生物过程的介尺度模拟仿真与AI优化
作者:
基金项目:

中国科学院战略性科技先导专项(XDC0120402);国家自然科学基金(22478397,22421003)


Mesoscale simulation and AI optimization of bioprocesses
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [100]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    生物过程是利用活性生物细胞或酶实现底物生物转化的一种绿色可持续、环境友好的加工过程,在生物制造中起着关键作用。具有双重属性的生物过程多层次多尺度间的复杂关联导致生物过程的优化十分困难,深入认识介尺度机理是了解生物过程动态变化和梳理多尺度复杂关系的关键之一。介尺度的数值模拟为介尺度现象的认识提供了一种新途径,人工智能(artificial intelligence, AI)优化与介尺度模拟的结合为生物过程的优化注入了新的活力。本文综述了生物过程中介尺度模拟和AI优化的研究进展,探讨了可能的发展方向,以期促进介尺度模拟和AI优化在生物过程中的应用与发展。

    Abstract:

    As green, sustainable, and environmentally friendly material processing processes using biological cells or enzymes to achieve substance conversion, bioprocesses play an increasingly important role in biomanufacturing. It is difficult to optimize bioprocesses because of the complex relationship at multiple levels and multiple scales. The knowledge of mesoscale behaviors is the key to understanding the dynamics of bioprocesses and to sort out the complex relationships of parameter variations in the spatial-temporal domain. Mesoscale numerical simulation paves a way for understanding these phenomena, and the integration of artificial intelligence (AI) and mesoscale simulation offers new vitality into the optimization of bioprocesses. This article reviews the progress in mesoscale simulation and AI optimization of bioprocesses and discusses the possible development directions, aiming to promote the development of this field.

    参考文献
    [1] 麦克尔L. 舒勒, 费克莱特·卡基(著); 陈涛, 赵学明(译). 生物过程工程: 基本概念, 第二版[M]. 北京: 化学工业出版社, 2008: 3-9. SHULER ML, KARGE F(Authors); Chen T, Zhao XM(Translators). Bioprocess Engineering: Basic Concepts, 2nd Edition[M]. Beijing: Chemical Industry Press, 2008: 3-9(in Chinese).
    [2] 谭天伟, 秦培勇. 工业生物过程高效转化与系统集成[J]. 生物产业技术, 2017, (4): 25-30. TAN TW, QIN PY. High efficient biotransformation and system integration in the process of industrial biotechnology[J]. Biotechnology & Business, 2017, 4: 25-30(in Chinese).
    [3] LI JH. Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale[J]. Engineering, 2016, 2(3): 276-285.
    [4] 张嗣良, 潘杭琳, 黄明志, 谢梅野. 生物过程大数据分析与智能化[J]. 生物产业技术, 2018(1): 86-93. ZHANG SL, PAN HL, HUANG MZ, XIE MY. Big data and intelligentialized method for industrial bioprocess[J]. Biotechnology & Business, 2018(1): 86-93(in Chinese).
    [5] HULBURT HM, KATZ S. Some problems in particle technology: a statistical mechanical formulation[J]. Chemical Engineering Science, 1964, 19(8): 555-574.
    [6] CHENG JC, YANG C, MAO ZS. CFD-PBE simulation of premixed continuous precipitation incorporating nucleation, growth and aggregation in a stirred tank with multi-class method[J]. Chemical Engineering Science, 2012, 68(1): 469-480.
    [7] 李倩, 程景才, 杨超, 毛在砂. 群体平衡方程在搅拌反应器模拟中的应用[J]. 化工学报, 2014, 65(5): 1607-1615. LI Q, CHENG JC, YANG C, MAO ZS. Application of population balance equation in numerical simulation of multiphase stirred tanks[J]. CIESC Journal, 2014, 65(5): 1607-1615(in Chinese).
    [8] MORCHAIN J, GABELLE JC, COCKX A. A coupled population balance model and CFD approach for the simulation of mixing issues in lab-scale and industrial bioreactors[J]. AIChE Journal, 2014, 60(1): 27-40.
