高效转化大豆低聚糖的果聚糖蔗糖酶的挖掘、表征及表达
作者:
基金项目:

国家自然科学基金(32302017);国家重点研发计划(2022YFC2805102);安徽大学博士科研启动基金(S020318003/006)


Mining, characterization, and expression of a fructan sucrase for efficient conversion of soybean oligosaccharides
Author:
  • WANG Bin

    WANG Bin

    School of Life Sciences, Anhui University, Hefei 230000, Anhui, China;Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YING Jingru

    YING Jingru

    School of Life Sciences, Anhui University, Hefei 230000, Anhui, China;Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Yuanyuan

    CHEN Yuanyuan

    School of Life Sciences, Anhui University, Hefei 230000, Anhui, China;Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FANG Zemin

    FANG Zemin

    School of Life Sciences, Anhui University, Hefei 230000, Anhui, China;Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIAO Yazhong

    XIAO Yazhong

    School of Life Sciences, Anhui University, Hefei 230000, Anhui, China;Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FANG Wei

    FANG Wei

    School of Life Sciences, Anhui University, Hefei 230000, Anhui, China;Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YAO Dongbang

    YAO Dongbang

    School of Life Sciences, Anhui University, Hefei 230000, Anhui, China;Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    大豆低聚糖因含大量蔗糖和棉子糖影响了其益生元价值。果聚糖蔗糖酶可催化蔗糖和棉子糖生成高附加值的低聚果糖和蜜二糖等组分。为获得高效转化大豆低聚糖的果聚蔗糖酶,本研究首先从我国西沙群岛及渤海湾沿海区域微生物中挖掘果聚糖蔗糖酶基因,然后对其进行酶学性质和催化性能表征,最后将其在枯草芽孢杆菌(Bacillus subtilis)中进行重组胞外表达。结果显示,从耐盐芽孢杆菌(Bacillus halotolerans)中挖掘出的新型果聚糖蔗糖酶BhLS 39,其以蔗糖和棉子糖为底物时的最适温度分别为50℃和55℃,最适pH值均为5.5,Kcat/Km分别为3.4和6.6 L/(mmol·s)。5 U酶处理400 g/L棉子糖30 min后获得的蜜二糖转化率为84.6%,BhLS 39催化蔗糖可生成左聚型低聚果糖和果聚糖。本研究实现了BhLS 39在枯草芽孢杆菌中的重组胞外表达,并通过共表达胞内伴侣蛋白DnaK和胞外伴侣蛋白PrsA使其重组胞外活性提高到17 U/mL,是对照菌的5.2倍。本研究挖掘出的BhLS 39有利于大豆低聚糖的提质增效,也可促进其他重组蛋白在枯草芽孢杆菌中实现高效重组表达。

    Abstract:

    The high content of sucrose and raffinose reduces the prebiotic value of soybean oligosaccharides. Fructan sucrases can catalyze the conversion of sucrose and raffinose to high-value products such as fructooligosaccharides and melibiose. To obtain a fructan sucrase that can efficiently convert soybean oligosaccharides, we first mined the fructan sucrase gene from microorganisms in the coastal areas of Xisha Islands and Bohai Bay and then characterized the enzymatic and catalytic properties of the enzyme. Finally, recombinant extracellular expression of this gene was carried out in Bacillus subtilis. The results showed that a novel fructan sucrase, BhLS 39, was mined from Bacillus halotolerans. With sucrose and raffinose as substrates, BhLS 39 showed the optimal temperatures of 50 ℃ and 55 ℃, optimal pH 5.5 for both, and Kcat/Km ratio of 3.4 and 6.6 L/(mmol·s), respectively. When 400 g/L raffinose was used as the substrate, the melibiose conversion rate was 84.6% after 30 min treatment with 5 U BhLS 39. Furthermore, BhLS 39 catalyzed the conversion of sucrose to produce levan-type-fructooligosaccharide and levan. Then, the recombinant extracellular expression of BhLS 39 in B. subtilis was achieved. The co-expression of the intracellular chaperone DnaK and the extracellular chaperone PrsA increased the extracellular activity of the recombinant BhLS 39 by 5.2 folds to 17 U/mL compared with that of the control strain. BhLS 39 obtained in this study is conducive to improving the quality and economic benefits of soybean oligosaccharides. At the same time, the strategy used here to enhance the extracellular expression of BhLS 39 will also promote the efficient recombinant expression of other proteins in B. subtilis.

