308093);湖北省农业科技成果转化资金(2023BBB156)


Directed evolution improves the catalytic activity of laccase in papermaking
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    在造纸工业中,漆酶作为一种生物催化剂,已经被广泛研究和应用。然而,天然漆酶在工业应用中存在着催化效率低、稳定性差等问题,限制了其在制浆工艺中的应用。为了进一步开发出酶活性高,耐受性强的漆酶,本研究对短小芽孢杆菌属来源漆酶进行定向进化改造,利用高通量筛选方法从随机突变体文库中筛选得到突变体F282L/F306L、Q275P,其比酶活分别为280.87 U/mg、453.94 U/mg,是野生型漆酶的1.42倍、2.30倍;突变体Q275P的温度稳定性有明显提升,其在40、50、70℃孵育4 h后的剩余酶活与野生型漆酶相比均提高了20%以上;突变体F282L/F306L和Q275P相较野生型漆酶对多种金属离子和有机溶剂的耐受性增强。野生型漆酶的Km值为374.97 μmol/L,突变体F282L/F306L和Q275P的Km值分别减小至318.96 μmo/L和360.71 μmo/L,底物亲和性有所提高;F282L/F306L和Q275P对底物2,2'-联氨-双(3-乙基苯并噻唑啉-6-磺酸)二胺盐[2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid),ABTS]的kcat值分别为574.00 s–1、898.03 s–1,分别是野生型漆酶的1.1倍和1.7倍,催化效率较高。在处理纸浆应用中,突变体Q275P处理纸浆效果最好,相比于野生型漆酶,卡伯值降低了0.82,白度提高了2.00% ISO,抗张指数和裂断长分别提高7.8%和7.2%。本研究为漆酶更好地适应造纸工业环境奠定了基础。

    Abstract:

    As a biocatalyst, laccase has been widely studied and applied in the papermaking industry. However, the low catalytic efficiency and poor stability of natural laccase limit its application in the pulping process. To develop the laccase with high activity and strong tolerance, we carried out directed evolution for modification of the laccase derived from Bacillus pumilus and screened out the mutants F282L/F306L and Q275P from the random mutant library by high-throughput screening. The specific activities of F282L/F306L and Q275P were 280.87 U/mg and 453.94 U/mg, respectively, which were 1.42 times and 2.30 times that of the wild-type laccase. Q275P demonstrated significantly improved thermal stability, with the relative activity 20% higher than that of the wild-type laccase after incubation at 40 ℃, 50 ℃, and 70 ℃ for 4 h. F282L/F306L and Q275P showed greater tolerance to metal ions and organic solvents than the wild-type laccase. The Km value of the wild-type laccase was 374.97 μmo/L, and those of F282L/F306L and Q275P were reduced to 318.96 μmo/L and 360.71 μmo/L, respectively, which suggested that the substrate affinity of laccase was improved after mutation. The kcat values of F282L/F306L and Q275P for the substrate ABTS were 574.00 s–1 and 898.03 s–1, respectively, which were 1.1 times and 1.7 times that of the wild-type laccase, indicating the improved catalytic efficiency. Q275P demonstrated better performance than the wild-type laccase in pulping, as manifested by the reduction of 0.82 in the Kappa number and the increases of 2.00% ISO, 7.8%, and 7.2% in whiteness, tensile index, and breaking length, respectively. This work lays a foundation for improving the adaptation of laccase to the environment of the papermaking industry.

