基于非天然叔胺辅因子的人工酶创制及应用
作者:
基金项目:

国家重点研发计划(2021YFA0911500);国家自然科学基金(22207043);江苏省自然科学基金重大项目(BK20220022);江苏省自然科学基金(BK20221092)


Enzymatic MBH reaction catalyzed by an artificial enzyme designed with the introduction of an unnatural tertiary amine cofactor
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | | | |
  • 文章评论
    摘要:

    生物酶元件作为合成生物学系统的芯片对生物制造产业有着至关重要的作用。发展多样性新功能酶元件可为合成生物学系统提供丰富的工具盒并助力其发展。本研究报道了一种基于非天然辅因子的新型人工酶构建方法,通过非天然氨基酸结合点击化学策略将4-二甲氨基吡啶(4-dimethylaminopyridine,DMAP)辅因子通过共价键引入至优选蛋白骨架中,成功构建了一种以叔胺辅因子为催化中心的新型人工酶。该人工酶成功实现了一例环状烯酮与对硝基苯甲醛之间发生的非天然不对称Morita-Baylis-Hillman (MBH)反应,转化率高达90%、对映选择性(e.e.)为38%。本研究不仅为新型人工酶的设计提供了一种有效策略,而且为发展酶催化非天然MBH反应建立了理论基础。

    Abstract:

    As the chip of synthetic biology, enzymes play a vital role in the bio-manufacturing industry. The development of diverse functional enzymes can provide a rich toolbox for the development of synthetic biology. This article reports the construction of an artificial enzyme with the introduction of a non-natural cofactor. By introducing the 4-dimethylaminopyridine (DMAP) cofactor into the optimal protein skeleton via covalent bonds based on a click-chemistry strategy, we successfully constructed a novel artificial enzyme with the DMAP cofactor as the catalytic center. The artificial enzyme successfully catalyzed an unnatural asymmetric Morita-Baylis- Hillman (MBH) reaction between cycloketenone and p-nitrobenzaldehyde, with a conversion rate of 90% and enantioselectivity (e.e.) of 38%. This study not only provides an effective strategy for the design of new artificial enzymes but also establishes a theoretical basis for the development of unnatural biocatalytic MBH reactions.

