沙地云杉MYB转录因子家族鉴定及其对盐胁迫的响应
作者:
基金项目:

国家自然科学基金(32360402);内蒙古自治区自然科学基金(2022MS03037)


Identification of the MYB transcription factor family involved in response to salt stress in Picea mongolica
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    沙地云杉(Picea mongolica)具有耐寒、耐旱及耐盐的优良特性,是“三北”地区生态建设及城市绿化的重要树种。MYB转录因子可以响应非生物胁迫及次生代谢产物合成过程,为鉴定沙地云杉MYB转录因子家族并探究其在盐胁迫过程中的响应,本研究以挪威云杉基因组及沙地云杉转录组数据为参考,共鉴定出196个MYBs家族成员。根据系统进化树,MYB转录因子家族分为7个亚类,其中,R2R3-MYB亚类基因数量最多,占84.77%,R-R和R1R2R3亚类数量最少,均占0.51%。基序、结构域、基因结构及保守性分析表明,同一亚类MYB转录因子具有高度保守性且具有相似基序和基因结构。不同盐胁迫梯度实验表明,沙地云杉最高的耐受盐胁迫浓度为1 000 mmol/L。在1 000 mmol/L盐胁迫浓度下设置不同处理时间(0、3、6、12、24 h)并测定转录组数据,共筛选出34个MYBs差异表达基因,表明其可能在调控盐胁迫过程中发挥着重要作用。对差异基因编码的蛋白进行理化性质分析发现,蛋白序列长度在89–731 aa,分子量约为10.19–79.73 kDa,等电点为4.80–9.91,不稳定系数41.20–70.99。亚细胞定位显示,大部分蛋白位于细胞核,3个蛋白位于叶绿体中。选取其中12个MYB基因进行实时荧光定量PCR (quantitative real-time PCR,qRT-PCR)验证,其表达模式与RNA-seq数据一致。本研究为后续探索沙地云杉中MYB家族成员在响应盐胁迫过程的功能及作用机制提供了数据支持。

    Abstract:

    Picea mongolica, known for its remarkable tolerance to cold, drought, and salinity, is a key species for ecological restoration and urban greening in the “Three Norths” region of China. MYB transcription factors are involved in plant responses to abiotic stress and synthesis of secondary metabolites. However, studies are limited regarding the MYB transcription factors in P. mongolica and their roles in salt stress tolerance. In this study, 196 MYBs were identified based on the genome of Picea abies and the transcriptome of P. mongolica. Phylogenetic analysis classified the MYB transcription factors into seven subclasses. The R2R3-MYB subclass contained the maximum number of genes (84.77%), while the R-R and R1R2R3 subclasses each represented the smallest proportion, at about 0.51%. The MYB transcription factors within the same subclass were highly conserved, exhibiting similar motifs and gene structures. Experiments with varying salt stress gradients revealed that P. mongolica could tolerate the salt concentration up to 1 000 mmol/L. From the transcriptome data of P. mongolica exposed to salt stress (1 000 mmol/L) for 0, 3, 6, 12, and 24 h, a total of 34 differentially expressed MYBs were identified, which suggested that these MYBs played a key role in regulating the response to salt stress. The proteins encoded by these differentially expressed genes varied in length from 89 aa to 731 aa, with molecular weights ranging from 10.19 kDa to 79.73 kDa, isoelectric points between 4.80 and 9.91, and instability coefficients from 41.20 to 70.99. Subcellular localization analysis indicated that most proteins were localized in the nucleus, while three were found in the chloroplasts. Twelve MYBs were selected for quantitative real-time PCR (qRT-PCR), which showed that their expression patterns were consistent with the RNA-seq data. This study provides valuable data for further investigation into the functions and mechanisms of MYB family members in response to salt stress in P. mongolica.

