猪德尔塔冠状病毒NSP13蛋白原核表达与解旋活性分析
作者:
基金项目:

江西省自然科学基金(20232BAB215057);江西农业大学青年创新团队项目(JXAUCXTD007)


Prokaryotic expression and helicase activity analysis of PDCoV NSP13
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    猪德尔塔冠状病毒(porcine deltacoronavirus, PDCoV)是导致哺乳仔猪致命性腹泻的一种重要病原体,目前缺少有效防治该病毒的疫苗和药物。非结构蛋白13 (NSP13)是一种病毒编码的解旋酶,被认为是抗病毒药物的重要靶点,因此有必要对其解旋活性进行研究。本研究以PDCoV的NSP13基因为模板,将其插入到原核表达载体pET-28a中,构建重组质粒pET-28a-NSP13。NSP13蛋白在大肠杆菌BL21(DE3)中成功表达并进行了纯化。验证了NSP13蛋白的活性,并且探究了影响NSP13解旋酶活性的因素。结果表明,PDCoV的NSP13蛋白能够在原核系统中表达,纯化后的NSP13具有解旋活性,能够解开具有5ʹtailed的双链DNA。此外,NSP13还具有促进核酸单链的碱基互补配对形成双链的退火功能。金属离子的种类会影响NSP13的解旋活性,但在0.5–6.0 mmol/L范围内的Mg2+浓度对NSP13解旋活性无明显影响。当溶液pH在4–9范围内,NSP13解旋活性无明显差异。在0.25–6.00 mmol/L范围内的ATP浓度对NSP13解旋活性存在微弱的影响,NSP13浓度≥80 nmol/L则会抑制解旋活性。本研究获得了重组表达的PDCoV NSP13蛋白并对其解旋酶活性进行了探究,为深入理解NSP13调控PDCoV复制的机制和抗冠状病毒药物的研发奠定了理论基础。

    Abstract:

    Porcine deltacoronavirus (PDCoV) is a major pathogen causing fatal diarrhea in suckling piglets, and there is currently a lack of effective vaccines and drugs to prevent and control the virus. The nonstructural protein 13 (NSP13) serves as a virus-coded helicase and is considered to be a crucial target for antiviral drugs, making it imperative to investigate the helicase activity of NSP13. In this study, the NSP13 gene of PDCoV was synthesized and integrated into the prokaryotic expression vector pET-28a to construct the recombinant plasmid pET-28a-NSP13. NSP13 was successfully expressed in BL21 (DE3) and subsequently purified. The study also verified the helicase activity of the purified NSP13 and explored the factors that influence this activity. The results indicated that NSP13 from PDCoV was effectively expressed in the prokaryotic system and exhibited helicase activity, capable of unwinding double-stranded DNA with a tail at the 5ʹ end. Additionally, NSP13 demonstrated an annealing function by promoting the complementary pairing of single-stranded nucleotide chains to form double strands. The helicase activity of NSP13 was affected by metal ions, but Mg2+concentrations in the range of 0.5–6.0 mmol/L had no significant effect on helicase activity of NSP13. When the solution pH was in the range of 4–9, there was no difference in helicase activity. ATP concentrations in the range of 0.25–6.00 mmol/L had a weak effect on helicase activity, and NSP13 concentration ≥80 nmol/L inhibited the helicase activity. We obtained the NSP13 of PDCoV and investigated its helicase activity. These findings provided a theoretical foundation for the further research on the regulatory mechanism of NSP13 in PDCoV replication and the development of anti-coronaviral drugs.

    参考文献
    [1] WOO PCY, LAU SKP, LAM CSF, LAU CCY, TSANG AKL, LAU JHN, BAI R, TENG JLL, TSANG CCC, WANG M, ZHENG BJ, CHAN KH, YUEN KY. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus[J]. Journal of Virology, 2012, 86(7): 3995-4008.
