甜瓜α-葡萄糖苷酶和β-葡萄糖苷酶基因家族鉴定及表达模式分析
作者:
基金项目:

国家自然科学基金(32202578);中国博士后科学基金(2022M711063);河南省大宗蔬菜产业技术体系岗位专家项目(HARS-22-07-G4)


Identification and expression pattern analysis of α-glucosidase and β-glucosidase gene family members in melon
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    葡萄糖苷酶是生物体糖代谢途径中不可或缺的一类酶。为探讨α-葡萄糖苷酶(α-glucosidase,AGLU)和β-葡萄糖苷酶(β-glucosidase,BGLU)的生物学功能及表达模式,对甜瓜基因组中的2个基因家族进行鉴定,对2个家族成员的数量、染色体位置、基因结构、亚细胞定位、蛋白保守基序、系统进化等进行分析,基于启动子顺式作用元件分析和蛋白互作预测模型对其功能进行了初步预测,并用实时荧光定量聚合酶链式反应(real time fluorescence quantitative polymerase chain reaction,qRT-PCR)技术对各成员的基因表达进行分析。结果表明,甜瓜中α-葡萄糖苷酶家族共有5个成员,分布于5条染色体上,全部成员均定位于细胞外基质,氨基酸长度为899−1 060 aa。甜瓜中β-葡萄糖苷酶家族共有18个成员,分布于8条染色体上,全部定位于细胞膜或细胞质中,氨基酸长度为151−576 aa。qRT-PCR结果表明,低温下约1/2基因表达受到抑制,其中CmAGLU5CmBGLU7可能是2个家族中响应低温的关键基因。AGLU和BGLU家族基因受脱落酸(abscisic acid,ABA)、高盐和干旱胁迫诱导上调表达,其中AGLU家族中的CmAGLU3是响应ABA和高盐胁迫的关键基因,CmAGLU4是响应干旱胁迫的关键基因;BGLU家族中CmBGLU18是响应ABA的关键基因,CmBGLU6是响应高盐和干旱胁迫的关键基因。

    Abstract:

    Glucosidases are an indispensable class of enzymes in the sugar metabolism of organisms. To investigate the biological functions and expression patterns of α-glucosidases (AGLUs) and β-glucosidases (BGLUs), we identified the two family members in the genome of melon (Cucumis melo). The number, location on chromosomes, gene structure, subcellular localization, conserved motifs, and phylogenetic relationship of the two family members were analyzed. Based on the cis-acting elements in the promoter region and protein interaction models, their functions were preliminarily predicted. Furthermore, the gene expression of the two family members was determined by qRT-PCR. The results showed that the melon genome contained five AGLU family members on five chromosomes, and all of the five members were located in the extracellular matrix, with the amino acid sequence lengths ranging from 899 aa to 1 060 aa. The melon genome carried 18 BGLU family members on 8 chromosomes, and all the members were located in the cell membrane or cytoplasm, with the amino acid lengths ranging from 151 aa to 576 aa. The qRT-PCR results showed that the expression of about 50% of the genes was down-regulated upon cold stress. CmAGLU5 and CmBGLU7 may be key members of the two families, respectively, in response to cold stress. The expression of all members of the two families was up-regulated under abscisic acid (ABA), high salt, and drought stress. In the AGLU family, CmAGLU3 was the key gene in response to ABA and high salt stress, while CmAGLU4 was the key gene in response to drought stress. In the BGLU family, CmBGLU18 was the key gene in response to ABA, while CmBGLU6 was the key gene in response to high salt and drought stress.

    参考文献
    [1] CHIBA S. Molecular mechanism in alpha-glucosidase and glucoamylase[J]. Bioscience, Biotechnology, and Biochemistry, 1997, 61(8): 1233-1239.
    [2] HENRISSAT B, DAVIES G. Structural and sequence-based classification of glycoside hydrolases[J]. Current Opinion in Structural Biology, 1997, 7(5): 637-644.
    [3] 胡先望, 杨震, 陈朋, 梁宁, 严晓娟. α-葡萄糖苷酶的研究进展[J]. 甘肃科学学报, 2011, 23(1): 143-148. HU XW, YANG Z, CHEN P, LIANG N, YAN XJ. Progress in research on α-glucosidases[J]. Journal of Gansu Sciences, 2011, 23(1): 143-148(in Chinese).