    参考文献
    [1] CAO SC, WANG J, ZHAO JF, LI SW, TANG WJ, DIAO H, LIU JB. Dietary soybean oligosaccharides addition increases growth performance and reduces lipid deposition by altering fecal short-chain fatty acids composition in growing pigs[J]. Animals, 2023, 13(23): 3648.
    [2] GENG XR, LEI JY, BAU T, GUO DD, CHANG MC, FENG CP, XU LJ, CHENG YF, ZUO NK, MENG JL. Purification, characterization, and immobilization of a novel protease-resistant α-galactosidase from Oudemansiella radicata and its application in degradation of raffinose family oligosaccharides from soymilk[J]. Foods, 2022, 11(19): 3091.
    [3] 周晓莉, 许喜林. 大豆低聚糖的生理功能及应用[C]// “健康中国2030·健康食品的创新与发展”暨2019年广东省食品学会学术年会论文集. 广州, 2019: 25-28. ZHOU XL, XU XL. Physiological Function and Application of Soybean Oligosaccharides[C]// “Healthy China 2030 Innovation and Development of Healthy Food” and Proceedings of the 2019 Annual Conference of Guangdong Food Society. Guangzhou, 2019: 25-28(in Chinese).
    [4] XU W, YU SH, LIU Q, ZHANG T, JIANG B, MU WM. Enzymatic production of melibiose from raffinose by the levansucrase from Leuconostoc mesenteroides B-512 FMC[J]. Journal of Agricultural and Food Chemistry, 2017, 65(19): 3910-3918.
    [5] CHEN CM, LIN CH, WU YR, YEN CY, HUANG YT, LIN JL, LIN CY, CHEN WL, CHAO CY, LEE-CHEN GJ, SU MT, CHANG KH. Lactulose and melibiose inhibit α-synuclein aggregation and up-regulate autophagy to reduce neuronal vulnerability[J]. Cells, 2020, 9(5): 1230.
    [6] TIAN JJ, WEI SM, JIAO YY, LIANG WX, WANG GY. A strategy to reduce the byproduct glucose by simultaneously producing levan and single cell oil using an engineered Yarrowia lipolytica strain displaying levansucrase on the surface[J]. Bioresource Technology, 2024, 395: 130395.
    [7] XU W, ZHANG XQ, NI DW, ZHANG WL, GUANG CE, MU WM. A review of fructosyl-transferases from catalytic characteristics and structural features to reaction mechanisms and product specificity[J]. Food Chemistry, 2024, 440: 138250.
    [8] KARBOUNE S, SEO S, LI MX, WAGLAY A, LAGACÉ L. Biotransformation of sucrose rich maple syrups into fructooligosaccharides, oligolevans and levans using levansucrase biocatalyst: bioprocess optimization and prebiotic activity assessment[J]. Food Chemistry, 2022, 382: 132355.
    [9] NI DW, ZHANG SQ, KıRTEL O, XU W, CHEN QM, ÖNER ET, MU WM. Improving the thermostability and catalytic activity of an inulosucrase by rational engineering for the biosynthesis of microbial inulin[J]. Journal of Agricultural and Food Chemistry, 2021, 69(44): 13125-13134.
    [10] CHEN WJ, LI L, YE CW, ZHAO ZY, HUANG K, ZOU D, WEI XT. Efficient production of extracellular alkaline protease in Bacillus amyloliquefaciens by host strain construction[J]. LWT, 2022, 163: 113620.
