漆酶空间结构、反应机理及应用
作者:
基金项目:

安徽省教育厅自然基金重点项目 (No. KJ2008A127),安徽大学博士启动基金项目 (No. 02203105) 资助。


Structure, catalytic mechanism and applications of laccases: a review
Author:
Fund Project:

Natural Science Foundation of Department of Education of Anhui Province (No. KJ2008A127), Start-up Foundation for Doctor. of Anhui University. (No. 02203105).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    漆酶 (EC 1.10.3.2) 属于多铜氧化酶家族,可以催化氧化酚类和芳香类化合物,利用自由基反应机理完成4 个电子的转移,并将分子氧还原成水。漆酶具有非常保守的拓扑学结构,结合作者自身工作实践,对漆酶结构与功能的最新研究进展进行综述,其中对漆酶的三维结构、活性中心、催化机理研究和最新的应用进展作重点阐述。

    Abstract:

    Laccases (benzenediol: oxygen oxidoreductases; EC 1.10.3.2) are copper-containing polyphenol oxidases that can oxidize a wide range of aromatic compounds, concomitantly with the transfer of four electrons and the reduction of molecular oxygen to water. The progress on the research of laccases structure and function is reviewed. Their three-dimensional structures and catalytic mechanism, as well as their applications in different fields are emphasized.