    [2] WANG LY, BYRUM B, ZHANG Y. Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014[J]. Emerging Infectious Diseases, 2014, 20(7): 1227-1230.
    [3] AJAYI T, DARA R, MISENER M, PASMA T, MOSER L, POLJAK Z. Herd-level prevalence and incidence of porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada[J]. Transboundary and Emerging Diseases, 2018, 65(5): 1197-1207.
    [4] LEE JH, CHUNG HC, NGUYEN VG, MOON HJ, KIM HK, PARK SJ, LEE CH, LEE GE, PARK BK. Detection and phylogenetic analysis of porcine deltacoronavirus in Korean swine farms, 2015[J]. Transboundary and Emerging Diseases, 2016, 63(3): 248-252.
    [5] DUAN C. An updated review of porcine deltacoronavirus in terms of prevalence, pathogenicity, pathogenesis and antiviral strategy[J]. Frontiers in Veterinary Science, 2022, 8: 811187.
    [6] HE WT, JI X, HE W, DELLICOUR S, WANG SL, LI GR, ZHANG LT, GILBERT M, ZHU HN, XING G, VEIT M, HUANG Z, HAN GZ, HUANG YW, SUCHARD MA, BAELE G, LEMEY P, SU S. Genomic epidemiology, evolution, and transmission dynamics of porcine deltacoronavirus[J]. Molecular Biology and Evolution, 2020, 37(9): 2641-2654.
    [7] LI WT, HULSWIT RJG, KENNEY SP, WIDJAJA I, JUNG K, ALHAMO MA, van DIEREN B, van KUPPEVELD FJM, SAIF LJ, BOSCH BJ. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22): E5135-E5143.
    [8] LIANG QQ, ZHANG HL, LI BX, DING QW, WANG YB, GAO WM, GUO DH, WEI ZY, HU H. Susceptibility of chickens to porcine deltacoronavirus infection[J]. Viruses, 2019, 11(6): 573.
    [9] ZHANG HL, DING QW, YUAN J, HAN FF, WEI ZY, HU H. Susceptibility to mice and potential evolutionary characteristics of porcine deltacoronavirus[J]. Journal of Medical Virology, 2022, 94(12): 5723-5738.
    [10] LEDNICKY JA, TAGLIAMONTE MS, WHITE SK, ELBADRY MA, ALAM MM, STEPHENSON CJ, BONNY TS, LOEB JC, TELISMA T, CHAVANNES S, OSTROV DA, MAVIAN C, BEAU de ROCHARS VM, SALEMI M, MORRIS JG. Independent infections of porcine deltacoronavirus among Haitian children[J]. Nature, 2021, 600: 133-137.
    [11] LEE S, LEE C. Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14- 04/2014[J]. Genome Announcements, 2014, 2(6): e01191-14.
    [12] 董建国, 饶丹, 覃燕灵, 王艳午, 张宁, 易本驰, 黄立, 刘纪成, 邓凯伟. 猪德尔塔冠状病毒研究进展[J]. 广东农业科学, 2019, 46(3): 113-118.DONG JG, RAO D, TAN YL, WANG YW, ZHANG N, YI BC, HUANG L, LIU JC, DENG KW. Research progress on porcine deltacoronavirus[J]. Guangdong Agricultural Sciences, 2019, 46(3): 113-118(in Chinese).
    [13] V’KOVSKI P, KRATZEL A, STEINER S, STALDER H, THIEL V. Coronavirus biology and replication: implications for SARS-CoV-2[J]. Nature Reviews Microbiology, 2021, 19(3): 155-170.
    [14] HORMENO S, WILKINSON OJ, AICART-RAMOS C, KUPPA S, ANTONY E, DILLINGHAM MS, MORENO-HERRERO F. Human HELB is a processive motor protein that catalyzes RPA clearance from single-stranded DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(15): e2112376119.