    [4] RAWAT R, GULATI A. Seasonal and clonal variations in some major glycosidic bound volatiles in Kangra tea (Camellia Sinensis (L.) O. Kuntze)[J]. European Food Research and Technology, 2008, 226(6): 1241-1249.
    [5] MORITA K, WAKABAYASHI M, KUBOTA K, KOBAYASHI A, HERATH NL. Aglycone constituents in fresh tea leaves cultivated for green and black tea[J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(4): 687-690.
    [6] LI CP, SWAIN E, POULTON JE. Prunus serotina amygdalin hydrolase and prunasin hydrolase: purification, N-terminal sequencing, and antibody production[J]. Plant Physiology, 1992, 100(1): 282-290.
    [7] BONGON JR. Beta-glucosidase from normal and brittle-stem mutant rice cultivars (Oryza sativa L.): isolation, purification and characterization[D]. Philippines: College Laguna, 1994.
    [8] MATSUURA M, SASAKI J, MURAO S. Studies on β-glucosidases from soybeans that hydrolyze daidzin and genistin: isolation and characterization of an isozyme[J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(9): 1623-1627.
    [9] EKSITTIKUL T, CHULAVATNATOL M. Characterization of cyanogenic β-glucosidase (Linamarase) from cassava (Manihot esculenta Crantz)[J]. Archives of Biochemistry and Biophysics, 1988, 266(1): 263-269.
    [10] XU ZW, ESCAMILLA-TREVIÑO L, ZENG LH, LALGONDAR M, BEVAN D, WINKEL B, MOHAMED A, CHENG CL, SHIH MC, POULTON J, ESEN A. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1[J]. Plant Molecular Biology, 2004, 55(3): 343-367.
    [11] OPASSIRI R, POMTHONG B, ONKOKSOONG T, AKIYAMA T, ESEN A, KETUDAT CAIRNS JR. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 beta-glucosidase[J]. BMC Plant Biology, 2006, 6: 33.
    [12] 张曼, 王志城, 刘正文, 王国宁, 王省芬, 张艳. 陆地棉BGLU基因家族成员的全基因组鉴定与表达分析[J]. 中国农业科技导报, 2023, 25(2): 48-59. ZHANG M, WANG ZC, LIU ZW, WANG GN, WANG SF, ZHANG Y. Genome-wide identification and expression analysis of BGLU gene family members in upland cotton[J]. Journal of Agricultural Science and Technology, 2023, 25(2): 48-59(in Chinese).
    [13] 姚新转, 陈凌霄, 张宝会, 吕立堂. 茶树BGLU基因家族的鉴定和表达模式分析[J]. 种子, 2022, 41(11): 1-9. YAO XZ, CHEN LX, ZHANG BH, LÜ LT. Identification and expression pattern analysis of BGLU gene family in Camellia sinensis L.[J]. Seed, 2022, 41(11): 1-9(in Chinese).
    [14] 王雅兰, 周罗静, 张灵迂, 章景, 卞金辉, 高继海. 白芷全基因组测序分析及BGLU基因家族分析[J]. 广西植物, 2024, 44(4): 777-792. WANG YL, ZHOU LJ, ZHANG LY, ZHANG J, BIAN JH, GAO JH. Complete genome sequencing and BGLU gene family analysis of Angelica dahurica[J]. Guihaia, 2024, 44(4): 777-792(in Chinese).
    [15] 柯丹霞, 刘永辉, 张静静, 陈琼杰. 大豆BGLU基因家族全基因组鉴定与表达分析[J]. 信阳师范学院学报(自然科学版), 2019, 32(3): 372-378. KE DX, LIU YH, ZHANG JJ, CHEN QJ. Genome-wide identification and expression analysis of BGLU family genes in soybean[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(3): 372-378(in Chinese).
    [16] KETUDAT CAIRNS JR, MAHONG B, BAIYA S, JEON JS. β-Glucosidases: multitasking, moonlighting or simply misunderstood?[J]. Plant Science, 2015, 241: 246-259.