    [11] CASTREJÓN-CARRILLO S, MORALES-MORENO LA, RODRÍGUEZ-ALEGRÍA ME, ZAVALA- PADILLA GT, BELLO-PÉREZ LA, MORENO- ZARAGOZA J, LÓPEZ MUNGUÍA A. Insights into the heterogeneity of levan polymers synthesized by levansucrase Bs-SacB from Bacillus subtilis 168[J]. Carbohydrate Polymers, 2024, 323: 121439.
    [12] YI X, LIN L, MEI J, WANG W. Transporter proteins in Zymomonas mobilis contribute to the tolerance of lignocellulose-derived phenolic aldehyde inhibitors[J]. Bioprocess and Biosystems Engineering, 2021, 44(9): 1875-1882.
    [13] CHU JL, TIAN YN, LI Q, LIU GF, YU Q, JIANG TY, HE BF. Engineering the β-fructofuranosidase Fru6 with promoted transfructosylating capacity for fructooligosaccharide production[J]. Journal of Agricultural and Food Chemistry, 2022, 70(31): 9694-9702.
    [14] PUT H, GERSTMANS H, VANDE CAPELLE H, FAUVART M, MICHIELS J, MASSCHELEIN J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters[J]. Natural Product Reports, 2024, 41: 1113-1151.
    [15] 孙惟沁, 沐万孟, 张涛, 江波. 产果聚糖蔗糖酶重组枯草芽孢杆菌的构建及表达[J]. 食品与生物技术学报, 2019, 38(10): 79-86. SUN WQ, MU WM, ZHANG T, JIANG B. Construction and expression of a recombinant Bacillus subtilis producing levansucrase[J]. Journal of Food Science and Biotechnology, 2019, 38(10): 79-86(in Chinese).
    [16] MIAO HB, ZHE YY, XIANG X, CAO Y, HAN NY, WU Q, HUANG ZX. Enhanced extracellular expression of a Ca2+- and Mg2+-dependent hyperthermostable protease EA1 in Bacillus subtilis via systematic screening of optimal signal peptides[J]. Journal of Agricultural and Food Chemistry, 2022, 70(50): 15830-15839.
    [17] ÖKTEM A, PRANOTO DA, van DIJL JM. Post-translational secretion stress regulation in Bacillus subtilis is controlled by intra- and extracellular proteases[J]. New Biotechnology, 2024, 79: 71-81.
    [18] ZHANG K, TAN RT, YAO DB, SU LQ, XIA YM, WU J. Enhanced production of soluble Pyrococcus furiosus α-amylase in Bacillus subtilis through chaperone co-expression, heat treatment and fermentation optimization[J]. Journal of Microbiology and Biotechnology, 2021, 31(4): 570-583.
    [19] CHEN YD, XIN QL, PAN L, WANG B. Improved recombinant expression of maltogenic α-amylase AmyM in Bacillus subtilis by optimizing its secretion and NADPH production[J]. Fermentation, 2023, 9(5): 475.
    [20] YAO DB, SU LQ, LI N, WU J. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection[J]. Microbial Cell Factories, 2019, 18(1): 69.
    [21] 贺福初. 分子克隆实验指南[M]. 北京: 科学出版社, 2021. HE FC. Experimental guide to molecular cloning (third edition)[M]. Beijing, Science Press, 2021(in Chinese).
    [22] 胥琳峰, 于文文, 朱学文, 张权威, 武耀康, 李江华, 堵国成, 吕雪芹, 陈坚, 刘龙. 代谢工程改造大肠杆菌高效合成l-瓜氨酸[J]. 生物工程学报, 2024-04-24. DOI: 10.13345/j.cjb.240190 XV LF, YU WM, ZHU XW, ZHANG GQ, WU YK, LI JH, DU GC, LV XQ, CHEN J, LIU L. Efficient synthesis of l-citrulline from Escherichia coli by metabolic engineering[J]. Chinese Journal of Bioengineering, 2024-04-24. DOI: 10.13345/j.cjb.240190(in Chinese).
