Abstract:Primary hepatocytes are widely used in drug metabolism and toxicity assessment. As the culture of primary hepatocytes in vitro is a process of dedifferentiation, hepatocytes lose normal metabolic detoxification function gradually. The mechanism of hepatocyte dedifferentiation has been not clear so far. TFs play an important role in the dedifferentiation and non-parenchymal cells can maintain the function of hepatocytes in vitro. However, the current methods cannot be used in effective identification and quantitative analysis of a large number of TFs. In this paper, the mo-culture system (only primary hepatocytes) and co-culture system (primary hepatocytes and non-parenchymal cells) were established. The cells were cultured for 24 h, 48 h, 72 h as monolayer. The changes of TFs during the culture were obtained by TOT (Transcription factor response elements on tip) transcription factor enrichment method and mass spectrometry. A total of 219 TFs were identified in three individual replicates. The result revealed that up-regulated TFs were enriched in cell proliferation, death and immune response pathways, and down-regulated TFs were involved in metabolism pathway. The establishment of such culture-TFs identification system is of great significance to reveal the mechanism of primary hepatocyte dedifferentiation and crosstalk between hepatocytes and non-parenchymal cells.