    [9] GYŐRGYA, R, KLONTZAS ME, KOSTOGLOU M. A population balance model for stem cell differentiation bioprocesses[J]. Computer Aided Chemical Engineering, 2017, 40: 2761-2766.
    [10] WODOŁAŻSKI A. Co-simulation of CFD-multiphase population balance coupled model aeration of sludge flocs in stirrer tank bioreactor[J]. International Journal of Multiphase Flow, 2020, 123: 103162.
    [11] WODOŁAŻSKI A. Metaheurystic optimization of CFD-multiphase population balance and biokinetics aeration stirrer tank bioreactor of sludge flocs for scale-up study with bio(de/re)flocculation[J]. Biochemical Engineering Journal, 2022, 184: 108477.
    [12] MISHRA S, KUMAR V, SARKAR J, RATHORE AS. CFD based mass transfer modeling of a single use bioreactor for production of monoclonal antibody biotherapeutics[J]. Chemical Engineering Journal, 2021, 412: 128592.
    [13] CHEN H, ZHANG XB, LUO ZH. A CFD-PBM coupled method to optimize a pilot-scale stirred bioreactor[J]. Industrial & Engineering Chemistry Research, 2022, 61(23): 8302-8312.
    [14] ALHUTHALI S, KONTORAVDI C. Population balance modelling captures host cell protein dynamics in CHO cell cultures[J]. PLoS One, 2022, 17(3): e0265886.
    [15] 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707. WAN J, ZHANG L, FAN YC, LIU XM, LUO PC, ZHANG F, ZHANG ZB. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model[J]. CIESC Journal, 2022, 73(6): 2698-2707(in Chinese).
    [16] HUSSAIN S, KUMAR R. Elzaki projected differential transform method for multi-dimensional aggregation and combined aggregation-breakage equations[J]. Journal of Computational Science, 2024, 75: 102211.
    [17] NI SZ, ZHAO T, SUN ZH, WANG W, SU KZ. CFD simulation for comparative of hydrodynamic effects in biochemical reactors using population balance model with varied inlet gas distribution profiles[J]. International Journal of Chemical Reactor Engineering, 2024, 22(3): 277-297.
    [18] 何雅玲. 格子Boltzmann方法的理论及应用[M]. 北京: 高等教育出版社, 2023: 1-9. HE YL. Lattice Boltzmann Method: Theory and Applications[M]. Beijing: Higher Education Press, 2023: 1-9(in Chinese).
    [19] YONG YM, YANG C, JIANG Y, JOSHI A, SHI YC, YIN XL. Numerical simulation of immiscible liquid-liquid flow in microchannels using lattice Boltzmann method[J]. Science China Chemistry, 2011, 54(1): 244-256.
    [20] MO HY, YONG YM, YU K, CHEN WQ, DAI JL, YANG C. An integrated Lattice-Boltzmann model of immiscible two-phase flow and bulk mass transfer with Marangoni effect[J]. Journal of Computational Physics, 2023, 481: 112037.
    [21] MO HY, YONG YM, CHEN WQ, DAI JL, YANG C. A regularized lattice Boltzmann model with filter for multiphase flow with diffusion-dominated mass transfer considering two-film theory[J]. Physics of Fluids, 2023, 35(11): 112121.
    [22] 张潇丹, 雍玉梅, 李文军, 赵元生, 李媛媛, 杨巧文, 杨超. REV尺度多孔介质格子Boltzmann方法的数学模型及应用的研究进展[J]. 化工进展, 2016, 35(6): 1698-1712. ZHANG XD, YONG YM, LI WJ, ZHAO YS, LI YY, YANG QW, YANG C. Models and application of lattice Boltzmann method at REV-scale in porous media[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1698-1712(in Chinese).