    [23] 魏玉霞, 张显, 胡孟凯, 邵宇, 潘珊, 藤田盛久, 饶志明. d-阿洛酮糖3-差向异构酶重组枯草芽孢杆菌构建及固定化应用[J]. 生物工程学报, 2021, 37(12): 4303-4313. WEI YX, ZHANG X, HU MK, SHAO Y, PAN S, Morihisa Fujita, RAO ZM. Construction and immobilization of recombinant Bacillus subtilis with d-allulose 3-epimerase[J]. Chinese Journal of Biotechnology, 2021, 37(12): 4303-4313(in Chinese).
    [24] WANG LJ, GUO YY, SHEN YZ, YANG K, CAI X, ZHANG B, LIU ZQ, ZHENG YG. Microbial production of sulfur-containing amino acids using metabolically engineered Escherichia coli[J]. Biotechnology Advances, 2024, 73: 108353.
    [25] NI DW, XU W, BAI YX, ZHANG WL, ZHANG T, MU WM. Biosynthesis of levan from sucrose using a thermostable levansucrase from Lactobacillus reuteri LTH5448[J]. International Journal of Biological Macromolecules, 2018, 113: 29-37.
    [26] SZWENGIEL A, GODERSKA K, GUMIENNA M. Synthesis of β-(2-6)-linked fructan with a partially purified levansucrase from Bacillus subtilis[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 131: 1-9.
    [27] HILL A, CHEN L, MARIAGE A, PETIT JL, de BERARDINIS V, KARBOUNE S. Discovery of new levansucrase enzymes with interesting properties and improved catalytic activity to produce levan and fructooligosaccharides[J]. Catalysis Science & Technology, 2019, 9(11): 2931-2944.
    [28] ZHANG K, SU LQ, WU J. Recent advances in recombinant protein production by Bacillus subtilis[J]. Annual Review of Food Science and Technology, 2020, 11: 295-318.
    [29] YAO DB, ZHANG K, SU LQ, LIU ZZ, WU J. Enhanced extracellular Bacillus stearothermophilus α-amylase production in Bacillus subtilis by balancing the entire secretion process in an optimal strain[J]. Biochemical Engineering Journal, 2021, 168: 107948.
    [30] CHEN J, WEI HB, GUO Y, LI QF, WANG HY, LIU JD. Chaperone-mediated protein folding enhanced d-psicose 3-epimerase expression in engineered Bacillus subtilis[J]. Process Biochemistry, 2021, 103: 65-70.
    [31] ZHU XY, ZHANG K, LUO H, WU J. Overexpression of the class A penicillin-binding protein PonA in Bacillus improves recombinant protein production[J]. Bioresource Technology, 2023, 383: 129219.
    [32] LI H, YAO DB, YING JR, HAN XD, ZHANG XC, FANG XJ, FANG ZM, XIAO YZ. Enhanced extracellular raw starch-degrading α-amylase production in Bacillus subtilis through signal peptide and translation efficiency optimization[J]. Biochemical Engineering Journal, 2022, 189: 108718.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪斌,应静茹,陈媛媛,方泽民,肖亚中,房伟,姚动邦. 高效转化大豆低聚糖的果聚糖蔗糖酶的挖掘、表征及表达[J]. 生物工程学报, 2025, 41(1): 333-351

复制
分享
文章指标
  • 点击次数:87
  • 下载次数: 260
  • HTML阅读次数: 225
  • 引用次数: 0
历史
  • 收稿日期:2024-04-29
  • 最后修改日期:2024-06-07
  • 在线发布日期: 2025-01-24
  • 出版日期: 2025-01-25
文章二维码
您是第5996733位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司