基于转录调节因子PuuR的1,4-丁二胺生物传感器的构建与优化
作者:
基金项目:

国家重点研发计划(2021YFC2101800,2021YFC2100402,2022YFC2105502);国家自然科学基金(22278321,32072161)


Construction and optimization of 1,4-butanediamine biosensor based on transcriptional regulator PuuR
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    生物传感器已经成为实时监测特定小分子和精确控制生物系统中基因表达的强大工具。用于1,4-丁二胺生物合成的高通量传感器可以极大地提高1,4-丁二胺高产菌株的筛选效率。为研究调整生物传感器特性的策略,本研究开发了一种以转录调节因子PuuR为基础的1,4-丁二胺生物传感器,其同源的操作子puuO被组装在大肠杆菌组成型启动子PgapA中,以控制下游的高能绿色荧光蛋白(superfolder green fluorescent protein,sfGFP)作为报告蛋白表达。最终该传感器在1,4-丁二胺浓度处于0–50 mmol/L时GFP/OD600值与1,4-丁二胺浓度之间能稳定地表现出线性关系。本研究采用大肠杆菌基因组中不同强度的启动子对1,4-丁二胺生物传感器进行分子改造,探究并改进基于PuuR的1,4-丁二胺生物传感器的功能性质,为高通量筛选高产1,4-丁二胺的工程菌株奠定了基础。

    Abstract:

    Biosensors have become powerful tools for real-time monitoring of specific small molecules and precise control of gene expression in biological systems. High-throughput sensors for 1,4-butanediamine biosynthesis can greatly improve the screening efficiency of high-yielding 1,4-butanediamine strains. However, the strategies for adapting the characteristics of biosensors are still rarely studied, which limits the applicability of 1,4-butanediamine biosensors. In this paper, we propose the development of a 1,4-butanediamine biosensor based on the transcriptional regulator PuuR, whose homologous operator puuO is installed in the constitutive promoter PgapA of Escherichia coli to control the expression of the downstream superfolder green fluorescent protein (sfGFP) as the reporter protein. Finally, the biosensor showed a stable linear relationship between the GFP/OD600 value and the concentration of 1,4-butanediamine when the concentration of 1,4-butanediamine was 0–50 mmol/L. The promoters with different strengths in the E.coligenome were used to modify the 1,4-butanediamine biosensor, and the functional properties of the PuuR-based 1,4-butanediamine biosensor were explored and improved, which laid the groundwork for high-throughput screening of engineered strains highly producing 1,4-butanediamine.

