Abstract:During the development of bacteria-based biotechnology, bacteriophage infection is one of the constant threats and troublesome problems in industrial fermentation. The core of puzzled bacteriophage infection is a complex arm race of coevolution between bacteriophages and their hosts where bacteriophage has evolved lots of escaped ways against bacterial resistance mechanisms. The strategies of rationally designing factories and rotation of starter strains could reduce the risk of bacteriophage infection, but often fail to avoid. Genetic engineering to increase bacterial resistance is one of the strategies to prevent bacteriophage infection and more knowledge about bacteriophage and its host is needed. Recently, there are some new findings on bacterial resistance mechanisms which provide new solutions for bacteriophage infection. For example, it is possible for a rational design of resistant strains to use CRISPR-Cas based technologies just based on the sequences of bacteriophages. Moreover, it is also possible to avoid the escape of bacteriophage by iteratively building up resistance levels to generate robust industrial starter cultures. Quorum-sensing signal molecules have recently been proved to be involved in the interactions between bacteria and bacteriophages, which provides a possible way to solve bacteriophage infection from a population level. Finally, the rapid development of bacteriophage genome editing and synthetic biology will bring some new cues for preventing bacteriophage infection in industrial fermentation.