    [17] SAMPEDRO J, VALDIVIA ER, FRAGA P, IGLESIAS N, REVILLA G, ZARRA I. Soluble and membrane-bound β-glucosidases are involved in trimming the xyloglucan backbone[J]. Plant Physiology, 2017, 173(2): 1017-1030.
    [18] 苏振峰. GH1β-葡萄糖苷酶在拟南芥和水稻中的生物信息学及表达模式分析[D]. 泰安: 山东农业大学, 2014. SU ZF. Bioinformatics and expression pattern analysis of GH1β-glucosidase in Arabidopsis thaliana and rice[D]. Tai’an: Shandong Agricultural University, 2014(in Chinese)
    [19] LI M, ZHAO WL, DU QJ, XIAO HJ, LI JQ, WANG JQ, SHANG FD. Abscisic acid and hydrogen peroxide regulate proline homeostasis in melon seedlings under cold stress by forming a bidirectional closed loop[J]. Environmental and Experimental Botany, 2023, 205: 105102.
    [20] WEI SW, GAO LW, ZHANG YD, ZHANG FR, YANG X, HUANG DF. Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress[J]. Plant Cell Reports, 2016, 35(9): 1827-1839.
    [21] 刘河, 卢世雄, 梁国平, 毛娟, 陈佰鸿. 苹果TIPs亚家族成员鉴定与干旱胁迫响应分析[J]. 西北植物学报, 2024, 44(7): 1083-1093. LIU H, LU SX, LIANG GP, MAO J, CHEN BH. Identification of apple TIPs subfamily members and analysis of drought stress response[J]. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(7): 1083-1093(in Chinese).
    [22] 凡超, 杨杰, 陈蓉, 刘伟, 向旭. 荔枝HSP70家族鉴定及其响应非生物胁迫的表达分析[J]. 生物工程学报, 2024, 40(4): 1102-1119. FAN C, YANG J, CHEN R, LIU W, XIANG X. Identification of litchi HSP70 family and its expression analysis in response to abiotic stress[J]. Chinese Journal of Biotechnology, 2024, 40(4): 1102-1119(in Chinese).
    [23] 席克勇, 田野, 王艳红, 刘奕清, 尹军良, 梁红艳, 朱学栋, 朱永兴. 生姜IPT基因家族的鉴定与表达分析[J]. 植物遗传资源学报, 2024, 25(2): 279-293. XI KY, TIAN Y, WANG YH,LIU YQ, YIN JL, LIANG HY, ZHU XD, ZHU YX. Identification and expression analysis of IPT gene family in ginger[J]. Journal of Plant Genetic Resources, 2024, 25(2): 279-293(in Chinese).
    [24] 凡超, 杨杰, 陈蓉, 刘伟, 向旭. 荔枝VQ基因家族鉴定及其对非生物胁迫的响应[J]. 西北植物学报, 2024, 44(5): 739-750. FAN C, YANG J, CHEN R, LIU W, XIANG X. Identification of Litchi VQ gene family and its response to abiotic stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(5): 739-750(in Chinese).
    [25] 杨阳, 付鸿博, 刘媛媛. 苹果AAAP基因家族的鉴定与分析[J]. 分子植物育种, 2022, 20(18): 5947-5961. YANG Y, FU HB, LIU YY. Identification and analysis of the AAAP gene family in apple[J]. Molecular Plant Breeding, 2022, 20(18): 5947-5961(in Chinese).
    [26] SRIVASTAVA AK, LU YM, ZINTA G, LANG ZB, ZHU JK. UTR-dependent control of gene expression in plants[J]. Trends in Plant Science, 2018, 23(3): 248-259.
    [27] CHRISTENSEN SJ, MADSEN MS, ZINCK SS, HEDBERG C, SØRENSEN OB, SVENSSON B, MEYER AS. Enzymatic potato starch modification and structure-function analysis of six diverse GH774-alpha-glucanotransferases[J]. International Journal of Biological Macromolecules, 2023, 224: 105-114.
