Abstract:Dental biofilms are composed of hundreds of bacterial species, among which Streptococcus mutans is widely recognized as the major pathogen of dental caries. The cariogenic potential of S. mutans is related to its ability to form a robust biofilm on the tooth surface and its acidogenic and acid-tolerant properties. Co-evolution of S. mutans with the host has resulted in the diversity of secondary metabolism of S. mutans in strain level. A variety of secondary metabolites, including 10 bacteriocins (mutacins) and one hybrid Polyketide/Non-Ribosomal Peptide type compound, have been characterized. Studies on these secondary metabolites indicate that they play a significant role either in interspecies or in inter-kingdom interactions in the dental biofilm. As more S. mutans strains are isolated and sequenced, additional secondary metabolites with novel functions will be discovered. The study of secondary metabolites in S. mutans is anticipated to be helpful for oral disease treatment and prevention by providing new strategies.