Abstract:To enhance biohydrogen production of Klebsiella sp. HQ-3, the global transcriptional factor (Fnr), formate dehydrogenase H (FDHH) and the pncB gene encoding the nicotinic acid phosphoribosyltransferase (NAPRTase) were for the first time over-expressed in Klebsiella sp. HQ-3. The fnr, fdhF, pncB genes were cloned from the genomic DNA of Klebsiella sp. HQ-3 by 3 pairs of universal primers, and introduced into the corresponding sites of the modified pET28a-Pkan, resulting in the plasmids pET28a-Pkan-fnr, pET28a-Pkan-fdhF and pET28a-Pkan-pncB. The 4 plasmids were then electroported into wild Klebsiella sp. HQ-3 to create HQ-3-fnr, HQ-3-fdhF, HQ-3-pncB and HQ-3-C, respectively. Hydrogen production was measured using a gas chromatograph and the metabolites were analyzed with a high-performance liquid chromatograph (HPLC). The results indicate that over-expression of fnr, fdhF and pncB significantly enhanced hydrogen production in the three recombinant strains. Hydrogen production per mol glucose for HQ-3 fnr, HQ-3 pncB, HQ-3 fdhF was 1.113, 1.106 and 1.063 mol of hydrogen/mol glucose, which was respectively increased by 12.26%, 11.62% and 7.28% compared with that of the control strain HQ-3-C (0.991 mol of hydrogen/mol glucose). Moreover, the analysis of HPLC showed that the concentrations of formate and lactate were markedly decreased, but succinate remained unchanged in culture media compared with those of the control strain HQ-3-C.