    [23] 张亚男. 基于格子-Boltzman方法的流体-颗粒非均匀流动结构及相互作用研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. ZHANG YN. Study on fluid-particle heterogeneous flow structure and interaction based on lattice- Boltzmann method[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [24] 崔建强. 微血管红细胞流动特性的理论与仿真[D]. 济南: 山东大学, 2010. CUI JQ. Theory and simulation of flow characteristics of microvascular red blood cells[D]. Jinan: Shandong University, 2010(in Chinese).
    [25] 赫轶男. 生物膜材料的GPU并行运算和图像处理[D]. 桂林: 桂林电子科技大学, 2020. HE YN. GPU parallel operation and image processing of biofilm materials[D]. Guilin: Guilin University of Electronic Technology, 2020(in Chinese).
    [26] 张乾毅. 生物膜材料的晶格玻尔兹曼方法的研究与GPU并行计算[D]. 桂林: 桂林电子科技大学, 2021. ZHANG QY. Research on lattice Boltzmann method of biofilm materials and GPU parallel computing[D]. Guilin: Guilin University of Electronic Technology, 2021(in Chinese).
    [27] BENIOUG M, GOLFIER F, OLTÉAN C, BUÈS MA, BAHAR T, CUNY J. An immersed boundary-lattice Boltzmann model for biofilm growth in porous media[J]. Advances in Water Resources, 2017, 107: 65-82.
    [28] STRNIŠA F, BAJIĆ M, PANJAN P, PLAZL I, SESAY AM, ŽNIDARŠIČ-PLAZL P. Characterization of an enzymatic packed-bed microreactor: experiments and modeling[J]. Chemical Engineering Journal, 2018, 350: 541-550.
    [29] 马苏宁, 陈丽萍, 龚延风, 王世林. 多孔介质中微生物生长与衰亡过程介观分析[J]. 环境工程, 2022, 40(6): 154-161. MA SN, CHEN LP, GONG YF, WANG SL. Mesoscopic analysis on microbial growth and decay process in porous media[J]. Environmental Engineering, 2022, 40(6): 154-161(in Chinese).
    [30] 杨勇, 陈丽萍, 龚延风, 金椿明, 王世林. 基于多尺度方法研究微生物生长对多孔介质渗透率的影响[J]. 环境工程, 2023, 41(4): 49-54, 153. YANG Y, CHEN LP, GONG YF, JIN CM, WANG SL. Effect of microbial growth on permeability of porous media based on multi-scale method[J]. Environmental Engineering, 2023, 41(4): 49-54, 153(in Chinese).
    [31] 杨艳霞, 李静. 膜生物反应器内生化反应过程的格子Boltzmann模拟[J]. 计算物理, 2018, 35(5): 571-576. YANG YX, LI J. Lattice Boltzmann simulation of flow and mass transfer in membrane bioreactor[J]. Chinese Journal of Computational Physics, 2018, 35(5): 571-576(in Chinese).
    [32] 张凯. 关于两类流动问题的格子Boltzmann方法研究[D]. 银川: 宁夏大学, 2023. ZHANG K. Study on lattice Boltzmann method for two kinds of flow problems[D]. Yinchuan: Ningxia University, 2023(in Chinese).
    [33] 韩亚鲁. 不同加热方式土中热湿迁移规律研究[D]. 长春: 吉林大学, 2023. HAN YL. Study on heat and moisture migration in soil with different heating methods[D]. Changchun: Jilin University, 2023(in Chinese).
    [34] MONDAL PP, GALODHA A, VERMA VK, SINGH V, SHOW PL, AWASTHI MK, LALL B, ANEES S, POLLMANN K, JAIN R. Review on machine learning-based bioprocess optimization, monitoring, and control systems[J]. Bioresource Technology, 2023, 370: 128523.
    [35] 任瑛, 徐骥. 蛋白质体系分子动力学模拟的前沿进展: 从介科学角度重新审视[J]. 过程工程学报, 2018, 18(6): 1126-1138. REN Y, XU J. Frontiers of molecular dynamics simulations of protein systems: reexamine from the mesoscience perspective[J]. The Chinese Journal of Process Engineering, 2018, 18(6): 1126-1138(in Chinese).
