Abstract:Protein kinase D (PKD) is a novel family of serine/threonine kinases and diacylglycerol (DAG) receptors and has been documented in a variety of cellular processes. To get high purity catalytic domain of PKD1 (PKD1-cat) for crystallography study, the GST-tagged PKD1-cat gene was cloned into a baculovirus transfer vector pFastBac1 (donor plasmid). When the recombinant plasmid was transformed into DH10Bac competent Escherichia coli, which contains a baculovirus shuttle vector (bacmid), transposition occurs to generate a recombinant bacmid containing the gene of interest (GST-PKD1-cat). The recombinant bacmid DNA was transfected into Spodoptera frugiperda Sf9 insect cells to generate recombinant baculovirus, which was then amplified through multiple rounds of infection in Sf9 cells. After that, Trichoplusia ni insect cells in suspension culture were infected with baculoviral stock at a multiplicity of infection (MOI) of 5 PFU/cell. SDS-PAGE and Western blotting analysis confirmed the detection of a 68 kDa protein by the glutathione S-transferase (GST) monoclonal antibody. The recombination protein was purified by Glutathione sepharose affinity chromatography and cleaved by PreScission Protease to remove GST tag, and a highly pure 42 kDa protein which was consistent with the molecular weight of the expected PKD1-cat protein was detected on SDS-PAGE. The activity of purified PKD1-cat protein was determined by in vitro PKD kinase assay. Our data showed that the kinase activity increased with the concentration of purified PKD1-cat protein. These results showed that the truncated recombinant PKD1-cat protein was highly active and pure, and could potentially be used for solving 3D structure of this protein by Nuclear Magnetic Resonance (NMR) or crystallography.