肌肉特异性合成启动子文库构建及其高活性启动子元件组成与活性的关联性分析
作者:
基金项目:

那曲市科技局重点研发计划(NQKJ-2023-07);西南民族大学中央高校基本科研业务费专项资金(ZYN2024062);四川科技计划(2023YFQ0076);四川省自然科学基金(25QNJJ1998)


Construction of a muscle-specific synthetic promoter library and correlation analysis of the element composition and activity of highly active promoters
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究旨在构建肌肉特异性合成启动子库,筛选出活性较高的肌肉特异性启动子,分析高活性启动子序列中启动子元件与其活性的关系,为人工合成启动子提供一定理论依据。选取19个源于肌肉特异性元件、保守元件、病毒调控序列的元件,随机连接构建肌肉特异性合成启动子库。构建荧光素酶质粒pCMV-Luc和pSPs-Luc,将以上质粒转染至成肌细胞系C2C12,通过荧光素酶活性检测评估合成启动子活性;利用另外2种非肌肉源细胞系HeLa和3T3验证高活性启动子的肌肉特异性,分析活性高、肌肉特异性好且测序比对正确的启动子序列,探索元件组成与启动子活性之间的关系。本研究成功构建肌肉特异性启动子库,筛选出有效合成启动子质粒321个,其中SP-301启动子活性为CMV活性的5.63倍;活性较高的15个启动子具有肌肉特异性;分析高活性且测序正确的启动子,发现元件组成与启动子活性之间存在一定关系。肌肉特异性元件在启动子中占比偏高,但与启动子活性强弱相关性较小,是组织特异性的决定元件;病毒元件在强活性启动子中含量均不低于20%,可能是影响启动子活性的关键元件;保守元件含量与启动子活性之间具有显著的相关性,其含量与启动子活性成正比。本研究为合成组织特异性高效启动子提供了一定理论基础,为原位基因传递体系的构建和应用提供了新思路。

    Abstract:

    The purpose of this study is to construct a muscle-specific synthetic promoter library, screen out muscle-specific promoters with high activity, analyze the relationship between element composition and activity of highly active promoters, and provide a theoretical basis for artificial synthesis of promoters. In this study, 19 promoter fragments derived from muscle-specific elements, conserved elements, and viral regulatory sequences were selected and randomLy connected to construct a muscle-specific synthetic promoter library. The luciferase plasmids pCMV-Luc and pSPs-Luc were constructed and transfected into the myoblast cell line C2C12. The activities of the synthesized promoters were evaluated by the luciferase activity assay. Two non-muscle-derived cell lines HeLa and 3T3 were used to verify the muscle specificity of the highly active promoters. The sequences of promoters with high activity, good muscle specificity, and correct sequences were analyzed to explore the relationship between the element composition and activity of promoters. We successfully constructed a muscle-specific promoter library and screened out 321 effective synthetic promoter plasmids. Among them, the activity of SP-301 promoter was 5.63 times that of CMV. The 15 promoters with high activity were muscle-specific. In the promoters with high activity and correct sequences, there was a relationship between their element composition and activity. Muscle-specific elements accounted for a high proportion in the promoters, while they had weak correlations with the promoter activity, being tissue-specific determinants. Viral elements accounted for no less than 20% in highly active promoters, which may be the key elements for the promoter activity. The content of conserved elements was proportional to the promoter activity. This study lays a theoretical foundation for the synthesis of tissue-specific efficient promoters and provides a new idea for the construction and application of in-situ gene delivery systems.