    [36] YAN WC, LUO ZH, GUO AY. Coupling of CFD with PBM for a pilot-plant tubular loop polymerization reactor[J]. Chemical Engineering Science, 2011, 66(21): 5148-5163.
    [37] LUO H. Coalescence, breakup and liquid circulation in bubble column reactors[D]. Trondheim: Norwegian Institute of Technology, 1993.
    [38] MISHRA S, KUMAR V, SARKAR J, RATHORE AS. Mixing and mass transfer in production scale mammalian cell culture reactor using coupled CFD-species transport-PBM validation[J]. Chemical Engineering Science, 2023, 267: 118323.
    [39] 肖颀, 杨宁. 基于EMMS模型的搅拌釜内气液两相流数值模拟[J]. 化工学报, 2016, 67(7): 2732-2739. XIAO X, YANG N. Numerical simulation of gas-liquid flow in stirred tanks based on EMMS model[J]. CIESC Journal, 2016, 67(7): 2732-2739(in Chinese).
    [40] YANG N, XIAO Q. A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors[J]. Chemical Engineering Science, 2017, 170: 241-250.
    [41] LUO HA, SVENDSEN HF. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233.
    [42] HAN LC, LUO HA, LIU YJ. A theoretical model for droplet breakup in turbulent dispersions[J]. Chemical Engineering Science, 2011, 66(4): 766-776.
    [43] HAN LC, GONG SG, LI YQ, GAO NN, FU J, LUO HA, LIU ZF. Influence of energy spectrum distribution on drop breakage in turbulent flows[J]. Chemical Engineering Science, 2014, 117: 55-70.
    [44] HAN LC, GONG SG, DING YW, FU J, GAO NN, LUO HA. Consideration of low viscous droplet breakage in the framework of the wide energy spectrum and the multiple fragments[J]. AIChE Journal, 2015, 61(7): 2147-2168.
    [45] SOLSVIK J, TANGEN S, JAKOBSEN HA. On the constitutive equations for fluid particle breakage[J]. Reviews in Chemical Engineering, 2013, 29(5): 241-356.
    [46] SHI WB, YANG XG, SOMMERFELD M, YANG J, CAI XY, LI G, ZONG Y. Modelling of mass transfer for gas-liquid two-phase flow in bubble column reactor with a bubble breakage model considering bubble-induced turbulence[J]. Chemical Engineering Journal, 2019, 371: 470-485.
    [47] 斯图尔特·罗素, 彼得·诺维格. 人工智能: 现代方法[M]. 张博雅, 等译. 北京: 人民邮电出版社, 2022: 86-934. RUSSELL S, NORVIG P. Artificial Intelligence: a Mordern Approach[M]. ZHANG BY, et al. Trans. Beijing: Posts & Telecom Press, 2022: 86-934(in Chinese).
    [48] 宫思吟, 俞晓东, 葛思涵, 陈艳琳, 钟汉斌. 基于CFD和机器学习的反应器内瞬时状态预测综述[J]. 信息记录材料, 2023, 24(11): 13-15. GONG SY, YU XD, GE SH, CHEN YL, ZHONG HB. A review on predicting transient characteristics in reactors based on machine learning and CFD[J]. Information Recording Materials, 2023, 24(11): 13-15(in Chinese).
    [49] 温砚中, 韩樾夏, 孙剑飞. AI赋能的生物医学研究[J]. 科学(上海), 2024, 76(3): 26-31. WEN YZ, HAN YX, SUN JF. Biomedical research on AI empowerment[J]. Science (Shanghai), 2024, 76(3): 26-31(in Chinese).
    [50] 李丹丹, 马征远, 张博文, 江源, 冯心宜, 史彤, 毛开云. 人工智能驱动生命科学研究的发展态势[J]. 生命科学, 2024, 36(1): 122-128. LI DD, MA ZY, ZHANG BW, JIANG Y, FENG XY, SHI T, MAO KY. Development trend of life science research driven by artificial intelligence[J]. Chinese Bulletin of Life Sciences, 2024, 36(1): 122-128(in Chinese).