    参考文献
    [1] SINGH D, GUPTA N. Microbial laccase: a robust enzyme and its industrial applications[J]. Biologia, 2020, 75(8): 1183-1193.
    [2] Shraddha, SHEKHER R, SEHGAL S, KAMTHANIA M, KUMAR A. Laccase: microbial sources, production, purification, and potential biotechnological applications[J]. Enzyme Research, 2011, 2011: 217861.
    [3] JANUSZ G, PAWLIK A, ŚWIDERSKA-BUREK U, POLAK J, SULEJ J, JAROSZ-WILKOŁAZKA A, PASZCZYŃSKI A. Laccase properties, physiological functions, and evolution[J]. International Journal of Molecular Sciences, 2020, 21(3): 966.
    [4] PRINS A, KLEINSMIDT L, KHAN N, KIRBY B, KUDANGA T, VOLLMER J, PLEISS J, BURTON S, Le ROES-HILL M. The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3(2)[J]. Enzyme and Microbial Technology, 2015, 68: 23-32.
    [5] FONSECA MI, FARIÑA JI, CASTRILLO ML, RODRÍGUEZ MD, NUÑEZ CE, VILLALBA LL, ZAPATA PD. Biopulping of wood chips with Phlebia brevispora BAFC 633 reduces lignin content and improves pulp quality[J]. International Biodeterioration & Biodegradation, 2014, 90: 29-35.
    [6] SINGH G, AHUJA N, BATISH M, CAPALASH N, SHARMA P. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma- proteobacterium JB: optimization of process parameters using response surface methodology[J]. Bioresource Technology, 2008, 99(16): 7472-7479.
    [7] BALDA S, SHARMA A, GUPTA N, CAPALASH N, SHARMA P. Deinking of old newsprint (ONP) pulp with an engineered laccase: a greener approach for paper recycling[J]. Biomass Conversion and Biorefinery, 2024, 14(3): 3965-3974.
    [8] CHANDRA RP, LEHTONEN LK, RAGAUSKAS AJ. Modification of high lignin content kraft pulps with laccase to improve paper strength properties. 1. laccase treatment in the presence of gallic acid[J]. Biotechnology Progress, 2004, 20(1): 255-261.
    [9] SINGH G, ARYA SK. Utility of laccase in pulp and paper industry: a progressive step towards the green technology[J]. International Journal of Biological Macromolecules, 2019, 134: 1070-1084.
    [10] MATE DM, ALCALDE M. Laccase engineering: from rational design to directed evolution[J]. Biotechnology Advances, 2015, 33(1): 25-40.
    [11] SEN S, VENKATA DASU V, MANDAL B. Developments in directed evolution for improving enzyme functions[J]. Applied Biochemistry and Biotechnology, 2007, 143(3): 212-223.
    [12] KOSCHORRECK K, SCHMID RD, URLACHER VB. Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis[J]. BMC Biotechnology, 2009, 9: 12.
    [13] GUPTA N, FARINAS ET. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores[J]. Protein Engineering, Design and Selection, 2010, 23(8): 679-682.
    [14] LIU JS, CHEN JH, ZUO KJ, LI HN, PENG F, RAN QP, WANG R, JIANG ZB, SONG HT. Chemically induced oxidative stress improved bacterial laccase-mediated degradation and detoxification of the synthetic dyes[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112823.
    [15] MAYER AM, STAPLES RC. Laccase: new functions for an old enzyme[J]. ChemInform, 2002, 33(42): 256.
    [16] SU J, FU J, WANG Q, SILVA C, CAVACO-PAUL A. Laccase: a green catalyst for the biosynthesis of poly-phenols[J]. Critical Reviews in Biotechnology, 2018, 38(2): 294-307.
    [17] VISWANATH B, RAJESH B, JANARDHAN A, KUMAR AP, NARASIMHA G. Fungal laccases and their applications in bioremediation[J]. Enzyme Research, 2014, 2014(1): 163242.
    [18] BU TL, YANG R, ZHANG YJ, CAI YT, TANG ZZ, LI CL, WU Q, CHEN H. Improving decolorization of dyes by laccase from Bacillus licheniformis by random and site-directed mutagenesis[J]. PeerJ, 2020, 8: e10267.
    [19] SHENG SL, JIA H, TOPIOL S, FARINAS ET. Engineering CotA laccase for acidic pH stability using Bacillus subtilis spore display[J]. Journal of Microbiology and Biotechnology, 2017, 27(3): 507-513.
    [20] FESTA G, AUTORE F, FRATERNALI F, GIARDINA P, SANNIA G. Development of new laccases by directed evolution: functional and computational analyses[J]. Proteins: Structure, Function, and Bioinformatics, 2008, 72(1): 25-34.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

倪红,杨凡,王磊,李变霞,李华南,刘家书,江正兵,程万里. 基于定向进化提高漆酶的催化活性及其在造纸制浆中的应用[J]. 生物工程学报, 2025, 41(1): 308-320

复制
分享
文章指标
  • 点击次数:152
  • 下载次数: 300
  • HTML阅读次数: 271
  • 引用次数: 0
历史
  • 收稿日期:2024-05-11
  • 最后修改日期:2024-07-08
  • 在线发布日期: 2025-01-24
  • 出版日期: 2025-01-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司