    参考文献
    [1] Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chem Rev, 1996, 96(7): 2563?2606.
    [2] Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol Rev, 2006, 30(2): 215?242.
    [3] Bao W, O'Malley D M, Whetten R, et al. A laccase associated with lignification in Loblolly Pine Xylem. Science, 1993: 260(5108): 672?674.
    [4] Enguita FJ, Martins LO, Henriques AO, et al. Crystal structure of a bacterial endospore coat component ? A laccase with enhanced thermostability properties. J Biol Chem, 2003, 278(21): 19416?19425.
    [5] Shleev SV, Morozova OV, Nikitina OV, et al. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie, 2004, 86(9/10): 693?703.
    [6] Palmer AE, Lee SK, Solomon EI. Decay of the peroxide intermediate in laccase: reductive cleavage of the O-O bond. J American Chemical Society, 2001, 123(27): 6591?6599.
    [7] Garavaglia S, Cambria MT, Miglio M, et al. The structure of Rigidoporus lignosus Laccase containing a full complement of copper ions reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol, 2004, 342(5): 1519?1531.
    [8] Kumar SV, Phale PS, Durani S, et al. Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng, 2003, 83(4): 386?394.
    [9] Ge H, Gao Y, Hong Y, et al. Structure of native laccase B from Trametes sp. AH28-2. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2010, 66(Pt 3): 254?258.
    [10] Ducros V, Brzozowski AM, Wilson KS, et al. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Nat Struct Biol, 1998, 5(4): 310?316.
    [11] Piontek K, Antorini M, Choinowski T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A reso-lution containing a full complement of coppers. J Biol Chem, 2002, 277(40): 37663?37669.
    [12] Bertrand T, Jolivalt C, Briozzo P, et al. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry, 2002, 41(23): 7325?7333.
    [13] Ferraroni M, Myasoedova NM, Schmatchenko V, et al. Crystal structure of a blue laccase from Lentinus tigrinus: evi-dences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol, 2007, 7: 60.
    [14] Matera I, Gullotto A, Tilli S, et al. Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorganica Chimica Acta, 2008, 361(14/15): 4129?4137.
    [15] Polyakov KM, Fedorova TV, Stepanova EV, et al. Structure of native laccase from Trametes hirsuta at 1.8 A resolution. Acta Crystallogr D Biol Crystallogr, 2009, 65(Pt 6): 611?617.
    [16] Hakulinen N, Kiiskinen LL, Kruus K, et al. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol, 2002, 9(8): 601?605.
    [17] Hakulinen N, Andberg M, Kallio J, et al. A near atomic resolution structure of a Melanocarpus albomyces laccase. J Struct Biol, 2008, 162(1): 29?39.
    [18] DeLano WL. The PyMOL molecular graphics system. http://wwwpymolorg 2002.
    [19] Lee SK, George SD, Antholine WE, et al. Nature of the intermediate formed in the reduction of O(2) to H(2)O at the trinuclear copper cluster active site in native laccase. J American Chemical Society, 2002, 124(21): 6180?6193.
    [20] Solomon EI, Augustine AJ, Yoon J. O2 reduction to H2O by the multicopper oxidases. Dalton Trans, 2008(30): 3921?3932.
    [21] Xu F, Shin W, Brown SH, et al. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit sig-nificant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta, 1996, 1292(2):303?311.
    [22] Gray HB, Malmstrom BG, Williams RJ. Copper coordination in blue proteins. J Biol Inorg Chem, 2000, 5(5): 551?559.
    [23] Xu F. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem, 1997, 272(2): 924?928.
    [24] Tadesse MA, D'Annibale A, Galli C, et al. An assessment of the relative contributions of redox and steric issues to lac-case specificity towards putative substrates. Org Biomol Chem, 2008, 6(5): 868?878.
    [25] Torres J, Svistunenko D, Karlsson B, et al. Fast reduction of a copper center in laccase by nitric oxide and formation of a peroxide intermediate. J American Chemical Society, 2002, 124(6): 963?967.
    [26] Quintanar L, Yoon J, Aznar CP, et al. Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation. J American Chemical Society, 2005, 127(40): 13832?13845.
    [27] Yoon J, Liboiron BD, Sarangi R, et al. The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Proc Natl Acad Sci USA, 2007, 104(34): 13609?13614.
    [28] Giardina P, Palmieri G, Scaloni A, et al. Protein and gene structure of a blue laccase from Pleurotus ostreatus1. The Bio-chemical J, 1999, 341(Pt 3): 655?663.
    [29] Kawai S, Umezawa T, Higuchi T. Degradation mechanisms of phenolic beta-1 lignin substructure model compounds by laccase of Coriolus versicolor. Archives Biochem Biophy, 1988, 262(1): 99?110.
    [30] Xu F. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox po-tentials as well as halide inhibition. Biochemistry, 1996, 35(23): 7608?7614.
    [31] Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett, 1990, 267(1): 99?102.
    [32] Xu F, Kulys JJ, Duke K, et al. Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl Environ Microbiol, 2000, 66(5): 2052?2056.
    [33] Jeon JR, Murugesan K, Kim YM, et al. Synergistic effect of laccase mediators on pentachlorophenol removal by Gano-derma lucidum laccase. Appl Microbiol Biotechnol, 2008, 81(4): 783?790.
    [34] Abadulla E, Tzanov T, Costa S, et al. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol, 2000, 66(8): 3357?3362.
    [35] Pereira L, Coelho AV, Viegas CA, et al. Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol, 2009, 139(1): 68?77.
    [36] Couto SR. Decolouration of industrial azo dyes by crude laccase from Trametes hirsuta. J Hazardous Materials, 2007, 148(3): 768?770.
    [37] Palmieri G, Giardina P, Sannia G. Laccase-mediated remazol Brilliant Blue R decolorization in a fixed-bed bioreactor. Biotechnol Prog, 2005, 21(5): 1436?1441.
    [38] Ceylan H, Kubilay S, Aktas N, et al. An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM). Biores Technol, 2008, 99(6): 2025?2031.
    [39] Ossiadacz J, Al-Adhami A, Bajraszewska D, et al. On the use of Trametes versicolor laccase for the conversion of 4-methyl-3-hydroxyanthranilic acid to actinocin chromophore. J Biotechnol, 1999, 72: 141?149.
    [40] Gutierrez A, Del Rio JC, Ibarra D, et al. Enzymatic removal of free and conjugated sterols forming pitch deposits in environmentally sound bleaching of eucalypt paper pulp. Environ Sci & Technol, 2006, 40(10): 3416?3422.
    [41] Canas A, Alcalde M, Plou FJ, et al. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ Sci & Technol, 2007, 41: 2964?2971.
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

葛宏华,武赟,肖亚中. 漆酶空间结构、反应机理及应用[J]. 生物工程学报, 2011, 27(2): 156-163

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-05-11
  • 最后修改日期:2010-06-25
文章二维码
您是第6020683位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司