多层复配微胶囊的制备及其在混凝土裂缝自修复中的应用
作者:

Preparation of multi-layer compound microcapsules and their application in self-healing of concrete cracks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    混凝土广泛应用于房屋土建工程以及道路桥梁等,其开裂问题一直是工程界的一大难题。为了开发有效、可行的混凝土修复技术,本研究结合微生物技术与微胶囊技术采用锐孔法制备了一种多层复配微胶囊,并以微胶囊的包埋率与机械性能为评价标准,优化了微胶囊的配方和干燥方式。而后表征了微胶囊钙转结晶过程以及产物晶型,并与游离细胞钙转过程进行对比。最后,测试了微胶囊的掺入对试件的机械性能、抗渗性能以及自修复效果的影响。结果表明:配方为蜡样芽胞杆菌湿菌体1.0%、氯化钙1.5%、海藻酸钠3.0%、营养物质5.0%、丙三醇6.0%、壳聚糖0.6%、尿素2.0%的风干多层复配微胶囊,其包埋率为95.3%,破裂力为59.7 N,硬度为150.8 N。该微胶囊能够在囊内的微生物发生钙转反应时,由固态转变为流动的胶态。微胶囊与游离细胞钙转反应产生的碳酸钙都是较稳定的方解石晶型,但微胶囊产的颗粒大小更加均匀,更有利于在裂缝中累积,从而增强修复的稳固性。将微胶囊投入混凝土试件,当掺量为0.45%时,试件的抗折强度提高了17.3%,试件的抗压强度提高了12.3%。在抗渗水试验中,添加了微胶囊的试件较掺入游离细胞的试件对水泥混凝土有更好的抗渗性补偿。裂缝自修复效果证明多层复配微胶囊能够对0.7 mm宽度以下的裂缝实现完全修复,对0.8 mm宽度裂缝修复率为95%。本研究开发了一种能够在混凝土中保护微生物并提供其生长所需营养的多层复配微胶囊,为微生物诱导碳酸钙沉淀在混凝土裂缝修复提供了新的思路。

    Abstract:

    Concrete is widely used in building construction, civil engineering, roads, bridges, etc., but concrete cracking remains a major issue in the engineering industry. To develop an effective and feasible concrete repair technology, this study combined microbial and microencapsulation technologies to prepare a multi-layer compound microcapsule using the piercing method. The formulation and drying method of microcapsules were optimized by taking their embedding rate and mechanical properties as evaluation criteria. The calcium transcrystallization process of microcapsules and the crystal form of products were characterized and compared with the calcium transcrystallization process in free cells. Finally, the effects of microcapsule incorporation on mechanical properties, impermeability, and self-healing performance of concrete specimens were then tested. The results showed that the air-dried multi-layer compound microcapsules, formulated with 1.0% wet cells of Bacillus cereus, 1.5% calcium chloride, 3.0% sodium alginate, 5.0% nutrients, 6.0% glycerol, 0.6% chitosan, and 2.0% urea, achieved an embedding rate of 95.3%, a rupture force of 60.0 N and a hardness of 150.8 N. These microcapsules can transform from a solid state to a flowing colloidal state when the microorganisms inside undergo a calcium formation reaction. Both the microcapsules and free cells produced stable calcite crystal forms of calcium carbonate through the calcium conversion reaction, with the microcapsules producing more uniform-sized particles, which are more conducive to accumulation in cracks, thereby enhancing the stability of repair. When microcapsules were incorporated into the concrete specimen at a content of 0.45%, the flexural strength of the specimen increased by 17.3%, and the compressive strength increased by 12.3%. In the water impermeability test, specimens with microcapsules demonstrated better impermeability compensation for the cement concrete than those with free cells. The self-healing effect of cracks proved that multi-layer compound microcapsules could completely repair cracks up to 0.7 mm wide, and a repair rate of 95% for 0.8 mm wide cracks. In this study, a multi-layer compound microcapsule was developed to protect microorganisms in concrete and provide nutrients required for their growth, which provided a new idea for microbial induced calcium carbonate precipitation in concrete crack repair.