    [15] REN J, DING Z, FANG PX, XIAO SB, FANG LR. ATPase and helicase activities of porcine epidemic diarrhea virus nsp13[J]. Veterinary Microbiology, 2021, 257: 109074.
    [16] FRICK DN, VIRDI RS, VUKSANOVIC N, DAHAL N, SILVAGGI NR. Molecular basis for ADP-ribose binding to the Mac1 浤畯瑭桡?獮愠汯瑦猠孓?嵒??噃楯牖漭氲漠杮楳捰愳?半楝渮椠捂慩???づ?ど????????′?水ㄠ??㈨???戺爠?嬶日?崭′夶唱?丮?卢???圱?九??剈??????丬???圠??娠??乒?????????乁??呃?????????????夠??娮圠??坥?乂??卯奭????????奯????乥?????????奯????乳??奨??奡啮?乥??奩??匠啯书??婯???敥瑭慥汮汴潡摲特甠杳?牮慧湬楥琭楳摴楲湡敮?扥楤猠浄畎瑁桛?捝椮琠牎慵瑣敬?獩畣瀠灁牣敩獤獳攠獒?即?剡卲??漬嘠?日‰爵攬瀠氳椳挨愱琲椩漺渳?愳渲搭″爹攴氱椮攼癢敲猾?瘱椸牝甠獙?慎獇猠潓挬椠慗瑉敎摓?灏湎故甠浌漬渠楍慏?楄湁?匠祓爬椠慗湕?桙慌洮猠瑈敥牬獩季?嵳??丠慩瑮甠牒攭??楯捰爠潦扯楲潭污潴杩祯???の????????????????ㄠ?????扡牬?孯??嵂?奯啬?乧?卣???奃?乥?塩????丬?′堰娲?????丹???圩??失?‵娳地??刼?噲?????倠???????????乓???奕??????偅??????乗???匠??倠体住乎?嘠??????????奔????呗匬唠乔????乊??倠啐?奉??奙唬?乙???????传????????丬??剁???呈?丠??????匠??乎??????啚?奅华??敊瑊?愠汘???氬漠晈慏穌楍浅楓渠故?戬爠潚慈摁汎祇?楙湚栮椠扁椠瑮獥?挠潣牯潲湯慮癡楶物畲獵敳猠?楳湳捯汣畩摡楴湥杤?卷?剴卨??潵噭??嬠?嵥??乩慲瑡畴牯敲???ど????????????????????????扥爬?嬲日?崰????丹??刷?????圲??????吮??????丰?夠???坍啁??????畄捏潕楁摎慇湁?晁牔潈洠??椠?十慄牚杁慎獉猠畓洬?桙敏浓楁灁桔祍汁汄畊流??椬??楉湍桏楎戠楁琬猠?楒湁晎敄挦瑁楴潩湬?慥渻摏?楎湅晔汏愠浊洬愠瑄楕潎湎?潔晔??椬??敏汒楒捉潅戭慓捔瑏敎牅?灔礬氠潓牋楙??楒?孒?崠??十捒楏敎渠瑄椬映楓捃?剁敐灉潒牁琠獍???は?㈠?????ㄠ????????扄牉?孏金?嵓??併啣?塵奲??丠?坥?婨????????啤??奲??奴?乬??乧??剰?乩????婡?佭啥??倠?????奮???娠?啦??坨????乒?圭婃??夭唲????倱漳氠票灥敬灩瑣楡摳敥?楊湝搮甠捎敡摴?灲敥爠祃汯敭湭敵?灩牣潡扴敩?敮硳挬椠洲攰爲?昬漠爱洲愨琱椩漺渠?愸渴搸?椼瑢獲 ̄慛瀲瀱汝椠捙慕瑅椠潋測?楙湁?琠桂攬?湓潈湉挠潙癃愬氠教湁瑎?爠慙琬椠潑浉敁瑎爠楚捈?