    [51] 蒋迎迎, 曲戈, 孙周通. 机器学习助力酶定向进化[J]. 生物学杂志, 2020, 37(4): 1-11. JIANG YY, QU G, SUN ZT. Machine learning-assisted enzyme directed evolution[J]. Journal of Biology, 2020, 37(4): 1-11(in Chinese).
    [52] 任梦媛. 基于生成式对抗网络的酶智能设计[D]. 广州: 华南理工大学, 2023. REN MY. Intelligent design of enzyme based on generative antagonism network[D]. Guangzhou: South China University of Technology, 2023(in Chinese).
    [53] 潘彦园. 新型生物酶的挖掘算法研究[D]. 成都: 电子科技大学, 2019. PAN YY. Research on mining algorithm of new biological enzyme[D]. Chengdu: University of Electronic Science and Technology of China, 2019(in Chinese).
    [54] HUANG CM, ZHANG L, TANG T, WANG HJ, JIANG YQ, REN HW, ZHANG YT, FANG JL, ZHANG WH, JIA X, YOU S, QIN B. Application of directed evolution and machine learning to enhance the diastereoselectivity of ketoreductase for dihydrotetrabenazine synthesis[J]. JACS Au, 2024, 4(7): 2547-2556.
    [55] ORSI E, SCHADA von BORZYSKOWSKI L, NOACK S, NIKEL PI, LINDNER SN. Automated in vivo enzyme engineering accelerates biocatalyst optimization[J]. Nature Communications, 2024, 15(1): 3447.
    [56] 池燕飞, 李春, 冯旭东. 机器学习在蛋白质功能预测领域的研究进展[J]. 生物工程学报, 2023, 39(6): 2141-2157. CHI YF, LI C, FENG XD. Research progress of machine learning in the field of protein function prediction[J]. Chinese Journal of Biotechnology, 2023, 39(6): 2141-2157(in Chinese).
    [57] 钟灵茜. 多功能酶智能预测新方法研究[D]. 无锡: 江南大学, 2023. ZHONG LQ. Study on a new method of intelligent prediction of multifunctional enzymes[D]. Wuxi: Jiangnan University, 2023(in Chinese).
    [58] YU TH, CUI HY, LI JC, LUO YN, JIANG GD, ZHAO HM. Enzyme function prediction using contrastive learning[J]. Science, 2023, 379(6639): 1358-1363.
    [59] TANG WL, DENG ZH, ZHOU HW, ZHANG W, HU FP, CHOI KS, WANG ST. MVDINET: a novel multi-level enzyme function predictor with multi-view deep interactive learning[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2024, 21(1): 84-94.
    [60] de CRÉCY-LAGARD V, DIAS R, FRIEDBERG I, YUAN YF, SWAIRJO MA. Limitations of current machine-learning models in predicting enzymatic functions for uncharacterized proteins[J]. bioRxiv, 2024: 2024.07.01.601547.
    [61] 曾涛, 巫瑞波. 数据驱动的酶反应预测与设计[J]. 合成生物学, 2023, 4(3): 535-550. ZENG T, WU RB. Data-driven prediction and design for enzymatic reactions[J]. Synthetic Biology Journal, 2023, 4(3): 535-550(in Chinese).
    [62] LINCOLN M.  Rational design and engineering of quinone redox mediators for enzymatic bioelectrocatalysis[D]. Michigan: Michigan State University ProQuest,  2024. 
    [63] BARANWAL M, MAGNER A, ELVATI P, SALDINGER J, HERO AO. A deep learning architecture for metabolic pathway prediction[J]. Bioinformatics, 2020, 36: 2547-2553.
