Abstract:The increasing number of genetic manipulation approaches and high-resolution live imaging technique applied in zebrafish have propelled the rise of this organism as a mainstream model for developmental biology and human diseases studies. Zebrafish has many advantages for functional genomics analysis, allowing for easy, cheap and fast functional characterization of novel genes in the vertebrate genome. Here we provide an overview of the principles of genetic manipulation in zebrafish, such as Ethylnitrosourea (ENU) mutagenesis, insertional mutagenesis, gene trapping mutagenesis, Morpholino mediated gene knockdown, targeting induced local lesions in genomes (TILLING), genome editing with engineered nucleases ZFN (Zinc finger nuclease), TALEN (Transcription activator-like effector nuclease) and CRISPR/Cas9 system, and transgenic methods used in zebrafish.