    参考文献
    [1] 李东霞, 黎明, 王洪鑫, 王舒雅, 路福平. 生物法合成戊二胺研究进展[J]. 生物工程学报, 2014, 30(2): 161-174. LI DX, LI M, WANG HX, WANG SY, LU FP. Progress in biosythesis of diaminopentane[J]. Chinese Journal of Biotechnology, 2014, 30(2): 161-174(in Chinese).
    [2] TABOR CW, TABOR H. Polyamines in microorganisms[J]. Microbiological Reviews, 1985, 49(1): 81-99.
    [3] SARI IN, SETIAWAN T, KIM KS, WIJAYA YT, CHO KW,KWON HY. Metabolism and function of polyamines in cancer progression[J]. Cancer Letters, 2021, 519: 91-104.
    [4] HOLBERT CE, CULLEN MT, CASERO RA, STEWART TM. Polyamines in cancer: integrating organismal metabolism and antitumour immunity[J]. Nature Reviews Cancer, 2022, 22(8): 467-480.
    [5] FREUDENBERG RA, WITTEMEIER L, EINHAUS A, BAIER T, KRUSE O. Advanced pathway engineering for phototrophic putrescine production[J]. Plant Biotechnology Journal, 2022, 20(10): 1968-1982.
    [6] AN MF, ZHANG QL, LIN YF, WANG DL, CHEN W, MENG LP, YIN PC, LI LB. Stretch-induced reverse brill transition in polyamide 46[J]. Macromolecules, 2020, 53(24): 11153-11165.
    [7] 赵晓. 高分子量聚己二酰丁二胺的合成工艺及性能研究[D]. 郑州: 郑州大学硕士学位论文, 2014. ZHAO X. Study on synthesis technology and properties of high molecular weight poly (tetramethylene adipamide)[D]. Zhengzhou: Master’s Thesis of Zhengzhou University, 2014(in Chinese)
    [8] QIAN ZG, XIA XX, LEE SY. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine[J]. Biotechnology and Bioengineering, 2009, 104(4): 651-662.
    [9] KO YS, KIM JW, LEE JA, HAN T, KIM GB, PARK JE, LEE SY. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production[J]. Chemical Society Reviews, 2020, 49(14): 4615-4636.
    [10] CHEN XL, GAO C, GUO L, HU GP, LUO QL, LIU J, NIELSEN J, CHEN J, LIU LM. DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals[J]. Chemical Reviews, 2018, 118(1): 4-72.
    [11] QIAN ZG, XIA XX, LEE SY. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine[J]. Biotechnology and Bioengineering, 2011, 108(1): 93-103.
    [12] NGUYEN AQD, SCHNEIDER J, REDDY GK, WENDISCH VF. Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum[J]. Metabolites, 2015, 5(2): 211-231.
    [13] NGUYEN AQD, SCHNEIDER J, WENDISCH VF. Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum[J]. Journal of Biotechnology, 2015, 201: 75-85.
    [14] ROGERS JK, TAYLOR ND, CHURCH GM. Biosensor-based engineering of biosynthetic pathways[J]. Current Opinion in Biotechnology, 2016, 42: 84-91.
    [15] WANG HH, ISAACS FJ, CARR PA, SUN ZZ, XU G, FOREST CR, CHURCH GM. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460: 894-898.
    [16] TENG YX, ZHANG JL, JIANG T, ZOU YS, GONG XY, YAN YJ. Biosensor-enabled pathway optimization in metabolic engineering[J]. Current Opinion in Biotechnology, 2022, 75: 102696.
    [17] SHAKILA RJ, VASUNDHARA TS, KUMUDAVALLY KV. A comparison of the TLC-densitiometry and HPLC method for the dteermination of biogenic amines in fish and fishery products[J]. Food Chemistry, 2001, 75(2): 255-259.
    [18] FAVARO G, PASTORE P, SACCANI G, CAVALLI S. Determination of biogenic amines in fresh and processed meat by ion chromatography and integrated pulsed amperometric detection on Au electrode[J]. Food Chemistry, 2007, 105(4): 1652-1658.
    [19] AWAN MA, FLEET I, THOMAS CLP. Determination of biogenic diamines with a vaporisation derivatisation approach using solid-phase microextraction gas chromatography-mass spectrometry[J]. Food Chemistry, 2008, 111(2): 462-468.
    [20] Dadáková E, Křížek M, Pelikánová T. Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC)[J]. Food Chemistry, 2009, 116(1): 365-370.
    [21] LIM HG, JANG S, JANG S, SEO SW, JUNG GY. Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals[J]. Current Opinion in Biotechnology, 2018, 54: 18-25.
    [22] LIN JL, WAGNER JM, ALPER HS. Enabling tools for high-throughput detection of metabolites: metabolic engineering and directed evolution applications[J]. Biotechnology Advances, 2017, 35(8): 950-970.
    [23] DIETRICH JA, McKEE AE, KEASLING JD. High-throughput metabolic engineering: advances in small-molecule screening and selection[J]. Annual Review of Biochemistry, 2010, 79(1): 563-590.
    [24] KORTMANN M, MACK C, BAUMGART M, BOTT M. Pyruvate carboxylase variants enabling improved lysine production from glucose identified by biosensor-based high-throughput fluorescence-activated cell sorting screening[J]. ACS Synthetic Biology, 2019, 8(2): 274-281.
    [25] KACZMAREK JA, PRATHER KLJ. Effective use of biosensors for high-throughput library screening for metabolite production[J]. Journal of Industrial Microbiology and Biotechnology, 2021, 48(9/10): kuab049.
    [26] CHOU HH, KEASLING JD. Programming adaptive control to evolve increased metabolite production[J]. Nature Communications, 2013, 4: 2595.
    [27] ZHAO NN, QIAN L, LUO GJ, ZHENG SP. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9517-9529.
    [28] TELLECHEA-LUZARDO J, STIEBRITZ MT, CARBONELL P. Transcription factor-based biosensors for screening and dynamic regulation[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1118702.
    [29] NEMOTO N, KURIHARA S, KITAHARA Y, ASADA K, KATO K, SUZUKI H. Mechanism for regulation of the putrescine utilization pathway by the transcription factor PuuR in Escherichia coli K-12[J]. Journal of Bacteriology, 2012, 194(13): 3437-3447.
    [30] CHEN XF, XIA XX, LEE SY, QIAN ZG. Engineering tunable biosensors for monitoring putrescine in Escherichia coli[J]. Biotechnology and Bioengineering, 2018, 115(4): 1014-1027.
    [31] LI Z, SHEN YP, JIANG XL, FENG LS, LIU JZ. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(2): 123-139.
    [32] SELIM AS, PERRY JM, NASR MA, PIMPRIKAR JM, SHIH SCC. A synthetic biosensor for detecting putrescine in beef samples[J]. ACS Applied Bio Materials, 2022, 5(11): 5487-5496.
    [33] 玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用[J]. 中国生物工程杂志, 2020, 40(6): 20-30. XUAN MJ, ZHANG XY, GAO Y, GAO LY, WU JQ, MA M, WANG YM, KOU H, LU FP, LI M. Characterization of promoters in the glycolytic pathway and tricarboxylic acid cycle of E. coli and its application[J]. China Biotechnology, 2020, 40(6): 20-30(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘俊杰,蒋敏敏,孙彤,孙祥祥,赵咏灿,顾明霞,路福平,黎明. 基于转录调节因子PuuR的1,4-丁二胺生物传感器的构建与优化[J]. 生物工程学报, 2025, 41(1): 437-447

复制
分享
文章指标
  • 点击次数:82
  • 下载次数: 251
  • HTML阅读次数: 249
  • 引用次数: 0
历史
  • 收稿日期:2024-02-28
  • 最后修改日期:2024-05-20
  • 在线发布日期: 2025-01-24
  • 出版日期: 2025-01-25
文章二维码
您是第5896821位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司