    [64] TIAN YS, YANG X, CHEN NH, LI CY, YANG WL. Data-driven interpretable analysis for polysaccharide yield prediction[J]. Environmental Science and Ecotechnology, 2024, 19: 100321.
    [65] KREUTTER D, SCHWALLER P, REYMOND JL. Predicting enzymatic reactions with a molecular transformer[J]. Chemical Science, 2021, 12(25): 8648-8659.
    [66] SHANG LD, WANG Y, CHEN FY, PENG H, BAO XD, TANG XS, LIU KX, XU L, XIAO DY, LIANG P, LI B. Ultra-fast identification of lactic acid bacteria colonies based on droplet microcavity label-free SERS[J]. LWT-Food Science and Technology, 2024, 204: 116435.
    [67] ALIEV TA, LAVRENTEV FV, DYAKONOV AV, DIVEEV DA, SHILOVSKIKH VV, SKORB EV. Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods[J]. Biosensors and Bioelectronics, 2024, 259: 116377.
    [68] KWON MS, ADIDJAJA JJ, KIM HU. Predicting the effects of cultivation condition on gene regulation in Escherichia coli by using deep learning[J]. Computational and Structural Biotechnology Journal, 2023, 21: 2613-2620.
    [69] 张和平, 高广琦. 基于人工智能的益生乳酸菌精准筛选及产业化关键技术[J]. 中国食品学报, 2023, 23(6): 1-7. ZHANG HP, GAO GQ. The key technologies of precise isolation and industrialization of probiotic lactic acid bacteria based on artificial intelligence[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(6): 1-7(in Chinese).
    [70] MIGDADI L, SHARAR N, JAFAR H, TELFAH A, HERGENRÖDER R, WÖHLER C. Machine learning in automated monitoring of metabolic changes accompanying the differentiation of adipose-tissue- derived human mesenchymal stem cells employing 1H-1H TOCSY NMR[J]. Metabolites, 2023, 13(3): 352-370.
    [71] ANDRADE CRUZ I, CHUENCHART W, LONG F, SURENDRA KC, RENATA SANTOS ANDRADE L, BILAL M, LIU H, TAVARES FIGUEIREDO R, KHANAL SK, FERNANDO ROMANHOLO FERREIRA L. Application of machine learning in anaerobic digestion: perspectives and challenges[J]. Bioresource Technology, 2022, 345: 126433.
    [72] DU YH, WANG MY, YANG LH, TONG LL, GUO DS, JI XJ. Optimization and scale-up of fermentation processes driven by models[J]. Bioengineering, 2022, 9(9): 473.
    [73] 王冠, 田锡炜, 夏建业, 储炬, 张嗣良, 庄英萍. 大数据-模型混合驱动下生物过程优化与放大的新机遇与挑战[J]. 生物工程学报, 2021, 37(3): 1004-1016. WANG G, TIAN XW, XIA JY, CHU J, ZHANG SL, ZHUANG YP. New opportunities and challenges for hybrid data and model driven bioprocess optimization and scale-up[J]. Chinese Journal of Biotechnology, 2021, 37(3): 1004-1016(in Chinese).
    [74] 夏建业, 刘晶, 庄英萍. 人工智能时代发酵优化与放大技术的机遇与挑战[J]. 生物工程学报, 2022, 38(11): 4180-4199. XIA JY, LIU J, ZHUANG YP. Opportunities and challenges for fermentation optimization and scale-up technology in the artificial intelligence era[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4180-4199(in Chinese).
    [75] HELLECKES LM, HEMMERICH J, WIECHERT W, von LIERES E, GRÜNBERGER A. Machine learning in bioprocess development: from promise to practice[J]. Trends in Biotechnology, 2023, 41(6): 817-835.
    [76] WANG XT, MOHSIN A, SUN YF, LI C, ZHUANG YP, WANG G. From spatial-temporal multiscale modeling to application: bridging the valley of death in industrial biotechnology[J]. Bioengineering, 2023, 10(6): 744-766.
