芥菜MAPK基因家族成员鉴定及其响应根肿菌侵染的表达分析
作者:
基金项目:

国家现代农业产业技术体系项目(CARS-24-A-01);农业农村部作物种质资源安全保存项目(2024NWB037);中国农业科学院创新工程项目(CAAS-ASTIP-2024-IVFCAAS)


Genome-wide identification, characterization, and expression analysis of MAPK genes in response to Plasmodiophora brassicae infection in Brassica juncea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • | | | |
  • 文章评论
    摘要:

    芸薹属根肿菌(Plasmodiophora brassica)侵染引起的根肿病蔓延会严重影响芥菜[Brassica juncea(L.) Czern.]的产量和品质。丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)级联作为一种高度保守的信号通路,在植物的生物和非生物胁迫中发挥重要作用。为了挖掘芥菜抗根肿病相关的MAPK基因,本研究对芥菜进行全基因组鉴定,并对芥菜MAPK基因家族的系统进化以及基因结构等进行生物信息学分析。筛选鉴定的66个BjuMAPK基因不均匀分布在17条染色体上。在基因组尺度上,发现基因的串联重复导致了芥菜MAPK基因数目增多。同一亚族成员之间具有相似的基因结构,不同亚族间差异较大。预测的顺式作用元件与植物激素、抗逆性以及植物的生长发育相关,表达分析显示BjuMAPK02BjuMAPK15BjuMAPK17BjuMAPK19等基因在根肿菌侵染芥菜后具有不同的响应模式。以上结果为进一步研究BjuMAPK基因在芥菜应对根肿病生物胁迫中的功能奠定了理论基础。

    Abstract:

    In recent years, the spread of clubroot disease caused by Plasmodiophora brassicae infection has seriously affected the yield and quality of Brassica juncea (L.) Czern.. The cascade of mitogen-activated protein kinases (MAPKs), a highly conserved signaling pathway, plays an important role in plant responses to both biotic and abiotic stress conditions. To mine the MAPK genes related to clubroot disease resistance in B. juncea, we conducted a genome-wide analysis on this vegetable, and we analyzed the phylogenetic evolution and gene structure of the MAPK gene family in mustard. The 66 BjuMAPK genes identified by screening the whole genome sequence of B. juncea were unevenly distributed on 17 chromosomes. At the genomic scale, tandem repeats led to an increase in the number of MAPK genes in B. juncea. It was found that members of the same subfamily had similar gene structures, and there were great differences among different subfamilies. These predicted cis-acting elements were related to plant hormones, stress resistance, and plant growth and development. The expression of BjuMAPK02, BjuMAPK15, BjuMAPK17, and BjuMAPK19 were down-regulated or up-regulated in response to P. brassicae infection. The above results lay a theoretical foundation for further studying the functions of BjuMAPK genes in B. juncea in response to the biotic stress caused by clubroot disease.