    参考文献
    [1] 王炜, 梁存柱, 李洪峰, 刘钟龄, 宝音陶格涛. 白音锡勒草原沙地云杉林的性质、可能成因及自然更新能力的初步研究[J]. 干旱区资源与环境, 2000, 14(2): 59-64. WANG W, LIANG CZ, LI HF, LIU ZL, Baoyintaogetao. Preliminary study on properties, probable causes and capacity for natural regeneration of Picea meyeri forest on sandy land in Baiyinxile[J]. Journal of Arid Land Resources and Environment, 2000, 14(2): 59-64(in Chinese).
    [2] 姜联合. 沙地云杉之源: 白音敖包保护区[J]. 植物杂志, 2001, (4): 6-7. JIANG LH. The source of Picea mongolica: Baiyin Ovoo Reserve[J]. Botanical Journal, 2001, (4): 6-7(in Chinese).
    [3] 哈布尔, 白玉娥, 候伟峰, 青山. 沙地特有树种沙地云杉研究进展与展望[J]. 北方园艺, 2021(14): 152-157. HA BE, BAI YE, HOU WF, QING S. Research progress and prospect of Picea mongolica of species endemic to sandy land[J]. Northern Horticulture, 2021(14): 152-157(in Chinese).
    [4] 黄三祥, 李新彬, 林田苗, 全昌明, 罗菊春, 王立新. 沙地云杉育苗技术及苗木年生长规律研究[J]. 北京林业大学学报, 2003, 25(6): 11-14. HUANG SX, LI XB, LIN TM, QUAN CM, LUO JC, WANG LX. Breeding techniques and annual growth rhythm of Picea mongolica seedlings[J]. Journal of Beijing Forestry University, 2003, 25(6): 11-14(in Chinese).
    [5] LATCHMAN DS. Transcription factors: an overview[J]. The International Journal of Biochemistry & Cell Biology, 1997, 29(12): 1305-1312.
    [6] PAZ-ARES J, GHOSAL D, WIENAND U, PETERSON PA, SAEDLER H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators[J]. The EMBO Journal, 1987, 6(12): 3553-3558.
    [7] 赵恩鹏, 成玉富, 杨旭. 茄科植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2021, 19(5): 1522-1530. ZHAO EP, CHENG YF, YANG X. Research progress of MYB transcription factors in Solanaceae plants[J]. Molecular Plant Breeding, 2021, 19(5): 1522-1530(in Chinese).
    [8] ROSINSKI JA, ATCHLEY WR. Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin[J]. Journal of Molecular Evolution, 1998, 46(1): 74-83.
    [9] ITO M. Conservation and diversification of three-repeat Myb transcription factors in plants[J]. Journal of Plant Research, 2005, 118(1): 61-69.
    [10] DUBOS C, STRACKE R, GROTEWOLD E, WEISSHAAR B, MARTIN C, LEPINIEC L. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010, 15(10): 573-581.
    [11] PEREZ-RODRIGUEZ M, JAFFE FW, BUTELLI E, GLOVER BJ, MARTIN C. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers[J]. Development, 2005, 132(2): 359-370.
    [12] BEDON F, GRIMA-PETTENATI J, MACKAY J. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca)[J]. BMC Plant Biology, 2007, 7: 17.
    [13] STRACKE R, ISHIHARA H, HUEP G, BARSCH A, MEHRTENS F, NIEHAUS K, WEISSHAAR B. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. The Plant Journal, 2007, 50(4): 660-677.
    [14] DELUC L, BOGS J, WALKER AR, FERRIER T, DECENDIT A, MERILLON JM, ROBINSON SP, BARRIEU F. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries[J]. Plant Physiology, 2008, 147(4): 2041-2053.
    [15] LI CN, NG CKY, FAN LM. MYB transcription factors, active players in abiotic stress signaling[J]. Environmental and Experimental Botany, 2015, 114: 80-91.
    [16] ULLAH C, UNSICKER SB, FELLENBERG C, CONSTABEL CP, SCHMIDT A, GERSHENZON J, HAMMERBACHER A. Flavan-3-ols are an effective chemical defense against rust infection[J]. Plant Physiology, 2017, 175(4): 1560-1578.
    [17] YU YH, GUO DL, LI GR, YANG YJ, ZHANG GH, LI SH, LIANG ZC. The grapevine R2R3-type MYB transcription factor VdMYB1 positively regulates defense responses by activating the stilbene synthase gene 2(VdSTS2)[J]. BMC Plant Biology, 2019, 19(1): 478.
    [18] MARTIN C, PAZ-ARES J. MYB transcription factors in plants[J]. Trends in Genetics, 1997, 13(2): 67-73.