    [77] CHENG Y, BI XY, XU YM, LIU YF, LI JH, DU GC, LV XQ, LIU L. Artificial intelligence technologies in bioprocess: opportunities and challenges[J]. Bioresource Technology, 2023, 369: 128451.
    [78] KONISHI M. High cell density cultivation of Corynebacterium glutamicum by deep learning-assisted medium design and the subsequent feeding strategy[J]. Journal of Bioscience and Bioengineering, 2024, 137(5): 396-402.
    [79] GÜRBÜZ T, GÜNAY ME, TAPAN NA. Machine learning solutions for enhanced performance in plant-based microbial fuel cells[J]. International Journal of Hydrogen Energy, 2024, 78: 1060-1069.
    [80] ZHANG LH, ZHANG CW, ZHAO X, HE CL, ZHANG X. Improving lipid production by Rhodotorula glutinis for renewable fuel production based on machine learning[J]. Frontiers of Chemical Science and Engineering, 2024, 18(5): 51.
    [81] PANDEY AK, NAYAK SC, KIM SH. Functional link hybrid artificial neural network for predicting continuous biohydrogen production in dynamic membrane bioreactor[J]. Bioresource Technology, 2024, 397: 130496.
    [82] PINTO J, RAMOS JRC, COSTA RS, ROSSELL S, DUMAS P, OLIVEIRA R. Hybrid deep modeling of a CHO-K1 fed-batch process: combining first-principles with deep neural networks[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1237963.
    [83] TAN VWG, CHAN YJ, ARUMUGASAMY SK, LIM JW. Optimizing biogas production from palm oil mill effluent utilizing integrated machine learning and response surface methodology framework[J]. Journal of Cleaner Production, 2023, 414: 137575.
    [84] 夏建业, 田锡炜, 刘娟, 庄英萍. 人工智能时代的智能生物制造[J]. 生物加工过程, 2020, 18(1): 13-20. XIA JY, TIAN XW, LIU J, ZHUANG YP. Intelligent biological manufacturing in the age of artificial intelligence[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(1): 13-20(in Chinese).
    [85] 刘可意, 汪俊卿, 傅凯, 李峰, 王瑞明, 李丕武. 智能生物反应器装备制造进展[J]. 食品与发酵工业, 2024, 50(15): 409-416. LIU KY, WANG JQ, FU K, LI F, WANG RM, LI PW. Progress in the manufacture of intelligent bioreactor equipment[J]. Food and Fermentation Industries, 2024, 50(15): 409-416(in Chinese).
    [86] 张楠, 程思远, 余永建, 窦帅伟, 刘稼鑫, 唐瑞骏, 朱圆圆, 于振. 封闭式固态发酵体系监测与调控的研究进展[J]. 食品科学, 2025, 46(1): 274-283. ZHANG N, CHENG SY, YU YJ, DOU SW, LIU JX, TANG RJ, ZHU RR, YU Z. Research progress on monitoring and regulation of closed solid-state fermentation system[J]. Food Science, 2025, 46(1): 274-283(in Chinese).
    [87] RAJASEKHAR N, RADHAKRISHNAN TK, MOHAMED SN. Reinforcement learning based temperature control of a fermentation bioreactor for ethanol production[J]. Biotechnology and Bioengineering, 2024, 121(10): 3114-3127.
    [88] 宋利豪. 基于深度学习的溶菌酶发酵工艺优化[D]. 杭州: 杭州电子科技大学, 2023. SONG LH. Optimization of lysozyme fermentation process based on deep learning[D]. Hangzhou: Hangzhou Dianzi University, 2023(in Chinese).
    [89] SAMMAKNEJAD N, LEE J, AUSTRIA JM, DUENAS N, HEIBA L, REED D, EPHRAIM B, SRIDHARAN G, JUSTICE J, DAVIS J, UNDEY C. Real-time multivariate statistical monitoring of biopharmaceutical processes with no prior product-specific history[J]. Computers & Chemical Engineering, 2024, 189: 108788.