    参考文献
    [1] CHAI AL, XIE XW, SHI YX, LI BJ. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China[J]. Canadian Journal of Plant Pathology, 2014, 36(sup1): 142-153.
    [2] TIAN XL, WANG DD, MAO ZC, PAN LM, LIAO JJ, CAI ZM. Infection of Plasmodiophora brassicae changes the fungal endophyte community of tumourous stem mustard roots as revealed by high-throughput sequencing and culture-dependent methods[J]. PLoS One, 2019, 14(6): e0214975.
    [3] MALINOWSKI R, SMITH JA, FLEMING AJ, SCHOLES JD, ROLFE SA. Gall formation in clubroot-infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle[J]. The Plant Journal, 2012, 71(2): 226-238.
    [4] CAVALIER-SMITH T, CHAO EEY. Phylogeny and classification of Phylum cercozoa (Protozoa)[J]. Protist, 2003, 154(3/4): 341-358.
    [5] DONALD C, PORTER I. Integrated control of clubroot[J]. Journal of Plant Growth Regulation, 2009, 28(3): 289-303.
    [6] WALLENHAMMAR AC. Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels[J]. Plant Pathology, 1996, 45(4): 710-719.
    [7] 罗远莉. 根肿病菌侵染茎瘤芥差减文库的构建及其差异表达基因鉴定[D]. 重庆: 重庆大学, 2014. LUO YL. Construction of subtractive library of stem mustard infected by Rhizoctonia solani and identification of its differentially expressed genes [D]. Chongqing: Chongqing University, 2014(in Chinese).
    [8] 王金龙. 芸苔属抗根肿病抗病位点鉴定与挖掘[D]. 武汉: 华中农业大学, 2022. WANG JL. Identification and excavation of resistance sites to clubroot in Brassica[D]. Wuhan: Huazhong Agricultural University, 2022(in Chinese).
    [9] PITZSCHKE A, SCHIKORA A, HIRT H. MAPK cascade signalling networks in plant defence[J]. Current Opinion in Plant Biology, 2009, 12(4): 421-426.
    [10] BARTELS S, ANDERSON JC, GONZÁLEZ BESTEIRO MA, CARRERI A, HIRT H, BUCHALA A, MÉTRAUX JP, PECK SC, ULM R. MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis[J]. The Plant Cell, 2009, 21(9): 2884-2897.
    [11] KAZUYA ICHIMURA ET AL MG, ICHIMURA K, SHINOZAKI K, TENA G, SHEEN J, HENRY Y, CHAMPION A, KREIS M, ZHANG SQ, HIRT H, WILSON C, HEBERLE-BORS E, ELLIS BE, MORRIS PC, INNES RW, ECKER JR, SCHEEL D, KLESSIG DF, MACHIDA Y, MUNDY J, OHASHI Y, WALKER JC. Mitogen-activated protein kinase cascades in plants: a new nomenclature[J]. Trends in Plant Science, 2002, 7(7): 301-308.
    [12] RODRIGUEZ MCS, PETERSEN M, MUNDY J. Mitogen-activated protein kinase signaling in plants[J]. Annual Review of Plant Biology, 2010, 61: 621-649.
    [13] 李悦鹏, 张晓兰, 于雷, 耿国明, 齐红岩. MAPK级联途径激酶结构特点及其信号转导途径在园艺作物逆境中的作用[J]. 植物生理学报, 2018, 54(8): 1305-1315. LI YP, ZHANG XL, YU L, GENG GM, QI HY. Structural characteristics of MAPK cascade kinase and the function of signal transduction pathway in adversity stress of horticultural crop[J]. China Industrial Economics, 2018, 54(8): 1305-1315(in Chinese).
    [14] CHEN J, WANG LH, YANG ZY, LIU HB, CHU CL, ZHANG ZZ, ZHANG QL, LI XH, XIAO JH, WANG SP, YUAN M. The rice Raf-like MAPKKK OsILA1 confers broad-spectrum resistance to bacterial blight by suppressing the OsMAPKK4-OsMAPK6 cascade[J]. Journal of Integrative Plant Biology, 2021, 63(10): 1815-1842.
    [15] ZHANG MM, SU JB, ZHANG Y, XU J, ZHANG SQ. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense[J]. Current Opinion in Plant Biology, 2018, 45(Pt A): 1-10.
    [16] CHANG L, KARIN M. Mammalian MAP kinase signalling cascades[J]. Nature, 2001, 410(6824): 37-40.
    [17] HAMEL LP, NICOLE MC, SRITUBTIM S, MORENCY MJ, ELLIS M, EHLTING J, BEAUDOIN N, BARBAZUK B, KLESSIG D, LEE J, MARTIN G, MUNDY J, OHASHI Y, SCHEEL D, SHEEN J, XING T, ZHANG SQ, SEGUIN A, ELLIS BE. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families[J]. Trends in Plant Science, 2006, 11(4): 192-198.
    [18] JONAK C, ÖKRÉSZ L, BÖGRE L, HIRT H. Complexity, cross talk and integration of plant MAP kinase signalling[J]. Current Opinion in Plant Biology, 2002, 5(5): 415-424.
    [19] ASAI T, TENA G, PLOTNIKOVA J, WILLMANN MR, CHIU WL, GOMEZ-GOMEZ L, BOLLER T, AUSUBEL FM, SHEEN J. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415(6875): 977-983.
    [20] DÓCZI R, BRADER G, PETTKÓ-SZANDTNER A, RAJH I, DJAMEI A, PITZSCHKE A, TEIGE M, HIRT H. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling[J]. The Plant Cell, 2007, 19(10): 3266-3279.