    参考文献
    [1] REETZ MT. Biocatalysis in organic chemistry and biotechnology: past, present, and future[J]. Journal of the American Chemical Society, 2013, 135(34): 12480-12496.
    [2] ROBERT JM, BETANCUR MO, MACHADO ACO, ARRUDA A, REIS VCB, ALMEIDA RV, TORRES FAG, ALEGRE PF, VALERO F, FREIRE DMG. Increase of Candida antarctica lipase B production under PGK promoter in Pichia pastoris: effect of multicopies[J]. Brazilian Journal of Microbiology, 2019, 50(2): 405-413.
    [3] AGOSTINI F, VÖLLER JS, KOKSCH B, ACEVEDO-ROCHA CG, KUBYSHKIN V, BUDISA N. Biocatalysis with unnatural amino acids: enzymology meets xenobiology[J]. Angewandte Chemie International Edition, 2017, 56(33): 9680-9703.
    [4] DONG ZY, LUO Q, LIU JQ. Artificial enzymes based on supramolecular scaffolds[J]. Chemical Society Reviews, 2012, 41(23): 7890-7908.
    [5] ZHANG NN, SUN ZY, WU CZ. Artificial enzymes combining proteins with proline polymers for asymmetric aldol reactions in water[J]. ACS Catalysis, 2022, 12(8): 4777-4783.
    [6] YU Y, HU C, XIA L, WANG JY. Artificial metalloenzyme design with unnatural amino acids and non-native cofactors[J]. ACS Catalysis, 2018, 8(3): 1851-1863.
    [7] SCHWIZER F, OKAMOTO Y, HEINISCH T, GU YF, PELLIZZONI MM, LEBRUN V, REUTER R, KÖHLER V, LEWIS JC, WARD TR. Artificial metalloenzymes: reaction scope and optimization strategies[J]. Chemical Reviews, 2018, 118(1): 142-231.
    [8] ZHU HQ, TANG XL, ZHENG RC, ZHENG YG. Recent advancements in enzyme engineering via site-specific incorporation of unnatural amino acids[J]. World Journal of Microbiology and Biotechnology, 2021, 37(12): 213.
    [9] LEVESON-GOWER RB, ZHOU Z, DRIENOVSKÁ I, ROELFES G. Unlocking iminium catalysis in artificial enzymes to create a friedel-crafts alkylase[J]. ACS Catalysis, 2021, 11(12): 6763-6770.
    [10] REDDY VR, MARIPALLY N, MUTYALA R, NANUBOLU JB, CHANDRA R. DMAP catalysed vinylogous Rauhut-Currier reaction of allenoates with para-quinone methides[J]. Tetrahedron Letters, 2018, 59(27): 2631-2635.
    [11] XU JQ, YANG WJ, SHI WY, MAO BM, LIN Y, XIAO YM, GUO HC. DMAP-catalyzed [4+2] annulation of α-substituded allenoates with unsaturated pyrazolones[J]. Tetrahedron, 2019, 75(26): 3609-3616.
    [12] KHASHI M, DAVOODNIA A, CHAMANI J. Dmap-catalyzed synthesis of novel pyrrolo[2,3-D] pyrimidine derivatives bearing an aromatic sulfonamide moiety[J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2014, 189(6): 839-848.
    [13] MORITA KI, SUZUKI Z, HIROSE H. A tertiary phosphine-catalyzed reaction of acrylic compounds with aldehydes[J]. Bulletin of the Chemical Society of Japan, 1968, 41(11): 2815.
    [14] MORITA KI, KOBAYASHI T. New addition reactions of acrylic compounds with fumaric acid esters catalyzed by tervalent phosphorus compounds[J]. Bulletin of the Chemical Society of Japan, 1969, 42(9): 2732.
    [15] BUGARIN A, CONNELL BT. MgI2-accelerated enantioselective Morita-Baylis-Hillman reactions of cyclopentenone utilizing a chiral DMAP catalyst[J]. Chemical Communications, 2010, 46(15): 2644-2646.
    [16] TAKIZAWA S, MATSUI K, SASAI H. Bifunctional organocatalysts for enantioselective aza-Morita-Baylis-Hillman (aza-MBH) reactions[J]. Journal of Synthetic Organic Chemistry, Japan, 2007, 65(11): 1089-1098.
    [17] MASSON G, HOUSSEMAN C, ZHU JP. The enantioselective Morita-Baylis-Hillman reaction and its aza counterpart[J]. Angewandte Chemie (International Ed in English), 2007, 46(25): 4614-4628.
    [18] HUTTON AE, FOSTER J, CRAWSHAW R, HARDY FJ, JOHANNISSEN LO, LISTER TM, GÉRARD EF, BIRCH-PRICE Z, OBEXER R, HAY S, GREEN AP. A non-canonical nucleophile unlocks a new mechanistic pathway in a designed enzyme[J]. Nature Communications, 2024, 15(1): 1-13.
    [19] BJELIC S, NIVÓN LG, ÇELEBI-ÖLÇÜM N, KISS G, ROSEWALL CF, LOVICK HM, INGALLS EL, GALLAHER JL, SEETHARAMAN J, LEW S, MONTELIONE GT, HUNT JF, MICHAEL FE, HOUK KN, BAKER D. Computational design of enone-binding proteins with catalytic activity for the Morita-Baylis-Hillman reaction[J]. ACS Chemical Biology, 2013, 8(4): 749-757.
    [20] JIANG L, YU HW. An example of enzymatic promiscuity: the Baylis–Hillman reaction catalyzed by a biotin esterase (BioH) from Escherichia coli[J]. Biotechnology Letters, 2014, 36(1): 99-103.
    [21] JOSHI PN, PURUSHOTTAM L, DAS NK, MUKHERJEE S, RAI V. Protein self-assembly induces promiscuous nucleophilic biocatalysis in Morita-Baylis-Hillman (MBH) reaction[J]. RSC Advances, 2016, 6(1): 208-211.
    [22] XUE JW, SONG J, MANION ICK, HE YH, GUAN Z. Asymmetric Morita-Baylis-Hillman reaction catalyzed by pepsin[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 124: 62-69.
    [23] NARENDAR REDDY T, JAYATHIRTHA RAO V. Importance of Baylis-Hillman adducts in modern drug discovery[J]. Tetrahedron Letters, 2018, 59(30): 2859-2875.
    [24] LIU TY, XIE M, CHEN YC. Organocatalytic asymmetric transformations of modified Morita-Baylis-Hillman adducts[J]. Chemical Society Reviews, 2012, 41(11): 4101-4112.
    [25] BERSELLINI M, ROELFES G. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes[J]. Organic & Biomolecular Chemistry, 2017, 15(14): 3069-3073.
    [26] ROELFES G. Repurposed and artificial heme enzymes for cyclopropanation reactions[J]. Journal of Inorganic Biochemistry, 2021, 222: 111523.
    [27] BOS J, BROWNE WR, DRIESSEN AJM, ROELFES G. Supramolecular assembly of artificial metalloenzymes based on the dimeric protein LmrR as promiscuous scaffold[J]. Journal of the American Chemical Society, 2015, 137(31): 9796-9799.
    [28] LIANG LY, ASTRUC D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications: an overview[J]. Coordination Chemistry Reviews, 2011, 255(23-24): 2933-2945.
    [29] LUO SZ, MI XL, XU H, WANG PG, CHENG JP. Efficient Baylis-Hillman reactions of cyclic enones in methanol as catalyzed by methoxide anion[J]. The Journal of Organic Chemistry, 2004, 69(24): 8413-8422.
    [30] AGUSTIANDARI H, LUBELSKI J, van den BERG van SAPAROEA HB, KUIPERS OP, DRIESSEN AJM. LmrR is a transcriptional repressor of expression of the multidrug ABC transporter LmrCD in Lactococcus lactis[J]. Journal of Bacteriology, 2008, 190(2): 759-763.
    [31] ROELFES G. LmrR: a privileged scaffold for artificial metalloenzymes[J]. Accounts of Chemical Research, 2019, 52(3): 545-556.
    相似文献
    引证文献
引用本文

魏亚,陈崇文,童颖佳,周志. 基于非天然叔胺辅因子的人工酶创制及应用[J]. 生物工程学报, 2025, 41(1): 376-384

复制
分享
文章指标
  • 点击次数:119
  • 下载次数: 262
  • HTML阅读次数: 254
  • 引用次数: 0
历史
  • 收稿日期:2024-03-14
  • 最后修改日期:2024-07-15
  • 在线发布日期: 2025-01-24
  • 出版日期: 2025-01-25
文章二维码
您是第5996733位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司