    参考文献
    [1] MILLA J, HASSAN MM, RUPNOW T, AL-ANSARI M, ARCE G. Effect of self-healing calcium nitrate microcapsules on concrete properties[J]. Transportation Research Record: Journal of the Transportation Research Board, 2016, 2577(1): 69-77.
    [2] TAN NPB, KEUNG LH, CHOI WH, LAM WC, LEUNG HN. Silica-based self-healing microcapsules for self-repair in concrete[J]. Journal of Applied Polymer Science, 2016, 133(12): 12.
    [3] DU W, YU JY, GU Y, LI Y, HAN XB, LIU QT. Preparation and application of microcapsules containing toluene-di-isocyanate for self-healing of concrete[J]. Construction and Building Materials, 2019, 202: 762-769.
    [4] 刘鹏飞, 张尹耀. 混凝土裂缝的预防与处理[J]. 水利水电技术, 2011, 42(5): 43-45. LIU PF, ZHANG YY. Prevention and treatment of concrete cracking[J]. Water Resources and Hydropower Engineering, 2011, 42(5): 43-45(in Chinese).
    [5] CHANDRA SEKHARA REDDY T, RAVITHEJA A. Macro mechanical properties of self healing concrete with crystalline admixture under different environments[J]. Ain Shams Engineering Journal, 2019, 10(1): 23-32.
    [6] DURGA C S S, RUBEN N, CHAND M S R, VENKATESH C. Performance studies on rate of self healing in bio concrete; proceedings of the 1st International Conference on Recent Advances in Materials and Manufacturing (ICRAMM), Belagavi, INDIA, F Sep 12-14, 2019[C]. Elsevier: AMSTERDAM, 2020.
    [7] ALGAIFI HA, ABU BAKAR S, ALYOUSEF R, MOHD SAM AR, WAN IBRAHIM MH, SHAHIDAN S, IBRAHIM M, SALAMI BA. Bio-inspired self-healing of concrete cracks using new B. pseudomycoides species[J]. Journal of Materials Research and Technology, 2021, 12: 967-981.
    [8] 袁晓露, 李宝霞, 黄雅燕, 杨宇成, 叶静, 张娜, 张学勤, 郑秉得, 肖美添. 海藻酸钠微囊的制备及应用进展[J]. 化工进展, 2022, 41(6): 3103-3112. YUAN XL, LI BX, HUANG YY, YANG YC, YE J, ZHANG N, ZHANG XQ, ZHENG BD, XIAO MT. Progress in preparation and application of sodium alginate microcapsules[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3103-3112(in Chinese).
    [9] GENG J, LAN Q, LIU G, ZHOU, LIU R. Research progress on surface texture measurement and repair methods of asphalt pavement[J]. Applied Chemical Industry, 2020, 49(4): 1025-1030.
    [10] SU Q, HE X, ZENG M. Experiment research on fatigue failure and repair method of butt weld in U-shaped rib of composite bridge deck[J]. Journal of Tongji University, 2017, 45(2): 167-172.
    [11] SEIFAN M, BERENJIAN A. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world[J]. Applied Microbiology and Biotechnology, 2019, 103(12): 4693-4708.
    [12] WANG H, MIAO L, SUN X, Wu L. Research Advances in Microbially Induced Carbonate Precipitation[J]. Journal of Hunan University (Natural Sciences), 2021, 48(1): 70-81.
    [13] ZHAO H, XU S, ZHANG Y. Crack Remediation of Concrete by Using Haloalkaliphilic Bacteria Acclimated from Excess Sludge[J]. Journal of Materials Science and Engineering, 2020, 38(6): 966-970.
    [14] ZHOU Y, WANG R, LIU B, MEN J, LI X. Experimental Study on Mechanical Properties of Concrete Cracks Repaired by Microorganism[J]. Journal of Highway and Transportation Research and Development, 2022, 39(12): 134-138.
    [15] DE BELIE N, GRUYAERT E, AL-TABBAA A, ANTONACI P, BAERA C, BAJARE D, DARQUENNES A, DAVIES R, FERRARA L, JEFFERSON T, LITINA C, MILJEVIC B, OTLEWSKA A, RANOGAJEC J, ROIG-FLORES M, PAINE K, LUKOWSKI P, SERNA P, TULLIANI JM, VUCETIC S, et al. A review of self-healing concrete for damage management of structures[J]. Advanced Materials Interfaces, 2018, 5(17): 1800074.
    [16] 魏玉伟, 程培峰, 刘满, 赵倩倩. 自修复混凝土修复效果影响因素的试验研究[J]. 建筑材料学报, 2018, 21(4): 588-594. WEI YW, CHENG PF, LIU M, ZHAO QQ. Influencing factors of self-healing performance of concrete[J]. Journal of Building Materials, 2018, 21(4): 588-594(in Chinese).
    [17] 陈歆, 韩依璇, 张国荣, 马聪, 朱小骏. 巴氏生孢八叠球菌用作混凝土裂缝愈合剂的活性研究[J]. 建筑材料学报, 2018, 21(3): 484-489. CHEN X, HAN YX, ZHANG GR, MA C, ZHU XJ. Activity investigation of Sporosarcina pasteurii as concrete crack healing agent[J]. Journal of Building Materials, 2018, 21(3): 484-489(in Chinese).
    [18] ZHANG Z, ZHONG S, PENG F, ZENG Y, ZONG M, LOU W. Progress in Microcapsule Wall Materials and Preparation Techniques[J]. Food Science, 2020, 41(9): 246-253.