    [19] ZHAO YY, YANG ZE, DING YP, LIU LS, HAN X, ZHAN JJ, WEI X, DIAO YY, QIN WQ, WANG P, LIU PP, SAJJAD M, ZHANG XL, GE XY. Over-expression of an R2R3 MYB gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis[J]. Plant Science, 2019, 286: 28-36.
    [20] WANG S, WU HL, CAO XX, FAN WJ, LI CL, ZHAO HX, WU Q. Tartary buckwheat FtMYB30 transcription factor improves the salt/drought tolerance of transgenic Arabidopsis in an ABA-dependent manner[J]. Physiologia Plantarum, 2022, 174(5): e13781.
    [21] HE J, LIU YQ, YUAN DY, DUAN MJ, LIU YL, SHEN ZJ, YANG CY, QIU ZY, LIU DM, WEN PZ, HUANG J, FAN DJ, XIAO SZ, XIN YY, CHEN XN, JIANG L, WANG HY, YUAN LP, WAN JM. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 271-277.
    [22] KANG YH, KIRIK V, HULSKAMP M, NAM KH, HAGELY K, LEE MM, SCHIEFELBEIN J. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis[J]. The Plant Cell, 2009, 21(4): 1080-1094.
    [23] SCHELLMANN S, SCHNITTGER A, KIRIK V, WADA T, OKADA K, BEERMANN A, THUMFAHRT J, JÜRGENS G, HÜLSKAMP M. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis[J]. The EMBO Journal, 2002, 21(19): 5036-5046.
    [24] KIRIK V, SIMON M, HUELSKAMP M, SCHIEFELBEIN J. The enhancer of try and cpc1 gene acts redundantly with triptychon and caprice in trichome and root hair cell patterning in Arabidopsis[J]. Developmental Biology, 2004, 268(2): 506-513.
    [25] ITO M, ARAKI S, MATSUNAGA S, ITOH T, NISHIHAMA R, MACHIDA Y, DOONAN JH, WATANABE A. G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors[J]. The Plant Cell, 2001, 13(8): 1891-1905.
    [26] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
    [27] YANG YQ, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. The New Phytologist, 2018, 217(2): 523-539.
    [28] ISMAIL AM, HORIE T. Genomics, physiology, and molecular breeding approaches for improving salt tolerance[J]. Annual Review of Plant Biology, 2017, 68: 405-434.
    [29] RIECHMANN JL, HEARD J, MARTIN G, REUBER L, JIANG C, KEDDIE J, ADAM L, PINEDA O, RATCLIFFE OJ, SAMAHA RR, CREELMAN R, PILGRIM M, BROUN P, ZHANG JZ, GHANDEHARI D, SHERMAN BK, YU G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105-2110.
    [30] SALIH H, GONG WF, HE SP, SUN GF, SUN JL, DU XM. Genome-wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum[J]. BMC Genetics, 2016, 17(1): 129.
    [31] DU H, YANG SS, LIANG Z, FENG BR, LIU L, HUANG YB, TANG YX. Genome-wide analysis of the MYB transcription factor superfamily in soybean[J]. BMC Plant Biology, 2012, 12: 106.
    [32] WILKINS O, NAHAL H, FOONG J, PROVART NJ, CAMPBELL MM. Expansion and diversification of the Populus R2R3-MYB family of transcription factors[J]. Plant Physiology, 2009, 149(2): 981-993.
    [33] CAO ZH, ZHANG SZ, WANG RK, ZHANG RF, HAO YJ. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121gene confering abiotic stress tolerance in plants[J]. PLoS One, 2013, 8(7): e69955.
    [34] CHEN YH, YANG XY, HE K, LIU MH, LI JG, GAO ZF, LIN ZQ, ZHANG YF, WANG XX, QIU XM, SHEN YP, ZHANG L, DENG XH, LUO JC, DENG XW, CHEN ZL, GU HY, QU LJ. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family[J]. Plant Molecular Biology, 2006, 60(1): 107-124.
    [35] LI H, WEN XX, WEI MK, HUANG X, DAI SP, RUAN L, YU YX. Genome-wide identification, characterization, and expression pattern of MYB gene family in Melastoma candidum[J]. Horticulturae, 2023, 9(6): 708.
    [36] JIANG CK, RAO GY. Insights into the diversification and evolution of R2R3-MYB transcription factors in plants[J]. Plant Physiology, 2020, 183(2): 637-655.