    [28] ZENG R, HU Q, YIN XY, HUANG H, YAN JB, GONG ZW, YANG ZH. Cloning a novel endo-1,4-β-d-glucanase gene from Trichoderma virens and heterologous expression in E. coli[J]. AMB Express, 2016, 6(1): 108.
    [29] 岳振峰, 陈小霞, 彭志英. α-葡萄糖苷酶研究现状及进展[J]. 食品与发酵工业, 2000, 26(3): 63-67, 98. YUE ZF, CHEN XX, PENG ZY. Research status and progress of α-glucosidase[J]. Food and Fermentation Industries, 2000, 26(3): 63-67, 98(in Chinese).
    [30] SUGANO S, SUGIMOTO T, TAKATSUJI H, JIANG CJ. Induction of resistance to Phytophthora sojae in soyabean (Glycine max) by salicylic acid and ethylene[J]. Plant Pathology, 2013, 62(5): 1048-1056.
    [31] 黄诗玮, 马述, 田云, 卢向阳. 植物中响应茉莉素应答的顺式作用元件[J]. 生物技术通报, 2013(4): 8-13. HUANG SW, MA S, TIAN Y, LU XY. Cis-acting elements in response to jasmine response in plants[J]. Biotechnology Bulletin, 2013(4): 8-13(in Chinese).
    [32] 崔国新, 侯杰, 佟玲, 许志茹. 植物基因光反应元件及其结合蛋白[J]. 植物生理学通讯, 2010, 46(10): 991-1000. CUI GX, HOU J, TONG L, XU ZR. Plant gene light response element and its binding protein[J]. Plant Physiology Journal, 2010, 46(10): 991-1000(in Chinese).
    [33] COMELLI RN, GONZALEZ DH. Identification of regulatory elements involved in expression and induction by sucrose and UV-B light of the Arabidopsis thaliana COX5b-2 gene, encoding an isoform of cytochrome c oxidase subunit 5b[J]. Physiologia Plantarum, 2009, 137(3): 213-224.
    [34] 丁菲. 低温胁迫下与茶树糖代谢相关基因的克隆与表达[D]. 合肥: 安徽农业大学, 2012. DING F. Cloning and expression of genes related to sugar metabolism in tea plants under low temperature stress[D]. Hefei: Anhui Agricultural University, 2012(in Chinese)
    [35] CUI J, CHEN B, WANG HJ, HAN Y, CHEN X, ZHANG W. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death[J]. Scientific Reports, 2016, 6: 31764.
    [36] 潘利华, 罗建平. β-葡萄糖苷酶的研究及应用进展[J]. 食品科学, 2006, 27(12): 803-807. PAN LH, LUO JP. Research and application progress of β-glucosidase[J]. Food Science, 2006, 27(12): 803-807(in Chinese).
    [37] 杨巍, 赵丽芬, 杨娟, 李飞, 王天文, 邓英. 黄瓜AP2/ERF基因家族全基因组鉴定及表达模式分析[J]. 云南农业大学学报(自然科学), 2024, 39(3): 127-143. YANG W, ZHAO LF, YANG J, LI F, WANG TW, DENG Y. Whole genome identification and expression pattern analysis of cucumber AP2/ERF gene family[J]. Journal of Yunnan Agricultural University (Natural Science), 2024, 39(3): 127-143(in Chinese).
    [38] 谢政文. 禾本科植物F-box和LBD基因家族的比较和进化分析[D]. 扬州: 扬州大学, 2015. XIE ZW. Comparison and evolutionary analysis of F-box and LBD gene families in Gramineae[D]. Yangzhou: Yangzhou University, 2015(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梁语珊,张赵杨,岳婷茹,张利超,杜清洁,王吉庆,肖怀娟,李猛. 甜瓜α-葡萄糖苷酶和β-葡萄糖苷酶基因家族鉴定及表达模式分析[J]. 生物工程学报, 2025, 41(2): 791-808

复制
分享
文章指标
  • 点击次数:105
  • 下载次数: 145
  • HTML阅读次数: 106
  • 引用次数: 0
历史
  • 收稿日期:2024-07-30
  • 最后修改日期:2024-10-12
  • 在线发布日期: 2025-02-11
  • 出版日期: 2025-02-25
文章二维码
您是第5996633位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司