    [19] LIN S, WANG K, CHENG J, YANG Z. Recent progress in microencapsulation technology[J]. Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2012, 28(5): 179-182.
    [20] YIN KP, LUO ZT, LIU XH, PAN H, ZHI TY, FENG H, SONG YT, SU YF. Preparation and application of Na2SiO3@EC microcapsules for self-healing alkali-activated slag[J]. Construction and Building Materials, 2023, 400: 132651.
    [21] 毛倩瑾, 伍文文, 梁鹏, 王子明, 崔素萍. 海藻酸钙/环氧微胶囊在水泥基材料中的自修复作用[J]. 材料导报, 2018, 32(22): 4016-4021. MAO QJ, WU WW, LIANG P, WANG ZM, CUI SP. Self-healing effect of calcium alginate/epoxy microcapsules in cementitious materials[J]. Materials Review, 2018, 32(22): 4016-4021(in Chinese).
    [22] KAZEMI A, BAGHANI M, SHAHSAVARI H, ABRINIA K, BANIASSADI M. Application of elastic-damage-heal model for self-healing concrete thick-walled cylinders through thermodynamics of irreversible processes[J]. International Journal of Applied Mechanics, 2017, 9(6): 1750082.
    [23] JI XP, LI J, HUA WL, HU YL, SI BT, CHEN B. Preparation and performance of microcapsules for asphalt pavements using interfacial polymerization[J]. Construction and Building Materials, 2021, 289: 123179.
    [24] GE Q, LU Z, LIANG Y, WEI P. Research Progress of Superhydrophobic and Self-healing Coating Based on Microencapsulation Technology[J]. China Surface Engineering, 2022, 35(4): 102-112.
    [25] LIN G, KONG Z. Research progress in microencapsulation technology of epoxy resin[J]. Thermosetting Resin, 2012, 27(4): 74-79.
    [26] NI Z, LIN YH, GUO Z, CHEN ST, YUAN QH. Synthesis and reaction mechanism of self-healing epoxy microcapsules[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(3): 339-346.
    [27] NI Z, XING F, SHI KY, HUANG Z, HUANG JC, BI C. Influence of microcapsule on microcosmic structure of self-healing cementitious composite[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 68.
    [28] 袁庆兰, 李锐扬, 宋欢, 王艳, 李琛. 海藻酸钠/壳聚糖/海藻酸钙微胶囊机械强度的研究[J]. 广州化工, 2021, 49(14): 55-58. YUAN QL, LI RY, SONG H, WANG Y, LI C. Study on mechanical strength of sodium alginate/chitosan/ calcium alginate microcapsules[J]. Guangzhou Chemical Industry, 2021, 49(14): 55-58(in Chinese).
    [29] ZHOU J, YE G, VAN BREUGEL K. Influence of moisture exchange on cement hydration, microstructure and bond strength in concrete repairs[J]. Journal of the Chinese Ceramic Society, 2010, 38(9): 1665-1670.
    [30] NIE F, WU D, HUANG H. Research progress on sodium alginate composite adsorption[J]. New Chemical Materials, 2022, 50(6): 307-312.
    [31] 郝晓丽, 夏延致, 王兵兵, 纪全, 孔庆山, 隋坤艳. 两种海藻酸钙膜的制备及吸水性能[J]. 高分子材料科学与工程, 2010, 26(4): 143-145. HAO XL, XIA YZ, WANG BB, JI Q, KONG QS, SUI KY. Preparation and performance of two kinds of calcium alginate membranes[J]. Polymer Materials Science and Engineering, 2010, 26(4): 143-145(in Chinese).
    [32] GIANNAROS P, KANELLOPOULOS A, AL-TABBAA A. Sealing of cracks in cement using microencapsulated sodium silicate[J]. Smart Materials and Structures, 2016, 25(8): 084005.
    [33] LI C, ZHANG J, SUN Z. The function of chitosan and its application in microencapsulation[J]. Science & Technology of Food Industry, 2010, 31(10): 418-420, 425.
    [34] 刘袖洞, 于炜婷, 王为, 雄鹰, 马小军, 袁权. 海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用[J]. 化学进展, 2008, 20(1): 126-139. LIU XD, YU WT, WANG W, XIONG Y, MA XJ, YUAN Q. Polyelectrolyte microcapsules prepared by alginate and chitosan for biomedical application[J]. Progress in Chemistry, 2008, 20(1): 126-139(in Chinese).
    [35] 王勇, 解玉冰, 马小军. 壳聚糖/海藻酸钠生物微胶囊的研究进展[J]. 生物工程进展, 1999(2): 14-17, 21. WANG Y, XIE YB, MA XJ. Research Progress on Chitosan/Sodium Alginate Biocapsules[J]. China Biotechnology, 1999(2): 14-17, 21(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐建妙,周源源,程峰,柳志强. 多层复配微胶囊的制备及其在混凝土裂缝自修复中的应用[J]. 生物工程学报, 2025, 41(1): 448-460

复制
分享
文章指标
  • 点击次数:100
  • 下载次数: 242
  • HTML阅读次数: 282
  • 引用次数: 0
历史
  • 收稿日期:2024-05-16
  • 最后修改日期:2024-06-17
  • 在线发布日期: 2025-01-24
  • 出版日期: 2025-01-25
文章二维码
您是第5996733位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司