Abstract:Picea mongolica, known for its remarkable tolerance to cold, drought, and salinity, is a key species for ecological restoration and urban greening in the “Three Norths” region of China. MYB transcription factors are involved in plant responses to abiotic stress and synthesis of secondary metabolites. However, studies are limited regarding the MYB transcription factors in P. mongolica and their roles in salt stress tolerance. In this study, 196 MYBs were identified based on the genome of Picea abies and the transcriptome of P. mongolica. Phylogenetic analysis classified the MYB transcription factors into seven subclasses. The R2R3-MYB subclass contained the maximum number of genes (84.77%), while the R-R and R1R2R3 subclasses each represented the smallest proportion, at about 0.51%. The MYB transcription factors within the same subclass were highly conserved, exhibiting similar motifs and gene structures. Experiments with varying salt stress gradients revealed that P. mongolica could tolerate the salt concentration up to 1 000 mmol/L. From the transcriptome data of P. mongolica exposed to salt stress (1 000 mmol/L) for 0, 3, 6, 12, and 24 h, a total of 34 differentially expressed MYBs were identified, which suggested that these MYBs played a key role in regulating the response to salt stress. The proteins encoded by these differentially expressed genes varied in length from 89 aa to 731 aa, with molecular weights ranging from 10.19 kDa to 79.73 kDa, isoelectric points between 4.80 and 9.91, and instability coefficients from 41.20 to 70.99. Subcellular localization analysis indicated that most proteins were localized in the nucleus, while three were found in the chloroplasts. Twelve MYBs were selected for quantitative real-time PCR (qRT-PCR), which showed that their expression patterns were consistent with the RNA-seq data. This study provides valuable data for further investigation into the functions and mechanisms of MYB family members in response to salt stress in P. mongolica.