    [37] NIAN LL, LIU XL, YANG YB, ZHU XL, YI XF, HAIDER FU. Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of LIM gene family in Medicago sativa L.[J]. PLoS One, 2021, 16(6): e0252213.
    [38] ZHOU Y, TAO JJ, AHAMMED GJ, LI JW, YANG YX. Genome-wide identification and expression analysis of aquaporin gene family related to abiotic stress in watermelon[J]. Genome, 2019, 62(10): 643-656.
    [39] ZHOU YF, WANG XQ, SONG MJ, HE ZD, CUI GZ, PENG GD, DIETERICH C, ANTEBI A, JING NH, SHEN YD. A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing[J]. Nature Communications, 2019, 10(1): 4827.
    [40] DU H, FENG BR, YANG SS, HUANG YB, TANG YX. The R2R3-MYB transcription factor gene family in maize[J]. PLoS One, 2012, 7(6): e37463.
    [41] KE YJ, ZHENG QD, YAO YH, OU Y, CHEN JY, WANG MJ, LAI HP, YAN L, LIU ZJ, AI Y. Genome-wide identification of the MYB gene family in Cymbidiumensifolium and its expression analysis in different flower colors[J]. International Journal of Molecular Sciences, 2021, 22(24): 13245.
    [42] RAO XB, QIAN ZF, XIE LY, WU HY, LUO Q, ZHANG QY, HE LL, LI FS. Genome-wide identification and expression pattern of MYB family transcription factors in Erianthus fulvus[J]. Genes, 2023, 14(12): 2128.
    [43] MIN XY, WU HL, ZHANG ZS, WEI XY, JIN XY, NDAYAMBAZA B, WANG YR, LIU WX. Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula[J]. Journal of Plant Biochemistry and Biotechnology, 2019, 28(3): 320-335.
    [44] HU W, HOU XW, HUANG C, YAN Y, TIE WW, DING ZH, WEI YX, LIU JH, MIAO HX, LU ZW, LI MY, XU BY, JIN ZQ. Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in banana[J]. International Journal of Molecular Sciences, 2015, 16(8): 19728-19751.
    [45] MILLARD PS, KRAGELUND BB, BUROW M. R2R3 MYB transcription factors–functions outside the DNA-binding domain[J]. Trends in Plant Science, 2019, 24(10): 934-946.
    [46] ZHU T, LIU Y, MA LT, WANG XY, ZHANG DZ, HAN YC, DING Q, MA LJ. Genome-wide identification, phylogeny and expression analysis of the SPL gene family in wheat[J]. BMC Plant Biology, 2020, 20(1): 420.
    [47] WANG Y, YANG XM, HU YN, LIU XQ, SHARENG TY, CAO GX, XING YK, YANG YW, LI YX, HUANG WL, WANG ZB, BAI GW, JI YY, WANG YZ. Transcriptome-based identification of the SaR2R3-MYB gene family in Sophora alopecuroides and function analysis of SaR2R3-MYB15 in salt stress tolerance[J]. Plants, 2024, 13(5): 586.
    [48] ZHANG TZ, HU Y, JIANG WK, FANG L, GUAN XY, CHEN JD, ZHANG JB, SASKI CA, SCHEFFLER BE, STELLY DM, HULSE-KEMP AM, WAN Q, LIU BL, LIU CX, WANG S, PAN MQ, WANG YK, WANG DW, YE WX, CHANG LJ, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology, 2015, 33(5): 531-537.
    [49] CHEN YN, LI L, TANG BY, WU T, CHEN GP, XIE QL, HU ZL. Silencing of SlMYB55 affects plant flowering and enhances tolerance to drought and salt stress in tomato[J]. Plant Science, 2022, 316: 111166.
    [50] ZHANG FR, ZHANG XC, WAN WH, ZHU XY, SHI MX, ZHANG L, YANG FS, JIN SM. MYB4 in Lilium pumilum affects plant saline-alkaline tolerance[J]. Plant Signaling & Behavior, 2024, 19(1): 2370724.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

隋明明,张富满,田甜,闫艳秋,耿乐,李慧,白玉娥. 沙地云杉MYB转录因子家族鉴定及其对盐胁迫的响应[J]. 生物工程学报, 2025, 41(2): 825-844

复制
分享
文章指标
  • 点击次数:65
  • 下载次数: 138
  • HTML阅读次数: 63
  • 引用次数: 0
历史
  • 收稿日期:2024-08-30
  • 最后修改日期:2024-12-03
  • 在线发布日期: 2025-02-11
  • 出版日期: 2025-02-25
文章二维码
您是第5942741位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司