    [21] GAO MH, LIU JM, BI DL, ZHANG ZB, CHENG F, CHEN SF, ZHANG YL. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants[J]. Cell Research, 2008, 18(12): 1190-1198.
    [22] MENG XZ, XU J, HE YX, YANG KY, MORDORSKI B, LIU YD, ZHANG SQ. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance[J]. The Plant Cell, rassica species and response to stress in Brassica napus[J]. International Journal of Molecular Sciences, 2021, 22(2): 544.
    [41] CAI ZM, XIANG MQ, TAN J, CHENG CH, LIU Y, SHI JY, SHI ML, LI J, WANG DD. High-throughput sequencing reveals tuber mustard genes responsive to Plasmodiophora brassicae in the early stage of infection[J]. Physiological and Molecular Plant Pathology, 2023, 123: 101943.in biosynthesis in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(14): 5638-5643.
    [25] HE C, FONG SH, YANG D, WANG GL. BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice[J]. Molecular Plant-Microbe Interactions, 1999, 12(12): 1064-1073.
    [26] XIONG LZ, YANG YN. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase[J]. The Plant Cell, 2003, 15(3): 745-759.
    [27] ROHILA JS, YANG YN. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response[J]. Journal of Integrative Plant Biology, 2007, 49(6): 751-759.
    [28] MELECH-BONFIL S, SESSA G. Tomato MAPKKKε is a positive regulator of cell-death signaling networks associated with plant immunity[J]. The Plant Journal, 2010, 64(3): 379-391.
    [29] MUNNIK T, LIGTERINK W, CALDERINI O, BEYERLY J, MUSGRAVE A, HIRT H. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress[J]. The Plant Journal, 1999, 20(4): 381-388.
    [30] HOYOS ME, ZHANG S. Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress[J]. Plant Physiology, 2000, 122(4): 1355-1363.
    [31] PIAO YL, JIN KN, HE Y, LIU JX, LIU S, LI XN, PIAO ZY. Genome-wide identification and role of MKK and MPK gene families in clubroot resistance of Brassica rapa[J]. PLoS One, 2018, 13(2): e0191015.
    [32] 吴道军. 十字花科根肿病室内接种标准化研究[D]. 重庆: 西南大学, 2013. WU DJ. Study on standardization of indoor inoculation of clubroot in Cruciferae[D]. Chongqing: Southwest University, 2013(in Chinese).
    [33] BHARDWAJ AR, JOSHI G, KUKREJA B, MALIK V, ARORA P, PANDEY R, SHUKLA RN, BANKAR KG, KATIYAR-AGARWAL S, GOEL S, JAGANNATH A, KUMAR A, AGARWAL M. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea[J]. BMC Plant Biology, 2015, 15: 9.
    [34] ALI A, CHU N, MA PP, JAVED T, ZAHEER U, HUANG MT, FU HY, GAO SJ. Genome-wide analysis of mitogen-activated protein (MAP) kinase gene family expression in response to biotic and abiotic stresses in sugarcane[J]. Physiologia Plantarum, 2021, 171(1): 86-107.
    [35] ZHANG XY, XU XY, YU YJ, CHEN C, WANG J, CAI CP, GUO WZ. Integration analysis of MKK and MAPK family members highlights potential MAPK signaling modules in cotton[J]. Scientific Reports, 2016, 6: 29781.
    [36] MOHANTA TK, ARORA PK, MOHANTA N, PARIDA P, BAE HH. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants[J]. BMC Genomics, 2015, 16(1): 58.
    [37] MOHANTA TK, MOHANTA N, PARIDA P, PANDA SK, PONPANDIAN LN, BAE HH. Genome-wide identification of mitogen-activated protein kinase gene family across fungal lineage shows presence of novel and diverse activation loop motifs[J]. PLoS One, 2016, 11(2): e0149861.
    [38] WANG M, CHEN JX, ZHU XW, TAI X, BO TY. In silico analysis of the MAPK gene family in cabbage and its expression during development and stress response[J]. Horticulturae, 2023, 9(10): 1119.
    [39] LIANG WW, YANG B, YU BJ, ZHOU ZL, LI C, JIA M, SUN Y, ZHANG Y, WU FF, ZHANG HF, WANG BY, DEYHOLOS MK, JIANG YQ. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.)[J]. BMC Genomics, 2013, 14: 392.
    [40] WANG Z, WAN YY, MENG XJ, ZHANG XL, YAO MN, MIU WJ, ZHU DM, YUAN DS, LU K, LI JN, QU CM, LIANG Y. Genome-wide identification and analysis of MKK and MAPK gene families in B
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐楚,王海平,宋江萍,张晓辉,贾会霞,韩嘉琪,李芝洁,李森,阳文龙. 芥菜MAPK基因家族成员鉴定及其响应根肿菌侵染的表达分析[J]. 生物工程学报, 2025, 41(2): 736-752

复制
分享
文章指标
  • 点击次数:78
  • 下载次数: 122
  • HTML阅读次数: 54
  • 引用次数: 0
历史
  • 收稿日期:2024-06-25
  • 最后修改日期:2024-08-28
  • 在线发布日期: 2025-02-11
  • 出版日期: 2025-02-25
文章二维码
您是第5941427位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司