栗酒裂殖酵母来源黄素单加氧酶的性质及催化合成S-甲基-l-半胱氨酸亚砜的应用
作者:
基金项目:

国家自然科学基金(32101902);天津市自然科学基金(22JCQNJC00560);天津市合成生物技术创新能力提升行动项目(TSBICIP-KJGG-009)


A flavin-containing monooxygenase from Schizosaccharomyces pombe: characterization and application in the synthesis of S-methyl-l-cysteine sulfoxide
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    S-甲基-l-半胱氨酸亚砜(S-methyl-l-cysteine sulfoxide,SMCO)是一种具有多种功能特性的非蛋白质含硫氨基酸。目前关于催化S-甲基-l-半胱氨酸(S-methyl-l-cysteine,SMC)生物合成SMCO的酶鲜有报道。本研究将栗酒裂殖酵母(Schizosaccharomyces pombe)来源的黄素单加氧酶基因(spfmo)通过大肠杆菌(Escherichia coli) BL21(DE3)进行异源表达,并对其酶学性质进行了分析。重组SpFMO的最适催化条件为30℃、pH 8.0,该条件下比酶活为72.77 U/g;此外,适当的Mg2+可以提高SpFMO的酶活;经酶动力学分析,该酶对底物SMC的酶促反应动力学参数Km值为23.89 μmol/L,催化效率kcat/Km为61.71 L/(min·mmol)。在最适条件下,SpFMO催化SMC在9 h内生成SMCO的产率为12.31%。本研究为酶法合成SMCO提供了一定参考。

    Abstract:

    S-methyl-l-cysteine sulfoxide (SMCO) is a non-protein sulfur-containing amino acid with a variety of functions. There are few reports on the enzymes catalyzing the biosynthesis of SMCO from S-methyl-l-cysteine (SMC). In this study, the flavin-containing monooxygenase gene derived from Schizosaccharomyces pombe(spfmo) was heterologously expressed in Escherichia coli BL21(DE3) and the enzymatic properties of the expressed protein were analyzed. The optimum catalytic conditions of the recombinant SpFMO were 30 ℃ and pH 8.0, under which the enzyme activity reached 72.77 U/g. An appropriate amount of Mg2+ improved the enzyme activity. The enzyme kinetic analysis showed that the Km and kcat/Km of SpFMO on the substrate SMC were 23.89 μmol/L and 61.71 L/(min·mmol), respectively. Under the optimal reaction conditions, the yield of SMCO synthesized from SMC catalyzed by SpFMO was 12.31% within 9 h. This study provides reference for the enzymatic synthesis of SMCO.

