Abstract:Taiwanofungus camphoratus is a valuable and rare medicinal mushroom with various bioactivities, such as liver protection and anti-cancer. T. camphoratus can produce many arthroconidia at the end of submerged fermentation, but molecular mechanism underlying this submerged conidiation remains unknown. In this study, we found that Ca2+ concentration in culture medium significantly affected the arthroconidium production of T. camphoratus. Then, we identified two proteins (CaM and HSP90) involved in Ca2+/calmodulin signaling pathway and one protein (AbaA) involved in FluG-mediated conidiation pathway by two-dimensional electrophoresis analyses. Furthermore, we proposed a Ca2+/calmodulin- and FluG-mediated signaling pathway by bioinformatics analysis. By real-time quantitative PCR analyses of 23 key genes in the Ca2+/calmodulin- and FluG-mediated conidiation pathway, we found that expression levels of 7 genes (crz1, hsp90, flbB, brlA, abaA, wetA and fadA) showed significant responses to Ca2+ concentration in fermentation medium. Our research is beneficial for elucidating the underlying mechanism of submerged fermentation conidiation for T. camphoratus.