    [90] LIANG Y, TIAN JP, HU XJ, HUANG YX, HE KL, XIE LL, YANG HL, HUANG D, ZHOU YF, XIA YY. Rapid determination of starch and alcohol contents in fermented grains by hyperspectral imaging combined with data fusion techniques[J]. Journal of Food Science, 2024, 89(6): 3540-3553.
    [91] XU ZX, ZHU XF, MOHSIN A, GUO JF, ZHUANG YP, CHU J, GUO MJ, WANG G. A machine learning-based approach for improving plasmid DNA production in Escherichia coli fed-batch fermentations[J]. Biotechnology Journal, 2024, 19(6): 2400140.
    [92] PANCHIGAR D, KAR K, SHUKLA S, MATHEW RM, CHADHA U, SELVARAJ SK. Machine learning-based CFD simulations: a review, models, open threats, and future tactics[J]. Neural Computing and Applications, 2022, 34(24): 21677-21700.
    [93] ZHOU JH, HUANG ML. Navigating the landscape of enzyme design: from molecular simulations to machine learning[J]. Chemical Society Reviews, 2024, 53(16): 8202-8239.
    [94] 马睿. 机器学习辅助定向进化提高奇异变形杆菌脂肪酶的甲醇耐受性[D]. 无锡: 江南大学, 2023. MA R. Machine learning assisted directed evolution improves methanol tolerance of Proteus mirabilis lipase[D]. Wuxi: Jiangnan University, 2023(in Chinese).
    [95] 朱镜璇. 分子动力学模拟结合深度学习探究氨基酸突变或配体结合对酶活性的影响[D]. 长春: 吉林大学, 2021. ZHU JX. Molecular dynamics simulation combined with deep learning to explore the influence of amino acid mutation or ligand binding on enzyme activity[D]. Changchun: Jilin University, 2021(in Chinese).
    [96] ZUBATYUK R, SMITH JS, NEBGEN BT, TRETIAK S, ISAYEV O. Teaching a neural network to attach and detach electrons from molecules[J]. Nature Communications, 2021, 12(1): 4870.
    [97] GLIELMO A, HUSIC BE, RODRIGUEZ A, CLEMENTI C, NOÉ F, LAIO A. Unsupervised learning methods for molecular simulation data[J]. Chemical Reviews, 2021, 121(16): 9722-9758.
    [98] KÖCHL K, SCHOPPER T, DURMAZ V, PARIGGER L, SINGH A, KRASSNIGG A, CESPUGLI M, WU W, YANG XL, ZHANG YC, WANG WWS, SELLUSKI C, ZHAO TH, ZHANG X, BAI CH, LIN L, HU YX, XIE ZW, ZHANG ZH, YAN J, et al. Optimizing variant-specific therapeutic SARS-CoV-2 decoys using deep-learning-guided molecular dynamics simulations[J]. Scientific Reports, 2023, 13(1): 774.
    [99] KAYA U, GOPIREDDY S, URBANETZ N, NOPENS I, VERWAEREN J. Predicting the hydrodynamic properties of a bioreactor: conditional density estimation as a surrogate model for CFD simulations[J]. Chemical Engineering Research and Design, 2022, 182: 342-359.
    [100] 韦振宇. 基于深度学习的智能CFD模拟研究[D]. 西安: 西安石油大学, 2023. WEI ZY. Research on intelligent CFD simulation based on deep learning[D]. Xi’an: Xi’an Shiyou University, 2023(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王智慧,王聪,张庆华,夏建业,丛威,杨超. 生物过程的介尺度模拟仿真与AI优化[J]. 生物工程学报, 2025, 41(3): 1197-1218

复制
分享
文章指标
  • 点击次数:32
  • 下载次数: 61
  • HTML阅读次数: 74
  • 引用次数: 0
历史
  • 收稿日期:2024-07-23
  • 最后修改日期:2024-10-25
  • 在线发布日期: 2025-03-29
  • 出版日期: 2025-03-25
文章二维码
您是第5996522位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司