    参考文献
    [1] FRIEDRICH K, WERMTER NS, ANDERNACH L, WITZEL K, HANSCHEN FS. Formation of volatile sulfur compounds and S-methyl-l-cysteine sulfoxide in Brassica oleracea vegetables[J]. Food Chemistry, 2022, 383: 132544.
    [2] KEUSGEN M, SCHULZ H, GLODEK J, KREST I, KRÜGER H, HERCHERT N, KELLER J. Characterization of some Allium hybrids by aroma precursors, aroma profiles, and alliinase activity[J]. Journal of Agricultural and Food Chemistry, 2002, 50(10): 2884-2890.
    [3] KREST I, GLODEK J, KEUSGEN M. Cysteine sulfoxides and alliinase activity of some Allium species[J]. Journal of Agricultural and Food Chemistry, 2000, 48(8): 3753-3760.
    [4] MONTAÑO A, BEATO VM, MANSILLA F, ORGAZ F. Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum L.) grown in Andalusia, Spain[J]. Journal of Agricultural and Food Chemistry, 2011, 59(4): 1301-1307.
    [5] COODE-BATE J, SIVAPALAN T, MELCHINI A, SAHA S, NEEDS PW, DAINTY JR, MAICHA JB, BEASY G, TRAKA MH, MILLS RD, BALL RY, MITHEN RF. Accumulation of dietary S-methyl cysteine sulfoxide in human prostate tissue[J]. Molecular Nutrition & Food Research, 2019, 63(20): e1900461.
    [6] SHAFAEI A, HILL CR, HODGSON JM, BLEKKENHORST LC, BOYCE MC. Simultaneous extraction and quantitative analysis of S-methyl-l- cysteine sulfoxide, sulforaphane and glucosinolates in cruciferous vegetables by liquid chromatography mass spectrometry[J]. Food Chemistry: X, 2024, 21: 101065.
    [7] NI L, GUAN XL, CHEN FF, WU PF. S-methyl-l- cysteine protects against antimycin A-induced mitochondrial dysfunction in neural cells via mimicking endogenous methionine-centered redox cycle[J]. Current Medical Science, 2020, 40(3): 422-433.
    [8] LEMOS LIC, MEDEIROS MA, LIMA JPMS, TEIXEIRA TO, FIGUEIREDO CA, FARIAS NBS, SILVA FS, ABREU BJ, MEDEIROS KCP, PEDROSA LFC. S-methyl cysteine sulfoxide mitigates histopathological damage, alleviate oxidative stress and promotes immunomodulation in diabetic rats[J]. Journal of Complementary & Integrative Medicine, 2021, 18(4): 719-725.
    [9] KUMARI K, AUGUSTI KT. Lipid lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn in high cholesterol diet fed rats[J]. Journal of Ethnopharmacology, 2007, 109(3): 367-371.
    [10] ASEMANI Y, ZAMANI N, BAYAT M, AMIRGHOFRAN Z. Allium vegetables for possible future of cancer treatment[J]. Phytotherapy Research, 2019, 33(12): 3019-3039.
    [11] YOSHINARI O, SHIOJIMA Y, IGARASHI K. Anti-obesity effects of onion extract in Zucker diabetic fatty rats[J]. Nutrients, 2012, 4(10): 1518-1526.
    [12] EDMANDS WMB, GOODERHAM NJ, HOLMES E, MITCHELL SC. S-methyl-l-cysteine sulphoxide: the Cinderella phytochemical?[J]. Toxicology Research, 2013, 2(1): 11-22.
    [13] SIVAPALAN T, MELCHINI A, COODE-BATE J, NEEDS PW, MITHEN RF, SAHA S. An LC-MS/MS method to measure S-methyl-l-cysteine and S-methyl-l-cysteine sulfoxide in human specimens using isotope labelled internal standards[J]. Molecules, 2019, 24(13): 2427.
    [14] ANDERNACH L, WITZEL K, HANSCHEN FS. Effect of long-term storage on glucosinolate and S-methyl-l-cysteine sulfoxide hydrolysis in cabbage (Brassica oleracea var. capitata)[J]. Food Chemistry, 2024, 430: 136969.
    [15] JOSHI J, RENAUD JB, SUMARAH MW, MARSOLAIS F. Deciphering S-methylcysteine biosynthesis in common bean by isotopic tracking with mass spectrometry[J]. The Plant Journal, 2019, 100(1): 176-186.
    [16] STEVENTON GB, MITCHELL SC. Phenylalanine 4-monooxygenase and the role of endobiotic metabolism enzymes in xenobiotic biotransformation[J]. Expert Opinion on Drug Metabolism & Toxicology, 2009, 5(10): 1213-1221.
    [17] STEVENTON GB, MITCHELL SC. Mouse recombinant phenylalanine monooxygenase and the S-oxygenation of thioether substrates[J]. Journal of Biochemical and Molecular Toxicology, 2009, 23(2): 119-124.
    [18] YOSHIMOTO N, SAITO K. S-alk(en)ylcysteine sulfoxides in the genus Allium: proposed biosynthesis, chemical conversion, and bioactivities[J]. Journal of Experimental Botany, 2019, 70(16): 4123-4137.
    [19] YOSHIMOTO N, ONUMA M, MIZUNO S, SUGINO Y, NAKABAYASHI R, IMAI S, TSUNEYOSHI T, SUMI SI, SAITO K. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic[J]. The Plant Journal, 2015, 83(6): 941-951.
    [20] ESWARAMOORTHY S, BONANNO JB, BURLEY SK, SWAMINATHAN S. Mechanism of action of a flavin-containing monooxygenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(26): 9832-9837.
    [21] VEERAVALLI S, PHILLIPS IR, FREIRE RT, VARSHAVI D, EVERETT JR, SHEPHARD EA. Flavin-containing monooxygenase 1 catalyzes the production of taurine from hypotaurine[J]. Drug Metabolism and Disposition, 2020, 48(5): 378-385.
    [22] LIU YH, HUANG L, ZHENG D, XU ZH, LI YZ, SHAO SL, ZHANG YF, GE XQ, LU FP. Biochemical characterization of a novel GH43 family β-xylosidase from Bacillus pumilus[J]. Food Chemistry, 2019, 295: 653-661.
    [23] SOTO-OTERO R, MÉNDEZ-ALVAREZ E, GALÁN- VALIENTE J, AGUILAR-VEIGA E, SIERRA- MARCUÑO G. Quantitative analysis of neuroactive amino acids in brain tissue by liquid chromatography using fluorescent pre-column labelling with o-phthalaldehyde and N-acetyl-l-cysteine[J]. Biomedical Chromatography, 1994, 8(3): 114-118.
    [24] DEANE DT, COPE TA, SCHULZ AM, BENNETT ET, HUGHES RM. Design, heterologous expression, and application of an immobilized protein kinase[J]. Bioconjugate Chemistry, 2023, 34(1): 204-211.
    [25] 马亮英. 大蒜有效部位蒜氨酸原料药的稳定性及相关研究[D]. 乌鲁木齐: 新疆医科大学, 2009. MA LY. Study on the stability and correlation of alliin, an effective part of garlic[D]. Urumqi: Xinjiang Medical University, 2009(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

连蒙卡,宋兆霖,高文静,朱刚,董孟君,李玉,刘逸寒,王凤华,路福平. 栗酒裂殖酵母来源黄素单加氧酶的性质及催化合成S-甲基-l-半胱氨酸亚砜的应用[J]. 生物工程学报, 2025, 41(1): 474-485

复制
分享
文章指标
  • 点击次数:96
  • 下载次数: 294
  • HTML阅读次数: 253
  • 引用次数: 0
历史
  • 收稿日期:2024-04-15
  • 最后修改日期:2024-08-30
  • 在线发布日期: 2025-01-24
  • 出版日期: 2025-01-25
文章二维码
您是第6035296位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司