    参考文献
    [1] ZHANG MQ. Identification of human gene core promoters in silico[J]. Genome Research, 1998, 8(3): 319-326.
    [2] SMALE ST, KADONAGA JT. The RNA polymerase II core promoter[J]. Annual Review of Biochemistry, 2003, 72: 449-479.
    [3] LITTLEFIELD O, KORKHIN Y, SIGLER PB. The structural basis for the oriented assembly of a TBP/TFB/promoter complex[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13668-13673.
    [4] DENG W, ROBERTS SGE. Core promoter elements recognized by transcription factor IIB[J]. Biochemical Society Transactions, 2006, 34(Pt 6): 1051-1053.
    [5] SMALE ST, BALTIMORE D. The‘initiator’as a transcription control element[J]. Cell, 1989, 57(1): 103-113.
    [6] LO K, SMALE ST. Generality of a functional initiator consensus sequence[J]. Gene, 1996, 182(1-2): 13-22.
    [7] KUTACH AK, KADONAGA JT. The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters[J]. Molecular and Cellular Biology, 2000, 20(13): 4754-4764.
    [8] KADONAGA JT. The DPE, a core promoter element for transcription by RNA polymerase II[J]. Experimental & Molecular Medicine, 2002, 34(4): 259-264.
    [9] JUVEN-GERSHON T, KADONAGA JT. Regulation of gene expression via the core promoter and the basal transcriptional machinery[J]. Developmental Biology, 2010, 339(2): 225-229.
    [10] URIOSTEGUI-ARCOS M, MICK ST, SHI Z, RAHMAN R, FISZBEIN A. Splicing activates transcription from weak promoters upstream of alternative exons[J]. Nature Communications, 2023, 14(1): 3435.
    [11] SHAHMURADOV IA, GAMMERMAN AJ, HANCOCK JM, BRAmLEY PM, SOLOVYEV VV. PlantProm: a database of plant promoter sequences[J]. Nucleic Acids Research, 2003, 31(1): 114-117.
    [12] SREENIVASULU G, SENTHILKUMARAN B, SUDHAKUMARI CC, GUAN G, OBA Y, KAGAWA H, NAGAHAMA Y. 20β-hydroxysteroid dehydrogenase gene promoter: potential role for cyclic AMP and xenobiotic responsive elements[J]. Gene, 2012, 509(1): 68-76.
    [13] KHALIL AS, COLLINS JJ. Synthetic biology: applications come of age[J]. Nature Reviews Genetics, 2010, 11(5): 367-379.
    [14] YANG Y, CHAFFIN TA, SHAO YH, BALASUBRAMANIAN VK, MARKILLIE M, MITCHELL H, RUBIO-WILHELMI MM, AHKAMI AH, BLUMWALD E, NEAL STEWART C Jr. Novel synthetic inducible promoters controlling gene expression during water-deficit stress with green tissue specificity in transgenic poplar[J]. Plant Biotechnology Journal, 2024, 22(6): 1596-1609.
    [15] ZHAO M, SHANG J, CHEN JJ, Zabed HM, Qi XH. Fine-tuning the expression of the glycolate giosynthetic pathway in Escherichia coli using synthetic promoters[J]. Fermentation, 2024, 10(1): 67.
    [16] LEE TC, SHI Y, SCHWARTZ RJ. Displacement of BrdUrd-induced YY1 by serum response factor activates skeletal alpha-actin transcription in embryonic myoblasts[J]. Proceedings of the National Academy of Sciences, 1992, 89(20): 9814-9818.
    [17] BUSKIN JN, HAUSCHKA SD. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene[J]. Molecular and Cellular Biology, 1989, 9(6): 2627-2640.
    [18] HIMEDA CL, TAI PW, HAUSCHKA SD. Analysis of muscle gene transcription in cultured skeletal muscle cells[J]. Methods of Molecular Biolology, 2012, 798: 425-443.
    [19] WALSH K. Cross-binding of factors to functionally different promoter elements in c-fos and skeletal actin genes[J]. Molecular and Cellular Biology, 1989, 9(5): 2191-2201.
    [20] KADONAGA JT, JONES KA, Tjian R. Promoter-specific activation of RNA polymerase II transcription by Sp1[J]. Trends in Biochemical Sciences, 1986, 11(1): 20-23.
    [21] STAMMINGER T, FICKENSCHER H, FLECKENSTEIN B. Cell type-specific induction of the major immediate early enhancer of human cytomegalovirus by cyclic AMP[J]. Journal of General Virology, 1990, 71(1): 105-113.
    [22] GREEN MR, SAMBROOK J. Cloning in plasmid vectors: blunt-end cloning[J]. Cold Spring Harbor Protocols, 2020, 2020(11): pdb.prot101246.
    [23] ZHANG JH, WANG TY, ZHANG CB, MI CL, GENG SL, TANG YY, WANG XY. CMV/AAT promoter of MAR-based episomal vector enhanced transgene expression in human hepatic cells[J]. 3 Biotech, 2023, 13(11): 354.
    [24] YOUNG E, ALPER H. Synthetic biology: tools to design, build, and optimize cellular processes[J]. Journal of Biomedicine & Biotechnology, 2010, 2010: 130781.
    [25] KEASLING JD. Synthetic biology and the development of tools for metabolic engineering[J]. Metabolic Engineering, 2012, 14(3): 189-195.
    [26] 张华韵, 蔡欢嫦, 任静强. 基于巨细胞病毒启动子的三独立表达系统载体的构建和应用[J]. 中国兽医学报, 2023, 43(6): 1257-1262.ZHANG HY, CAI HC, REN JQ. Design and application of the vector based on cytomegalovirus promoter in three independent expression systems[J]. Chinese Journal of Veterinary Science, 2023, 43(6): 1257-1262(in Chinese).
    [27] WILDEMAN AG, ZENKE M, SCHATZ C, WINTZERITH M, GRUNDSTRÖM T, MATTHES H, TAKAHASHI K, CHAMBON P. Specific protein binding to the Simian virus 40 enhancer in vitro[J]. Molecular and Cellular Biology, 1986, 6(6): 2098-2105.
    [28] TAI PW, FISHER-AYLOR KI, HIMEDA CL, SMITH CL, MACKENZIE AP, HELTERLINE DL, ANGELLO JC, WELIKSON RE, WOLD BJ, HAUSCHKA SD. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer[J]. Skeletal Muscle, 2011, 1: 25.
    [29] CAREY MF, PETERSON CL, SMALE AST. Transcriptional Regulation in Eukaryotes: Concepts, Strategies, and Techniques[M]. 2nd Ed. New York: Cold Spring Harbor Laboratory Press, 2009.
    [30] JOSHI CP. An inspection of the domain between putative TATA box and translation start site in 79 plant genes[J]. Nucleic Acids Research, 1987, 15(16): 6643-6653.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王泽宁,江明锋,道杰日庆,曲久,李小伟,旦巴次仁,刘益丽. 肌肉特异性合成启动子文库构建及其高活性启动子元件组成与活性的关联性分析[J]. 生物工程学报, 2024, 40(12): 4616-4627

复制
分享
文章指标
  • 点击次数:225
  • 下载次数: 207
  • HTML阅读次数: 113
  • 引用次数: 0
历史
  • 收稿日期:2024-05-27
  • 在线发布日期: 2024-12-25
  • 出版日期: 2024-12-25
文章二维码
您是第6046003位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司