搠敃瑉攠捙瑌椬漠湓?潉映?洮愠瑔牨楥砠?浴敡瑬慫氠汤潯灭牡潩瑮攠楯湦愠獓敁?慓挭瑃楯癖椭琲礠孎?嵐?″?潩畳爠湥慳汳?潮晴??慬琠敦牯楲愠汩獴??桨敥浬楩獣瑡牳祥?????ぶ?????そ??あ??????????????戠牂?孯??嵹?卩佣???剒卥??????传?呯啭卭??乩???佩乯?即??倲‰?爲搬??????刱?????制?丼????′?啝????????剁伬匠??剃???爠???楔潁捌桁敒浉楃捏愠汃?愠湍慁汎祅獌楆獉?潃昬?卍?剌卉??潊嘬?至?乎獎灁???桅攠汒椬挠慅獓敐?楓浉灔汏椠捆愬琠敇摒?楂湂??传噐??????慁湎摉?晁愬挠瑉潁牃獏?瑉桓愠瑄?爠敂杅畃汃慁瑒敉?楁瑒猬?捓慕瑍慍汁礠瑖椬挠?晏畗湏捔瑎楙漠湍猬嬠?嵒???潎畔牁湎慏氠?漮映??楴潵汲潡杬椠捣慯汭??桵敮浤楳猠瑩牮票???ぴ㈠??????????ㄠの??????扮牷?孮?ど嵮?吠?乮乤?剁?????圠?呮呺?剭????????奴????啊??夠????乐?????偣??副?卹??卡??倻传佔乲???????啯乮???????啮?乥?????′听栠攵?猴攩瘺攠爲攲?愭挲申琹攮?牢敲猾灛椲爳慝琠潁牄祅?獅祊湉搠牁潏洬攠??华?剈匠??挠潋牁潓湓慉癍椠牁甬猠?乏呌偅慍獁敎?桃敍氬椠捅慌獌敉?扔敔氠潒測朠獗?瑉潓?愠?摒椬猠瑆楒湉捅瑍?捎氠慍獂猬?潓晁?????????瑓潇?????????癩楯牮愠汯?栠敓汓楙捁愱猰攭猰嬰?崠???潡甠牲湥慰汬?潣晡??楯潮氠潩杮楨捩慢汩??桲攠浯楦猠瑳牥祶????ち?????????????????????????戬爠?孯??嵥?????乴剩???圬传乡?????偤?剬?????佴??卥????佡乴??她????????????潲潯灮敡牶慩瑲極癳敥?瑛牊慝渮猠汁潮捴慩瑭楩潣湲?敢湩桡慬渠捁敧獥?瑴桳攠?畮湤眠楃湨摥業湯杴?潥晲?摰畹瀬氠攲砰??丬?‵戸礨?匩?删匴?挹漴爭漴游愹瘸椮爼畢獲 ̄桛攲水楝挠慓獈敕?湔猬倠??孁?嵇??么甬挠汗敕椠捄??捒楅摎猠?削攬猠敚慈牁捎桇????ㄠえ?????㈠?????水????????戬爠?孉?㈠嵙??????????伬????婕?剘售匠?????楣潯捲桯敮浡楶捩慲汵?挭栲愠牎慳捰琱攳爠楰穯慳瑳楥潳湳?潳映?浔楐摡摳汥攠?敮慤猠瑒?牁攠獨灥楬物慣瑡潳牥礠?獣祴湩摶物潴浩敥?挠潴牨潡湴愠癣楡牮甠獢?栠敩汮楨捩慢獩整孥?崠??洠卢灩桳攀爀攀??? ??????????攀  ???????
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陶丽寒,吴诚诚,林翠,康昭风,黄建珍. 猪德尔塔冠状病毒NSP13蛋白原核表达与解旋活性分析[J]. 生物工程学报, 2024, 40(12): 4573-4585

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-14
  • 在线发布日期: 2024-12-25
  • 出版日期: 2024-12-25
文章二维码
您是第6013228位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司