大肠杆菌琥珀酸和乙酸合成途径的删除及其重组菌株的D-乳酸发酵
作者:
基金项目:

中非国际合作重点项目 (No. 2009DFA31300) 资助。


Elimination of succinate and acetate synthesis in recombinant Escherichia coli for D-lactate production
Author:
Fund Project:

Sino-South Africa Cooperation Program (No. 2009DFA31300).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    菌株CICIM B0013-030 (B0013,ack-pta,pps,pflB) 可积累D-乳酸作为主要发酵产物,然而副产物琥珀酸和乙酸的含量分别高达乳酸的11.9%和7.1%。为构建副产物含量低的产D-乳酸重组大肠杆菌菌株,本研究删除了菌株B0013-030 的琥珀酸 (frdA) 和乙酸 (tdcDE) 合成途径,并考察了重组菌株在摇瓶和发酵罐中经两阶段发酵 (好氧生长菌体和厌氧发酵产酸) 利用葡萄糖发酵D-乳酸的性能。结果表明,分别构建含有frdA::difGmtdcDE::difGm 突变盒的重组质粒,并利用Red 重组系统将突变盒整合于染色体上的目的基因,再利用Xer 重组系统去除抗生素抗性基因,依次获得了重组菌株B0013-040B (B0013-030,frdA) 和B0013-050B (B0013-040B,tdcDE)。摇瓶发酵结果表明,frdA 基因的删除使得菌株B0013-040B 副产物琥珀酸的含量降低了80.8%;在7 L 发酵罐中进行乳酸发酵,菌株B0013-040B的D-乳酸产量达114.5 g/L,光学纯度大于99.9%,但仍积累1.0 g/L 琥珀酸和5.4 g/L 乙酸。进一步删除了tdcDtdcE基因的菌株B0013-050B,在7 L 发酵罐中生产111.9 g/L D-乳酸,乙酸和琥珀酸的合成量分别降低为0.4 g/L,其他副产物含量也维持较低水平,表明该菌株具有较优良的D-乳酸发酵性能。

    Abstract:

    When Eshcerichia coli CICIM B0013-030 (B0013, ack-pta, pps, pflB) was used for D-lactate production, succinate and acetate were the main byproducts (as much as 11.9 and 7.1% the amount of lactate respectively). In order to decrease the byproduct levels, we inactivated succinate and acetate synthesis in B0013-030. Two recombinant plasmids containing mutation cassettes of frdA::difGm and tdcDE::difGm respectively were constructed first. The mutation cassettes were used to delete the target genes on the chromosomal by Red recombination. Subsequently, the antibiotic resistance gene was excised from the chromosomal by Xer recombination. Thereby, mutants B0013-040B (B0013-030, frdA) and B0013-050B (B0013-040B, tdcDE) were produced. D-lactate producing abilities of the engineered strains were tested both in shake flasks and in bioreactors using two-phase fermentation (aerobic growth and anaerobic fermentation) with glucose as the sole carbon source. When fermentation was carried out in shake flasks, inactivation of frdA in B0013-030 to produce B0013-040B reduced succinate accumulation by 80.8%. When tested in a 7-liter bioreactor, B0013-040B accumulated 114.5 g/L D-lactate of over 99.9% optical purity. However, 1.0 g/L succinate and 5.4 g/L acetate still remained in the broth. Further inactivation of tdcD and tdcE genes in B0013-040B to produce B0013-050B decreased acetate and succinate accumulation to 0.4 g/L and 0.4 g/L respectively, and lactate titer was as much as 111.9 g/L (tested in the 7-liter bioreactor). In light of the lower byproduct levels and high lactate production, strain B0013-050B may prove useful for D-lactate production.

    参考文献
    [1] Zhu Y, Eiteman MA, DeWitt K, et al. Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol, 2007, 73(2): 456?464.
    [2] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA, 2000, 97(12): 6640?6645.
    [3] Chang DE, Jung HC, Rhee JS, et al. Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol, 1999, 65(4): 1384?1389.
    [4] Zhu J, Shimizu K. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Appl Microbiol Biotechnol, 2004, 64(3): 367?375.
    [5] Zhu JF, Shimizu K. Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab Eng, 2005, 7(2): 104?115.
    [6] Grabar TB, Zhou S, Shanmugam KT, et al. Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(?)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett, 2006, 28(19): 1527?1535.
    [7] Sun JF, Zhuge J, Wang ZX. Screening and transformation of enteric bacteria utilizing xylose efficiently. J Wuxi Univ Light Ind, 2003, 22(1): 21?24. 孙金凤, 诸葛健, 王正祥. 有效利用木糖的肠道细菌选及转化. 无锡轻工大学学报, 2003, 22(1): 21?24.
    [8] Bloor AE, Cranenburgh RM. An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes. Appl Environ Microbiol, 2006, 72(4): 2520?2525.
    [9] Overhage J, Priefert H, Rabenhorst J, et al. Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Microbiol Biotechnol, 1999, 52(6): 820?828.
    [10] Ma XJ, Shu YL. Short Protocols in Molecular Biology. 4th Ed. Beijing: Science Press, 2005: 2. 马学军, 舒跃龙译. 精编分子生物学实验指南. 4 版. : 科学出版社, 2005: 2.
    [11] Zhou SD, Causey TB, Hasona A, et al. Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol, 2003, 69(1): 399?407.
    [12] Sawers G, Watson G. A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol, 1998, 29(4): 945?954.
    [13] Hesslinger C, Fairhurst SA, Sawers G. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol Microbiol, 1998, 27(2): 477?492.
    [14] Jantama K, Zhang XL, Moore JC, et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng, 2008, 101(5): 881?893.
    [15] Vemuri GN, Altman E, Sangurdekar DP, et al. Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol, 2006, 72(5): 3653?3661.
    [16] Zhou S, Yomano LP, Shanmugam KT, et al. Fermentation of 10% (w/v) sugar to D(?)-lactate by engineered Escherichia coli B. Biotechnol Lett, 2005, 27(23/24): 1891?1896.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周丽,田康明,左志锐,陈献忠,石贵阳,Suren Singh,王正祥. 大肠杆菌琥珀酸和乙酸合成途径的删除及其重组菌株的D-乳酸发酵[J]. 生物工程学报, 2011, 27(1): 31-40

复制
分享
文章指标
  • 点击次数:3144
  • 下载次数: 4828
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2010-05-09
  • 最后修改日期:2010-08-11
文章二维码
您是第5990921位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司